Как получить солнечную энергию
Перейти к содержимому

Как получить солнечную энергию

Солнечная энергетика: надежда человечества?

Любят на Хабре солнечную энергетику: вот Гугл строит солнечные электростанции (1 2 3 4 5 6), вот Германия однажды генерировала треть текущего энергопотребления на солнечных электростанциях…

Комментарии делятся на 2 категории: «Вот молодцы, а мы только нефть жгем» и «EROEI! Производство солнечных батарей требует больше энергии чем они производят!».

Въедливый читатель наверняка подумает: Как это производит меньше, чем требуется на производство? Их же поставил — они работают, каши не просят, 10 лет, 50лет, 100лет — значит суммарная произведенная энергия равна бесконечности, и они должны быть выгодны при любой стоимости постройки…

Как обстоит все на самом деле, какие есть подходы к солнечной генерации, что ограничивает КПД солнечных элементов, какие гениальные идеи уже были реализованы и почему солнечная энергетика как-то не активно захватывает мир — под катом.

Сколько энергии мы получаем от солнца?

На каждый квадратный метр от солнца приходит 1367 Ватт энергии (солнечная постоянная). До земли через атмосферу — доходит порядка 1020 Ватт (на экваторе). Если у нас КПД солнечного элемента 16% — то с квадратного метра мы можем получать в лучшем случае 163,2 Ватта электричества. Но ведь у нас есть погода, солнце не в зените, иногда бывает ночь (разной длительности) — как это все посчитать?

Годовая инсоляция все это учитывает, включая и тип установки солнечной батареи (параллельно земле, под оптимальным углом, со слежением за солнцем) и дает нам понять, сколько электричества можно будет выработать за год в среднем ( в кВт*ч/м 2 , без учета КПД солнечной батареи):

Город / Тип установки Горизонтально Под оптимальным углом Слежение за солнцем
Астрахань 1371 1593 2200
Владивосток 1289 1681 2146
Москва 1020 1173 1514
Сочи 1365 1571 2129

Т.е. мы видим, что если мы возьмем 1 км 2 солнечных батарей, установим под оптимальным углом в Москве ( 40.0°), то за год сможем выработать 1173*0.16 = 187.6 ГВт*ч. При цене 3 рубля за кВт/ч _условная_ стоимость сгенерированной энергии будет — 561 млн рублей. Почему условная — выясним ниже.

Основные подходы к получению энергии от солнца

Солнечные тепло-электространции
Огромное поле поворачиваемых зеркал отражает солнце на солнечный коллектор, где тепло превращается в электроэнергию двигателем Стирлинга, или нагревом воды и далее — обычные паровые турбины как на ТЭЦ. КПД — 20-30%.

Также существует вариант с линейным параболическим зеркалом (поворачивать нужно только вокруг одной оси):

Какова цена вопроса? Если посмотреть на электростанцию Ivanpah (392 МВт) в которую опосредованно вложился Google — стоимость её строительства составила 2.2 млрд $, или 5612$ на кВт установленной мощности. В Википедии даже радостно написано, что это хоть и дороже угольных электростанций, но якобы дешевле атомных.

Однако тут есть пара нюансов — 1кВт установленной мощности на АЭС стоит на самом деле 2000-4000$ (в зависимости от того кто строит), т.е. Ivanpah на самом деле уже получается дороже АЭС. Затем, если посмотреть на годовую оценку выработки электроэнергии — 1079 ГВт*ч, и разделить на количество часов в году, то среднегодовая мощность получается 123.1МВт (ведь станция у нас генерирует только днем).

Это доводит «усредненную» стоимость строительства до 17871 $/кВт, что не просто дорого, а фантастически дорого. Дороже наверное только в космосе электричество вырабатывать. Обычные электростанции на газе обходятся в 500-1000$/кВт, т.е. в 18-36 раз дешевле, и работают всегда, а не как повезет.

И последнее — в стоимость строительства не включены аккумуляторы, вообще. Если сюда добавить аккумуляторы (о них ниже) или строительство гидроаккумулирующей электростанции — стоимость вылезет через крышу.

У солнечных теплоэлектростанций есть возможность генерировать электричество круглосуточно, используя большой объем нагретого за день теплоносителя. Такие станции тоже есть, но стоимость их стараются не писать, видимо чтобы никого не пугать.

Полупроводниковые фотоэлементы (фотовольтаика, PV) — идея очень простая, берем полупроводниковый диод большой площади. Когда квант света влетает в pn-переход — генерируются пара электрон-дырка, которые создают перепад напряжения на выводах этого диода (около 0.5В для кремниевого фотоэлемента).

КПД у кремниевых солнечных батарей — около 16%. Почему так мало?

На формирование электронно-дырочной пары требуется определенная энергия, не больше и не меньше. Если квант света прилетает с энергией меньшей, чем нужно — то он не может вызвать генерацию пары, и проходит через кремний как через стекло (потому кремний прозрачен для инфракрасного света дальше 1.2мкм). Если квант света прилетает с энергией большей чем нужно (зеленый свет и короче) — пара генерируется, но лишняя энергия теряется. Если энергия еще выше (синий и ультрафиолетовый свет) — квант может просто не успеть долететь до глубины залегания p-n перехода.

Помимо этого, свет может отразиться от поверхности — чтобы избежать этого на поверхность наносят анти-отражающее покрытие (как на линзах в фотообъективах), и могут поверхность сделать в виде гребенки (тогда после первого отражения у света будет еще один шанс).

Увеличить КПД выше 16% у фотоэлементов можно комбинируя несколько разных фотоэлементов (на основе других полупроводников, и соответственно с другой энергией требуемой для генерации пары электрон-дырка) — сначала ставим тот, что эффективно поглощает синий свет, а зеленый, красный и ИК — пропускает, затем зеленый, и на конец красный и ИК. Именно на таких 3-х ступенчатых элементах и достигаются рекордные показатели эффективности в 44% и выше.

К сожалению, 3-х ступенчатые фотоэлементы оказываются очень дорогими, и сейчас балом правят обычные дешевые одноступенчатые кремниевые фотоэлементы — именно за счет очень низкой цены они вырываются вперед по показателю Ватт/$, Стоимость одного ватта для кремниевых фотоэлементов с вводом гигантских производств в Китае опустилась до

0.5$/Ватт (т.е. за 500$ можно купить солнечных элементов на 1000 Ватт).

Основные типы кремниевых элементов — монокристаллические (более дорогие, чуть выше КПД) и поликристаллические (дешевле в производстве, буквально на 1% меньше КПД). Именно поликристаллические солнечные батареи сейчас дают самую низкую стоимость 1 Ватта генерируемой мощности.

Из проблем — солнечные батареи не вечные. Даже если не брать в расчет пыль и грязь (надеемся на дождь и ветер), за счет фотодеградации за 20 лет эксплуатации лучшие кремниевые элементы теряют

15% мощности. Возможно дальше деградация замедляется, но это все равно нужно учитывать.

Пройдемся теперь по основным попыткам увеличить экономическую эффективность:

А давайте возьмем маленький высокоэффективный фотоэлемент и параболическое зеркало
Это называется concentrated photovoltaics. Идея в принципе неплоха — зеркало дешевле, чем солнечная батарея, да и КПД можно иметь 40% а не 16… Проблема только с тем, что теперь нужна (ненадежная) механика для слежения за солнцем, и наша огромная поворотная тарелка должна быть достаточно прочной, чтобы противостоять порывам ветра. Другая проблема — когда солнце заходит за не слишком плотные тучи — выработка энергии падает до нуля, т.к. параболическое зеркало не может рассеянный свет фокусировать (у обычных солнечных батарей выработка конечно падает, но не до 0).

С падением цен на кремниевые солнечные батареи этот подход оказался слишком дорогим (как по установочной стоимости, так и обслуживанию)

А давайте сделаем солнечные элементы круглыми, разместим на крыше, а крышу покрасим в белый цвет
Этим занималась печально известная нынче компания Solyndra, с подачи Барака Обамы получившая гос.гарантию по кредиту в 535 миллионов долларов от американского министерства энергетики… и внезапно объявившая банкротство. Круглые солнечные батареи делали, напыляя слой полупроводника (в их случае Copper indium gallium (di)selenide) на стеклянные трубы. Эффективность солнечных батарей получалась 8.5% (да, получилось хуже простых и дешевых кремниевых).

Яркий пример того, как американский капитализм при должном лоббировании способен по инерции вкачать огромные ресурсы в принципиально не эффективные технологии. По результатам работы никого не посадили.

Дорога ложка к обеду

Теперь после этого буйства непрерывного усовершенствования технологий открываем грустную страницу истории. Солнечные электростанции генерируют электричество днем, а оно больше всего нужно вечером:

Это значит, что если аккумуляторов у нас нет, электростанции на вечерний пик потребления все равно строить придется, а днем — часть должны быть выключены, а часть — находиться в горячем резерве, чтобы если тучки соберутся над солнечной электростанцией — мгновенно заместить выпавшую солнечную генерацию.

Получается, если мы обязываем покупать электричество у солнечных электростанций по обычной цене тогда, когда оно у них генерируется — мы фактически перераспределяем прибыль от существующих классических генерирующих мощностей, которые вынуждены днем простаивать в резерве в пользу солнечных.

Есть и такой интересный вариант — если где-то вечерний пик потребления — где-то на земле разгар дня. Может строить солнечную электростанцию именно там, а электричество передавать по ЛЭП? Это возможно, но требует передачи энергии на расстояния порядка 5-8 тыс км, что также требует огромных капитальных затрат (по крайней мере пока мы не перешли на сверхпроводники) и согласований с кучей стран. Примерно в этом направлении развивался проект Desertec — генерация в Африке, передача в Европу.

Аккумуляторы

Итак, 1Вт солнечная батарея стоит 0.5$. За день она сгенерирует допустим 8Вт*ч электричества (за 8 солнечных часов). Как нам эту энергию сохранить до вечера, когда она будет больше всего нужна?

Китайские литиевые аккумуляторы стоят примерно 0.4$ за Вт*ч, соответственно, на 1Вт солнечной батареи (ценой в 0.5$) нам понадобится аккумуляторов на 3.2$, т.е. аккумулятор получается в 6 раз дороже солнечной батареи! Помимо этого нужно учитывать, что через 1000-2000 циклов заряд-разряд аккумулятор придется заменить, а это всего 3-6 лет службы. Может есть аккумуляторы дешевле?

Самые дешевые — свинцово-кислотные (которые естественно далеко не «зеленые»), их оптовая цена — 0.08$ за Вт*ч, соответственно, на сохранение дневной выработки нам нужно аккумуляторов на 0.64$, что снова больше стоимости самих солнечных батарей. Свинцовые аккумуляторы также быстро умирают, 3-6 лет службы в таком режиме. Ну и на десерт — КПД свинцовых аккумуляторов — 75% (т.е. четверть энергии теряется в цикле заряд-разряд).

Существует также вариант с гидроаккумулирующими электростанциями (днем — закачиваем воду «вверх» насосом, ночью — работаем как обычная гидроэлектростанция) — но их строительство также обходится дорого, и не везде возможно (КПД — до 90%).

Из-за того, что аккумуляторы получаются дороже самой солнечной электростанции, в крупных электростанциях их и не предусматривают, продавая электричество в распределительную сеть сразу по мере генерации, рассчитывая ночью и вечером на обычные электростанции.

Какова же справедливая цена нерегулируемой солнечной генерации?

Возьмем например Германию, как лидера по развитию солнечной энергетики. Каждый кВт сгенерированный солнечными электростанциями там выкупают по 12.08-17.45 евроцентов за кВт*ч, не взирая на то, что генерируют они в дневной минимум потребления. Все чего они добиваются этим — экономия Российского газа, т.к. газовые электростанции все равно должны быть построены и быть в горячем резерве (и все их остальные расходы остаются неизменными — зарплаты, кредиты, обслуживание).

С экономической точки зрения, было бы справедливо, если бы солнечные электростанции получали ровно столько, сколько они позволяют сэкономить на топливе газовым электростанциям.

Допустим стоимость российского газа — 450 $ за 1 тыс. м 3 . Из этого объема можно выработать 39000 ГДж ≈10.8*0,4 GWh ≈ 4.32 GWh электричества (при КПД генерации 40%), соответственно, на 1 кВт*ч солнечного электричества мы экономим российского газа на 0.104$ = 7.87 евроцента. Именно такая должна быть справедливая стоимость нерегулируемой солнечной генерации, и похоже Германия постепенно идет к этой цифре, но на данный момент солнечная энергетика в Германии получается на 50% дотируемой.

Резюме

Поликристаллические солнечные батареи дают самое дешевое солнечное электричество, порядка 0.5$/Ватт, остальные способы намного дороже.

Проблема солнечной энергетики не в КПД солнечных элементов, не в EROEI (он действительно в теории бесконечен), и не в их цене — а в том, что сгенерированную энергию очень дорого хранить до вечера. Т.е. основная проблема — аккумуляторы, которые сейчас уже дороже, чем солнечные батареи и при этом имеют короткий срок службы (3-6 лет).

На данный момент крупномасштабную солнечную генерацию без аккумуляторов можно рассматривать только как способ сэкономить днем небольшую часть ископаемого топлива, она принципиально не может уменьшить количество необходимых классических электростанций (газовых, угольных, АЭС, гидро) — они все равно должны стоять в резерве днем, и полностью брать на себя нагрузку в вечерний пик потребления.

Если в будущем с помощью (жестоких) тарифов удасться сместить пик потребления на день — строительство солнечных электростанций обретет бОльший смысл (например, если тарифы будут такие, что будет выгодно включать электролизное производство алюминия и водорода только днем).

Стоимость «нерегулируемой» солнечной генерации нельзя сопоставлять со стоимостью генерации на классических электростанциях — т.к. они генерируют когда получится, а не когда нужно. Справедливая стоимость нерегулируемой солнечной электроэнергии должна быть равна стоимости сэкономленного ископаемого топлива, и не более — для газа по 450$ справедливая цена солнечной генерации не выше 0.1$ за 1кВт*ч (соответственно, в Германии солнечная генерация дотируется на

«Честная» солнечная энергетика (с аккумуляторами) сегодня может быть экономически оправданна лишь в удаленных районах, где нет возможности подключиться к сети (как например в случае отдаленной, одиноко стоящей базовой станции сотовой связи).

Самая большая проблема солнечной энергетики — ископаемое топливо пока слишком дешевое, чтобы солнечная генерация была экономически оправданной.

Update: Для дальнейшего изучения можно рекомендовать статью о проблемах энергетики Германии в связи с солнечной и ветрогенерацией. Там есть красивые графики выработки, и в целом другие статьи Already_Yet рекомендую почитать.

Можно ли получить солнечную энергию из космоса?

Более семидесяти лет назад, в 1941 году, Айзек Азимов написал рассказ, в котором энергию солнца передавали через микроволновые лучи на соседние планеты при помощи космической станции. Прошли годы, и сегодня ученые пытаются воплотить эту научную фантастику в реальность на Земле. Концепции использования солнечной энергии, получаемой из космоса, или непосредственно в космосе разрабатываются с середины 20 века. Множество проектов ждут своего часа.

Космические станции — это наш мост а ближний и дальний космос.

Будущее солнечной энергии

Используя солнечную энергию в космосе (SBSP), мы могли бы решить наши проблемы с энергией и выбросами парниковых газов с минимальным воздействием на окружающую среду. Профессор Серджио Пеллегрино из Калтеха недавно заявил, что массивное производство энергии системы SBSP и тот факт, что наше солнце будет работать еще 10 миллиардов лет, позволяют нам предположить, что источник энергии у нас не иссякнет еще долго.

Одно из самых обширных исследований NASA за все время, Satellite Power System Concept Development and Evaluation Program, было посвящено конкретно SBSP и обошлось более чем в 50 миллионов долларов, оно проводилось с 1976 по 1980 год. Другое фундаментальное исследование, финансируемое NASA, для переоценки и понимания осуществимости SBSP, называлось Space Solar Power Exploratory Research and Technology. Исследование включало огромное количество твердых научных изысканий, но в целом вывод был таким:

«Крупномасштабная SSP — это очень сложная интегрированная система систем, которая требует многочисленных значительных прорывов в современных технологиях и возможностях. Разработана технологическая карта, которая определяет потенциальные пути для достижения всех необходимых прорывов — хотя и в течение нескольких десятилетий». — Джон С. Манкинс, 7 сентября 2000 года.

Понятно, что ничего не понятно. Давайте глубже погрузимся в основы этой экспоненциальной технологии и ее реализуемости.

Что такое солнечная энергия?

Солнечная энергия, добываемая в космосе, это концепция захвата солнечной энергии в космическом пространстве и передачи ее прямо на Землю или другие ближайшие планеты.

Проще говоря, мы могли поместить какой-нибудь механизм в космическое пространство, чтобы почти непрерывно захватывать энергию Солнца и передавать эту энергию на Землю. Это может происходить днем или ночью, в дождь или при ясном небе. Как только мы получаем энергию на Земле на ректенну (специальная антенна для получения энергии), мы сможем легко распределить ее с помощью наших обычных методов. Все очень просто.

Подобные конструкции могут решить все проблемы с энергией.

Существует масса идей, связанных с конфигурацией и архитектурой механизма SBSP, которые мы могли бы использовать. Место размещения системы, архитектура спутников, сбор энергии и передача энергии — это основные крупные пункты, на которые следует обратить внимание при понимании различных систем SBSP. Учитывая количество предлагаемых концепций, мы рассмотрим только некоторые из наиболее заметных вариантов.

Система добычи солнечной энергии?

Геосинхронная, она же геостационарная, (ГСО) орбита, средняя околоземная (СОО) и низкая околоземная орбита (НОО) — вот варианты к рассмотрению. Наиболее перспективной является ГСО из-за упрощенной геометрии и выравнивания антенны по отношению к ректенне, масштабируемости и почти непрерывной передачи энергии. Основная проблема ГСО — большое количество радиационного излучения. Общие космические опасности, такие как микрометеориты или солнечные вспышки, также представляют угрозу.

Спутниковая архитектура

Создать лунные фабрики с большим количеством перевозок или же разработать астероиды для сборки или самосборки спутников SBSP — в любом случае, создание автономных космических фабрик будет сложной задачей. Любое строительство в космосе потребует использования местных и бесплатных материалов (то есть лунных), при этом накладывает определенные ограничения на сложность конструкций, если сравнивать с теми, что можно построить на Земле.

Одна интересная установка, которую мы сейчас строим на Земле, это модульная солнечная батарея разработки Калтеха и Northrop Grumann. Посмотрите на нее на видео ниже.

Другая интересная концепция от частной компании Solaren. В будущем она планирует провести эксперимент со строительством солнечной электростанции SBSP мощностью 250 МВт на геостационарной орбите. В 2009 году Solaren заключила соглашение с крупнейшей энергетической компанией Калифорнии PG&E на обеспечение ее космической солнечной энергией.

Даже NASA с концепцией произвольно большой фазированной решетки (разработанной в 2012 году) привлекла к себе недавнее внимание от Джона С. Манкинса, одного из ведущих экспертов SBSP в мире.

Как собирать энергию солнца в космосе?

Две основные концепции, связанные со сбором энергии, это использование фотогальванических элементов (солнечных батарей) или солнечного тепла. Можно улавливать солнечное тепло (а значит и энергию), используя зеркала для концентрации света и нагрева жидкости. Пар, в свою очередь, будет вращать турбину и вырабатывать электричество. Эта концепция обладает определенным весовым преимуществом по сравнению с солнечными панелями, поскольку снижает общую массу на ватт. Однако в большинстве концепций предполагается использовать сверлегкие и высокоэффективные фотоэлектрические элементы.

Как передавать энергию солнца из космоса?

Микроволновая передача энергии — типичный выбор в конструкциях SBSP из-за общей эффективности, но использование передачи энергии по лазерному лучу — еще одна интересная опция из-за сниженного веса и стоимости. Тем не менее, при мысли о мощном лазерном луче возникает опасение, что его можно превратить в космическое оружие (луч смерти). Однако протоколы безопасности могли бы с легкостью устранить эту угрозу. Конструкции можно создавать с учетом всех требований к безопасным уровням микроволновой энергии. Не будет никакой угрозы для жителей городов и живых существ на пути лучей к земле. Простая обратная связь между антенной и ректенной позволила бы вырубить передачу, если она отклонится от курса.

Теперь, когда мы лучше поняли, что такое SBSP, давайте погрузимся в ее наибольшие ограничения.

Стоимость передачи космической энергии

Может показаться, что все прекрасно и солнце будет миллиарды лет обеспечивать нас бесплатной энергией. Однако всегда есть подвох. Мы уже отметили ряд проблем безопасности, но главное препятствие связано с затратами на отправку всех материалов, необходимых для SBSP. Текущие сметы расходов на отправку примерно 1 кг полезного груза в космос варьируются от 9000 до 43 000 долларов США в зависимости от используемой ракеты и космического аппарата.

Если мы посмотрим только на отправку солнечных панелей, нижний предел спектра затрат на запуск сверхлегкой системы SBSP мощностью 4 МВт составляет 4000 метрических тонн. Но вероятнее всего SBSP будет в диапазоне 80000 метрических тонн.

Низкая оценка: 4000 метрических тонн х 9000 долларов за килограмм = 36 000 000 000 долларов

Высокая оценка: 80 000 метрических тонн х 43 000 долларов за килограмм = 3 440 000 000 000 долларов

Хотя эти цифры будут крайне приблизительными, мы все еще получаем приблизительную стоимость от 36 миллиардов долларов до 3,4 триллиона долларов. Использование фабрики на Луне или астероиде внезапно кажется дешевым.

Результаты исследования NASA показывают, что космическая солнечная энергия является «экономически жизнеспособной», если стартовые затраты будут колебаться в пределах 100-200 долларов за килограмм. Хотя цены продолжаю падать, в том числе благодаря многоразовым ракетам SpaceX, предстоит еще долгий путь. Тем не менее, эта тенденция будет следовать закону ускоряющейся отдачи Рэя Курцвейла, и цены на запуски будут продолжать снижаться с миллиардов и миллионов до нескольких сотен долларов.

Излишне говорить, что проблема не в технологии, а в ее стоимости.

Есть ли перспективы у солнечной энергии?

Способность SBSP обеспечивать чистую и надежную электроэнергию для планеты круглосуточно и без выходных дешевле любого другого источника — абсолютно реальна. Но потребуются десятилетия инвестиций, сборки, тестирования и успешного внедрения, прежде чем система начнет окупать свои первоначальные затраты.

И все же, важнейшим компонентом продвижения SBSP как фактического источника энергии является правильный политический климат.

Зачем нужна энергия солнца?

Если не принимать во внимание политику, получив SBSP (или ядерный синтез) в следующем десятилетии, мы могли бы воплотить такие научные концепции:

  • Космические лифты и космические башни
  • Орбитальные кольца — используя космические лифты, создать кольцо вокруг Земли вместо космической станции для дешевого передвижения грузов и освоения космоса
  • Сферы Дайсона — гигантские оболочки, охватывающие целую звезду и поглощающие весь ее выход энергии
  • Матрешечные мозги — слоеные сферы Дайсона для превращения звезд в массивные компьютеры с использованием энергии, выделяемой всеми звездами
  • Миры-кольца — искусственные планеты, использующие целую звезду

Вариантов много. Осталось только их придумать и разработать. Предложите свои? Начните в нашем чате в Телеграме.

Энергия напрямую от Солнца: что будет, если запустить солнечную панель в космос

За час на Землю поступает больше солнечной энергии, чем все человечество тратит за год. Но почти половина этой энергии рассеивается, не доходя до нас, поэтому лучше получать ее прямо в космосе. «Хайтек» разбирается, как это сделать.

Читайте «Хайтек» в

Обеспечить все страны экологически чистой энергией и доставлять ее в любую точку мира — все это смогут солнечные панели, считают эксперты и ученые по всему миру.

Только 1,11% от глобального потребления энергии в 2019 году получили за счет солнечной энергии. Солнце обладает огромным энергетическим потенциалом, поэтому исследователи ищут способ оптимально использовать все его возможности.

На первый взгляд, солнечная энергия — это простой и очевидный выбор. В отличие от ископаемого топлива, ее выработка не выделяет парниковых газов, которые ускоряют глобальное потепление. Конкуренция за водные ресурсы и территории также не проблема.

Еще с политической точки зрения солнечная энергия один из самых безопасных источников альтернативной энергии. Из-за права распоряжаться запасами нефти и угля происходили крупные конфликты. В этом смысле солнечная энергия универсальна, она принадлежит всем и никому одновременно.

Почему получать солнечную энергию на Земле не эффективно?

По данным НАСА, примерно 29% солнечной энергии отражается обратно из-за земной атмосферы и рассеивается в космосе. Вдобавок ко всему, еще 23% солнечной энергии поглощает водяной пар, озон и пыль при прохождении через атмосферу. В конце концов, только 48% солнечной энергии достигает нашей планеты.

Поэтому солнечные батареи на Земле получают в лучшем случае половину энергии от первоначального количества. Но еще есть проблема и в самих батареях, их максимальная эффективность около 22%: речь о нелабораторных условиях. Ну и главное, солнечные панели работают только в светлое время суток. Поэтому нужно получать энергию напрямую от Солнца, не находясь при этом на Земле.

Как работает космическая солнечная энергия?

Космическая солнечная энергия (SBSP) — это идея сбора солнечной энергии в космосе с помощью спутниковых солнечных панелей. Дальше она беспроводным способом попадает на Землю. По данным Европейского космического агентства (ЕКА), свет от Солнца за пределами атмосферы в 11 раз интенсивнее. Поэтому спутниковые солнечные панели могут обеспечить огромное количество энергии, которое человечество даже не сможет потратить.

Кроме того, спутниковым панелям не угрожает плохая погода и заход Солнца. Из космоса эти устройства смогут передавать энергию в любое место на Земле, поэтому нужно только вывести спутники на оптимальную орбиту.

Как развернуть солнечную панель в космосе?

Чтобы сделать космическую солнечную энергетику доступной, нужны две основные технологии. Во-первых, ракеты-носители для доставки материалов в космос должны быть недорогими и экологичными. Большинство ракет, которые сейчас используют для доставки полезной нагрузки, очень дорогие и загрязняют окружающую среду. Несколько частных компаний, в частности SpaceX, сейчас разрабатывают дешевые многоразовые ракеты.

Второй момент — строительство солнечных спутников на орбите. Чтобы собирать необходимое количество энергии, спутниковые солнечные панели должны быть намного больше, чем МКС. Фактически это будет огромный космический корабль. С другой стороны, космические панели собрать проще, чем МКС.

Какими бывают солнечные спутники?

По мнению исследователей из Министерства энергетики США, есть два типа спутников, которые можно создать для сбора космической энергии. Оба этих типа будут состоять из солнечных коллекторов, отражателей и передатчика. Отражатели — это большие зеркала, которые будут направлять излучение на небольшие панели — коллекторы, затем последние преобразуют солнечную энергию в микроволновую или в лазер, чтобы передать ее на Землю. Приемные станции на Земле будут собирать, накапливать и распределять энергию.

  • Спутники с микроволновой передачей

Крупнее из этих двух конструкций будут спутники, передающие микроволны. Их сделают из огромных солнечных отражателей, которые направляют солнечную энергию в центр спутника, откуда она затем передается на Землю в виде микроволн. Спутники, передающие микроволновые сигналы, будут вращаться вокруг Земли на геостационарной орбите на высоте около 35 000 км — это чуть менее одной десятой расстояния до Луны.

Тем не менее, все подобные конструкции будут огромными. Одни только солнечные отражатели будут весить более 80 000 метрических тонн с диаметром до 3 км. Благодаря огромным размерам спутники, передающие микроволновые сигналы, смогут генерировать гигаватты энергии и питать крупные города мира. Кроме этого, длина волны электромагнитном спектре относительно большая, поэтому передача энергии с такого спутника будет проходить так же быстро и интенсивно, как солнечный свет достигает Земли.

Запуск, сборка и эксплуатация спутников, передающих микроволны — все это очень дорого. Их стоимость оценивается в десятки миллиардов долларов. Из-за больших размеров потребуется от 40 до 100 запусков, чтобы доставить все материалы. Кроме того, размер приемных центров на Земле должен быть масштабируемым до размеров спутников в космосе — примерно от 3 до 10 км в диаметре. А такие большие участки трудно осваивать и обслуживать.

  • Спутники с лазерной передачей

Второй тип солнечных спутников — спутники с лазерной передачей — они будут всего около 2 м в диаметре. Для передачи энергии обратно на Землю в них разместят щелочной лазер с диодной накачкой. Лазер может быть размером примерно с кухонный стол и излучать энергию на Землю с эффективностью более 50%.

Спутники с лазерной передачей будут запускать группами на низкую околоземную орбиту (НОО) примерно на 400 км, так как они маленького размера. Производство таких устройств не такое рискованное и требует меньше времени по сравнению со спутниками, передающими микроволновые сигналы. Оценки затрат на спутники с лазерной передачей варьируются от $500 млн до $1 млрд.

Но тут есть и свои минусы. Спутники с лазерной передачей менее мощные: каждая единица будет генерировать только от 1 до 10 МВт мощности. Даже если запустить много устройств сразу, они не смогут сравниться с мощностью, которую предоставляют спутники с микроволновой передачей. А так как мощность ниже, то будет труднее передавать энергию через тяжелые облака и дождь.

Запуск солнечных панелей в космос поможет решить не только энергетические проблемы, а также социальные и политические конфликты. В настоящее время многие страны зависимы от поставок ископаемого топлива, а ограниченные поставки нефти и углерода вызывают серьезные международные конфликты. Солнечная энергия поможет обеспечить энергетическую независимость. Также эту энергию можно экспортировать практически в любую точку земного шара.

Что нужно знать о солнечной энергии?

Солнечная энергия — это полезная энергия, которая генерируется солнцем в форме электрической или тепловой энергии. Солнечная энергия улавливается различными способами, наиболее распространенным из которых является использование фотоэлектрических солнечных панелей, которые преобразуют солнечное излучение в полезное электричество. Кроме использования фотоэлектрических элементов для генерации электроэнергии, солнечная энергия используется не только для электроснабжения, но и для выработки тепловой энергии, для отопления или горячего водоснабжения. Владельцы жилой и коммерческой недвижимости могут устанавливать солнечные системы горячего водоснабжения и проектировать свои здания с учетом пассивного солнечного отопления, чтобы в полной мере использовать энергию солнца с помощью современных технологий.

Заинтересованы в получении выгоды от солнечной энергии? Солнечные батареи устанавливаются в трех основных сегментах: жилой, коммерческий и коммунальный. Солнечные батареи бытового сегмента обычно устанавливаются на крышах домов или на открытой местности (на земле) и обычно составляют от 5 до 20 киловатт (кВт), в зависимости от необходимых мощностей и размера объекта. Коммерческие объекты с использованием солнечной энергии обычно устанавливаются в большем масштабе, чем частные. Хотя отдельные установки могут сильно различаться по размеру, солнечные батареи коммерческого сегмента как правило предназначены предоставлять локальную солнечную энергию предприятиям и некоммерческим организациям. Наконец, солнечные проекты коммунального сегмента обычно представляют собой крупные установки мощностью в несколько мегаватт (МВт), которые обеспечивают солнечную энергию большому количеству потребителей коммунальных услуг.

В некоторых случаях потребители солнечной энергии не имеют возможности установить саму солнечную станцию на своей территории, тогда существует жизнеспособный вариант использования солнечной энергии, который напрямую связывает проекты по использованию солнечной энергии в коммунальном сегменте с бытовыми потребителями. Таким образом, общественные солнечные фермы, как правило, строятся на близлежащей территории, а не в собственности конкретного отдельного клиента. Такие потребители могут подписаться на общий проект в области солнечной энергии, чтобы получать многие преимущества солнечной энергии без установки солнечных станций на своей собственности.

Как работает солнечная энергия?

Солнечная панель (также известная как солнечный модуль или солнечная батарея) состоит из слоя кремниевых элементов, металлического каркаса, стеклянного корпуса и проводки для передачи электрического тока из кремния. Кремний (атомный № 14 в периодической таблице) — это неметалл с проводящими свойствами, которые позволяют ему поглощать и преобразовывать солнечный свет в полезное электричество. Когда свет попадает в кремниевую ячейку, он заставляет электроны в кремнии приводиться в движение, инициируя поток электрического тока. Это известно как « фотоэлектрический эффект » и описывает общую функциональность технологии солнечных батарей.

Наука производства электричества с помощью солнечных батарей сводится к этому фотоэлектрическому эффекту. Впервые он был открыт в 1839 году Эдмондом Беккерелем и может рассматриваться как свойство определенных материалов (известных как полупроводники), которое позволяет им создавать электрический ток, когда они подвергаются воздействию солнечного света.

Фотоэлектрический процесс работает через следующие широкие шаги:

  1. Кремниевый фотоэлектрический солнечный элемент поглощает солнечную радиацию
  2. Когда солнечные лучи взаимодействуют с кремниевой ячейкой, электроны начинают двигаться, создавая поток электрического тока
  3. Провода собирают и подают это электричество постоянного тока (DC) к солнечному инвертору для преобразования в электричество переменного тока (AC)

Краткая история солнечной энергетики

В 1954 году Bell Labs разработала первый кремниевый фотоэлектрический элемент. Хотя солнечная энергия ранее была преобразована в полезную энергию различными способами, только после 1954 года солнечная энергия стала жизнеспособным источником электричества для устройств питания в течение длительных периодов времени. В первых солнечных батареях превращают солнечное излучение в электричество при КПД всего 4 % , тогда как многие широко доступные модули солнечных ячеек на сегодня может преобразовывать солнечный свет в солнечную энергию при КПД более 20 % эффективности, и это значение постоянно растет.

Хотя принятие солнечной энергии поначалу было достаточно медленным, ряд государственных и федеральных стимулов и законопроектов способствовали снижению стоимости солнечных батарей настолько, чтобы они стали более широко распространенными. На данный момент солнечной энергии достаточно для того, чтобы обеспечить энергией 11 миллионов из 126 миллионов домохозяйств в стране.

Стоимость солнечной энергии

Одновременно с увеличением эффективности солнечных панелей стоимость солнечной энергии существенно снизилась. Только за последнее десятилетие стоимость установки солнечных батарей упала более чем на 60 процентов, и многие отраслевые эксперты прогнозируют, что цены будут продолжать падать в ближайшие годы:

стоимость солнечной энергии с течением времени

Солнечная энергия является возобновляемым источником энергии

Солнечная энергия — это чистый, недорогой, возобновляемый источник энергии её можно использовать практически везде, любая точка мира, где солнечный свет попадает на поверхность земли, является потенциальным местом для генерации солнечной энергии. А поскольку солнечная энергия исходит от солнца, она представляет собой безграничный источник энергии. Технологии возобновляемых источников энергии производят электроэнергию из бесконечных ресурсов. Сравните, например, производство электроэнергии с использованием возобновляемых ресурсов с ископаемым топливом. На образование нефти, газа и угля ушли сотни тысяч лет, поэтому каждый раз, когда один из этих ресурсов сжигается для производства электроэнергии, этот конечный ресурс незначительно приближается к истощению. Использование возобновляемых ресурсов, таких как ветер, солнечная энергия и гидроэлектроэнергия, для выработки электроэнергии не истощает этот ресурс. Там всегда будет постоянный солнечный свет на поверхности Земли, и после превращения солнечного света в электричество, в будущем все еще остается бесконечное количество солнечного света, которое может превратиться в электричество Вот что делает солнечную энергию по своей природе возобновляемой энергией.

Несмотря на то, что текущее распределение электроэнергии в России по-прежнему состоит в основном из ископаемого топлива, такого как: нефть и газ, возобновляемые источники энергии, такие как: солнечная энергия, постепенно становятся большей частью энергетического профиля страны. Поскольку стоимость солнечных и других возобновляемых технологий продолжает оставаться конкурентоспособной.

Солнечная энергия + аккумулятор, электромобили и многое другое

Быстрое распространение солнечной энергии по всей стране и во всем мире также привело к параллельному росту в нескольких смежных областях. В частности, системы накопления энергии и электромобили — это два сектора, которые могут развиваться вместе с солнечной энергией, увеличивая преимущества друг-друга.

Учитывая, что солнечные панели могут вырабатывать энергию только тогда, когда солнце светит, хранение производимой, но неиспользованной энергии в течение дня для последующего использования становится все более важным. Например, системы накопления энергии накапливают электричество и могут использоваться в периоды низкой солнечной активности. Более того, решения «солнечное хранение плюс» работают для всех масштабов установки солнечных панелей и предоставляют множество дополнительных преимуществ, от надежности энергии до отказоустойчивости сети и более дешевой энергии.

Электромобили являются вторым продуктом, готовым ехать на волне освоения солнечной энергии. С более низкими затратами на техническое обслуживание, более низкими расходами на топливо и меньшим воздействием на окружающую среду по сравнению с традиционными автомобилями с двигателем внутреннего сгорания, электромобили станут важным элементом автомобильной промышленности на долгие годы. С ростом использования электромобилей также возрастает потребность в электричестве для работы транспортных средств, идеально подходящих для солнечной энергии. Распределенные солнечные установки обеспечивают дешевое и надежное питание электромобилей непосредственно от солнца. В мире повышенной электрификации дома солнечная энергия является одним из самых недорогих, надежных и самых чистых способов обеспечить наше электрифицированное будущее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *