8ва это сколько ампер
Перейти к содержимому

8ва это сколько ампер

Разница между ВА и Вт

разница между ВА и ВТ

Электрика, как и многие другие области технических направлений, изобилует собственной терминологией, зачастую малопонятной даже людям, знакомым с одноименным разделом физики по школьной программе. Именно оттуда мы узнали про вольты и амперы, с ваттами и киловаттами нас ближе познакомили платежки ЖКХ, но многие термины остаются загадкой, особенно для дилетантов или тех, кто не блистал в школе знаниями по физике.

Наверно каждому из владельцев того или иного электрического устройства при изучении паспорта на него доводилось сталкиваться с разночтениями. В одном случае потребляемая прибором мощность обозначается Вт (ватты), в другом ВА (вольт-амперы). Почему используются разные единицы измерения, и в какой мере они соответствуют друг другу, попробуем разобраться ниже.

Для начала познакомимся с понятиями реактивных и активных мощностей. Активная потребляемая мощность идет целиком на выполнение определенной работы, неважно будет ли это нагрев электрическим чайником воды, перемещение вентилятором воздуха либо освещение лампочкой накаливания комнаты. Измеряется потребляемая активная мощность в ваттах и киловаттах (1 кВт = 1000 Вт). Однако в реальных электрических сетях с переменным током приходится учитывать еще и реактивную мощность, порождаемую нелинейными нагрузками, она не участвует в выполнении полезной работы, тем не менее, дополнительно нагружает сеть. Поэтому конечная потребляемая мощность потребителя электрической энергии (полная мощность) представляет собой алгебраическую сумму активной и реактивной мощностей, а измеряется она в вольт-амперах.

Каким образом ватты связаны с вольт-амперами?

Итак, мы выяснили, что в ВА измеряется полная мощность (S), равная произведению 1 ампера, протекающего через зажимы входных контактов на 1 вольт измеренного на них напряжения. В ваттах и киловаттах измеряется активная потребляемая электрическая мощность (P) и связаны эти два вида мощности коэффициентом мощности, именуемым cos ϕ. Зависимость мощностей достаточно простая:

из нее понятно, что активная мощность всегда меньше либо равна полной (cos ϕ ≤ 1). Таким образом, из приведенной выше формулы понятно, что активную мощность можно всегда определить по формуле:

и таким образом перевести вольт-амперы в ватты.

Совпадать величины активной и реактивной мощности будут при чисто активной нагрузке, например для ламп накаливания или ТЭНов водонагревателей, имеющих коэффициент мощности практически равный 1.

В зависимости от оборудования величина cos ϕ может колебаться в широких пределах, причем за удовлетворительное значение принято считать величину коэффициента мощности в 0.65 – 0.8. Уметь перевести ВА в ватты необходимо для того, чтобы реально оценить мощность того или иного прибора. К примеру, если рассматривать характеристику ИБП (источника бесперебойного питания) с заявленной мощностью 1000 ВА и вольтамперной характеристикой 60%, в ваттах такой источник питания обычно способен выдавать не более 600 ватт. При подсчете нагрузки также необходимо учитывать и характеристики всех ее составляющих, поскольку суммарное превышение нагрузки в ваттах выше 600 Вт делают такой источник бесперебойного питания непригодным для использования.

Кроме того значения полных мощностей в вольт-амперах необходимо учитывать при расчете электрических сетей. Именно полная мощность требует обеспечения необходимой их пропускной способности и должна быть учтена при расчетах сечений кабелей и проводов, допустимых номиналов защитной автоматики.

Остались вопросы?

Заполните форму обратно связи ниже, наши специалисты свяжутся с Вами, проконсультируют, расскажут про возможные способы решения Вашей задачи.

Перевод Ватт в Амперы

При проектировании электрических сетей или в бытовом применении часто приходится оперировать такими значениями как напряжение, сила тока и мощность. В наших сетях напряжение остается неизменным, а меняются другие величины. И вот для того чтобы сделать перевод ватт в амперы необходим наш онлайн калькулятор.

Формула перевода ватт в ампер

Расчет Ампер, а точнее силы тока производится по специальной формуле:

I = P / U , где

I — сила тока в амперах,
P — мощность в ваттах,
U — напряжение в вольтах.

Данный калькулятор позволяет перевести Ватты в Амперы онлайн без использования ручных вычислений. Все расчеты здесь будут верны для однофазной сети переменного тока. Для трехфазных сетей данный онлайн-калькулятор не подходит. Чуть позже мы его добавим, если понадобится.

Для того чтобы использовать калькулятор перевод Ватт (Вт) в Амперы (А) необходимо ввести некоторые исходные данные для начала. А именно, укажите действующее номинальное напряжение в сети и введите потребляемую мощность. После нажатия на кнопку «Расчет» вы мгновенно получите результат в амперах, с точностью три знака после запятой.

Если вам пригодился наш простой калькулятор — конвертер перевода Вт в А при постоянном напряжении, добавьте к себе в закладки чтобы не потерять.

Конвертер величин

Graph

Как преобразовать ватты (Вт) в вольт-амперы (ВА) и наоборот? Воспользуйтесь этим калькулятором, который определит активную мощность в ваттах по известным полной мощности в вольт-амперах и коэффициенту мощности. Отметим, что такое преобразование имеет смысл только для переменного тока. На постоянном токе полная мощность равна активной.

Пример 1: Рассчитайте полную мощность 37-мегаваттной турбины в ВА, если коэффициент мощности равен единице.

Пример 2: Рассчитайте активную мощность в мегаваттах, если полная мощность равна 50 МВА и коэффициент мощности равен 0.7.

Пример 3: Рассчитайте коэффициент мощности микроволновой печи мощностью 1200 Вт, если она потребляет 1450 ВА.

Для расчета введите две величины из трех и нажмите кнопку Рассчитать

Определения и формулы

Как ватты, так и вольт-амперы используются для измерения электрической мощности. На табличках с характеристиками электронных и электроприборов всегда указывается потребляемая мощность либо в ваттах, либо во вольт-амперах. Ниже мы обсудим чем они отличаются и как их рассчитывать. Мы также коснемся проблемы искажения формы тока в нелинейных нагрузках.

Ватты (Вт): Активная мощность P — это мощность, которая реально потребляется лампами, телевизорами, компьютерами и другим оборудованием, которая используется на выполнение полезной работы и преобразование в тепловую энергию. В конечном итоге, вся активная мощность превращается в тепло.

Именно активная мощность обычно указывается на табличках с паспортными данными резистивных электроприборов, таких как электродуховки и электронагреватели. Активную мощность нужно измерять, например, для того чтобы вывести из дата-центра на улицу выделяемое серверами тепло. Ее нужно измерять для того, чтобы определить энергию, потребляемую всеми домашними электроприборами, так как в счетах за электроэнергию указывается именно активная мощность.

В цепях однофазного переменного тока при отсутствии искажений (гармоник) активная мощность равна произведению среднеквадратичных значения тока I и напряжения U на косинус сдвига фаз φ между ними, то есть

Если же переменный ток имеет форму, отличную от синусоидальной, то активная мощность равна произведению сумм соответствующих средних мощностей отдельных гармонических составляющих.

Вольт-амперы (ВА): Полная мощность, |S| — это мощность, на которую должна быть рассчитана электрическая сеть. Это произведение среднеквадратичных значений тока и напряжения и, таким образом, она не зависит от формы колебаний напряжения и тока.

При расчете среднеквадратичных значений учитываются все гармоники, которые обычно присутствуют в токе и напряжении. Электросеть рассчитывается таким образом, чтобы она могла передавать полную мощность, которая всегда выше, чем активная мощность, так как она отражает потребление нагрузкой как активной, так и реактивной мощности. Измеряется полная мощность в вольт-амперах.

Для расчета полной мощности в вольт-амперах нужно измерить среднеквадратичный ток и среднеквадратичное напряжение. Для этого следует использовать мультиметр, который способен измерять истинное среднеквадратичное значение любого сигнала. Ниже мы покажем, что в большинстве используемых в быту устройств ток не является синусоидальным — именно поэтому нужен мультиметр, измеряющий истинное среднеквадратичное значение тока и напряжения.

Мощность в вольт-амперах удобно использовать, так как если известно напряжение, то можно рассчитать максимальный ожидаемый ток, потребляемый устройством, и обеспечить чтобы провода или кабели для его питания выдерживали этот ток. В связи с тем, что сейчас большинство нагрузок являются нелинейными, нет простой возможности определить мощность нескольких нагрузок путем простого сложения их токов, потому что они не находятся в фазе друг с другом (об этом мы поговорим позднее). Однако возможно сложить отдельные паспортные мощности в вольт-амперах и получить оценку полной мощности или тока, потребляемого несколькими устройствами.

Вары: Реактивная мощность, Q — это «мнимая», воображаемая мощность реактивной (индуктивной или емкостной) нагрузки, которая характеризует обмен энергией между источником энергии и реактивной нагрузкой, в которой потери энергии отсутствуют. Несмотря на то, что эта мощность считается мнимой и не потребляется реактивной нагрузкой, она реально нагревает провода, когда отбирается от источника и возвращается к нему. То есть, чисто реактивная сама энергию не потребляет и, соответственно, не выделяет тепла. Однако провода, по которым передается энергия, нагреваются (потому что они оказывают сопротивление электрическому току!) и, в свою очередь, нагревают окружающую среду.

Все три вида мощности показаны на графике, называемом треугольником мощности. В нем P — активная мощность, Q — реактивная мощность, φ — фазовый угол между током и напряжением и |S| — полная мощность. Отметим, что реактивная мощность показана на мнимой оси графика. Активная мощность, которая выполняет реальную работу, показана на действительной оси.

Picture

Коэффициент мощности, PF — отношение потребляемой нагрузкой активной мощности к полной мощности. В русскоязычной литературе принято обозначение cos φ или λ, хотя cos φ относится только к синусоидальным токам и напряжениям. Поскольку оригинал этой статьи написан на английском языке, и она переводится на другие языки, мы используем принятое в англоязычной литературе сокращение PF от англ. power factor. Это поможет избежать ошибок в формулах, вносимых переводчиками, которые плохо знакомы с физикой и математикой.

Коэффициент мощности обычно указывается в процентах или в виде безразмерной величины от 0 до 1. Например, коэффициент мощности 85% указывает на бóльшую эффективность, чем 60%. Эффективная система обычно имеет коэффициент мощности более 95%. Если мы посмотрим на треугольник мощности, мы увидим, что коэффициент мощности для синусоидальных токов и напряжений равен также косинусу угла сдвига фаз между током и напряжением cos φ. Этот вид коэффициента мощности называют также основным или полным коэффициентом мощности, или коэффициентом мощности без учета гармонических искажений (англ. displacement power factor).

Здесь нужно заметить, что мы пока еще не говорили об искажении формы тока, протекающего через различные нагрузки. Например, если в характеристиках нагрузки указан коэффициент мощности 0,75, это ничего не говорит о том, что является причиной такого низкого коэффициента: связано ли это с фазовым сдвигом чисто синусоидального тока или с тем, что форма тока сильно отличается от синусоидальной. Ниже мы обсудим как ведут себя нелинейные нагрузки и как они уменьшают коэффициент мощности, особенно если без учета гармонических искажений коэффициент мощности близок к единице.

Мгновенная полная мощность представляет собой произведение мгновенных значений напряжения на нагрузке и текущего через нее тока. Примеры мгновенной реактивной мощности показаны ниже на нескольких иллюстрациях. В нелинейных нагрузках, таких как компактные люминесцентные и светодиодные лампы, сварочные аппараты, приводы электродвигателей с регулируемой скоростью, диодно-мостовые выпрямители и импульсные блоки питания компьютеров, ток прерывается в результате работы переключающих схем и, следовательно, содержит компоненты, частоты которых больше основной сетевой частоты (50 или 60 Гц) в целое число раз.

Поскольку эти мгновенные значения изменяются со временем, удобно использовать их среднеквадратичные значения, которые получены путем интегрирования за период времени. Современные цифровые мультиметры и осциллографы могут измерять действительные среднеквадратичные значения колебаний любой формы путем оцифровки и дискретизации с последующим вычислением среднеквадратичного значения. Подробнее о вычислении среднеквадратичного значения — в нашем Калькуляторе мощности переменного тока

С помощью преобразования Фурье любая периодическая функция может быть представлена в виде суммы простых синусоидальных сигналов. В измерительных приборах для разложения в ряд Фурье используют дискретное преобразование Фурье и, в частности, быстрое преобразование Фурье (БПФ, англ. FFT — fast Fourier transform), позволяющее получить результат за меньшее время. Практически любой современный цифровой осциллограф может выполнять быстрое преобразование Фурье путем вызова этой функции через меню математики.

Ниже показана осциллограмма сетевого напряжения 120 В 60 Гц. Можно заметить, что форма колебаний отличается от синусоидальной. Эти расхождения не очень значительны, но все же хорошо заметны на глаз.

Форма сигнала сетевого напряжения 120 В 60 Гц в офисе TranslatorsCafe.com, который должен быть синусоидальным. Однако форма искажена из-за большого количества включенных в сеть электронных устройств, таких как блоки питания компьютеров и светодиодные лампы.

Однако если мы нажмем кнопку вызова математических функций Math на осциллографе и выберем из меню быстрое преобразование Фурье (FFT), мы увидим тот же сигнал в частотной области, показанный на рисунке ниже. Здесь на горизонтальной оси X находится частота в линейном масштабе, а на вертикальной оси Y находится амплитуда мощности в логарифмическом масштабе. Здесь хорошо видны амплитуды частот, отличных от основной частоты, если они выше уровня шума осциллографа. В отличие от музыки, в любой силовой системе гармоники нежелательны, так как они приводят к увеличению потерь при передаче и распределении электроэнергии, излишнему нагреву электродвигателей, выходу из строя оборудования и ложному срабатыванию таких чувствительных устройств, как реле.

В линейных цепях коэффициент мощности зависит только от разности фаз между током и напряжением. Однако мы живем в мире нелинейных нагрузок. В нелинейных схемах ток искажается и содержит много гармоник в дополнение к основной частоте. Эти гармоники попадают в систему электропитания и приводят к искажениям измеренного в офисе TranslatorsCafe.com напряжения, что и наблюдается на рисунках выше.

Мы видим, что нужно ввести еще один компонент в показанный выше треугольник напряжений. Он называется коэффициентом мощности, обусловленный нелинейными искажениями (англ. distortion power factor, DPF) или, видимо, не совсем правильно, коэффициентом мощности искажений (ну какая может быть мощность у искажений?). Максимальная активная мощность передается в нагрузку не только тогда, когда напряжение и ток совпадают по фазе, но и когда они не искажены. В отличие от «обычного» коэффициента мощности, который мы изучали на уроках физики в школе, коэффициент мощности для нелинейных нагрузок нельзя откорректировать путем добавления батареи конденсаторов. Он должен корректироваться с помощью схемных решений в каждом нелинейном устройстве-потребителе электроэнергии.

Более того, добавление шунтирующих конденсаторов, скорее всего, ухудшит коэффициент мощности, вызывая ненужные резонансы и повысит уровень гармонических искажений. Для исправления искажений необходимо использовать силовую электронику в виде активных фильтров, которые изменяют форму тока, потребляемого нагрузкой. Обычно самый высокий уровень имеют третья, пятая и седьмая гармоники сетевой частоты.

Для расчета коэффициента мощности, обусловленного нелинейными искажениями, вводится полный коэффициент гармонических искажений (англ. total harmonic distortion, THD). Он определяется как отношение среднеквадратичной амплитуды суммы высших гармоник сигнала, за исключением первой гармоники, к среднеквадратичной амплитуде первой гармоники (основной частоты, которая является самой низкой частотой периодического сигнала):

Здесь Un RMS — действующее значение напряжения n-й гармоники, а n — номер гармоники (целое число). Стандарты обычно требуют учитывать при измерениях первые 40 или 50 гармонических составляющих. Для несинусоидального тока имеем:

Их этих формул следует, что для чистого синусоидального напряжения и тока, в которых нет гармоник, полный коэффициент гармонических искажений THD равен нулю. Стоит еще раз напомнить, что мы тут не об аппаратуре для воспроизведения музыки говорим, а о силовых электрических цепях.

Picture

Но вернемся к нашему треугольнику мощности. Вместо плоского треугольника мощности для линейных нагрузок с чисто синусоидальными напряжением и током, для реальных нелинейных нагрузок соотношение векторов мощности становится объемным. В нем к обеим мощностям (активной P и реактивной Q), добавляется реактивная мощность D, обусловленная нелинейными искажениями. В результате векторного сложения получается полная мощность S, что и показано на рисунке ниже.

Из этого рисунка очевидно, что полная мощность определяется следующей формулой:

Приведенные ниже иллюстрации показывают, что полный коэффициент мощности многих нелинейных нагрузок весьма низкий и составляет 0,5–0,8.

Напряжение (синяя линия) и ток (желтая линия) компьютерного блока питания — примера нелинейной нагрузки

Для измерения активной и полной мощности необходимы специализированные измерительные приборы, так как нужно одновременно измерять непрерывно изменяющиеся напряжение и ток, а средняя мощность должна рассчитываться в течение точного периода времени.

Перевести Амперы (А) в Ватты (Вт)

Перевести Амперы (А) в Ватты (Вт)

Для того, чтобы перевести амперы в ватты, необходимо силу тока умножить на напряжение.

Формула: P = I * U

Мощность (Вт) = сила тока (А) * напряжение (В)

Калькулятор перевода Ампер (А) в Ватты (Вт)

Таблица соотношения ампер и ватт, в зависимости от напряжения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *