Почему спектр солнца непрерывный
На 1 квадратный метр обращенной к Солнцу поверхности площадки в окрестностях Земли ежесекундно поступает 1400 Дж энергии, переносимой солнечным электромагнитным излучением. Эта величина называется солнечной постоянной . Иными словами, плотность потока энергии солнечного излучения составляет 1,4 кВт/м 2 .
Впервые для определения солнечной энергии был использован метод измерения нагревающего действия солнечных лучей Пулье (1837 год). Такой прибор называется пиргелиометром . В пиргелиометре находилась вода, температуру которой измерял обычный термометр. Под действием солнечных лучей температура воды возрастала.
Спектр Солнца непрерывный, в нем наблюдается множество темных фраунгоферовых линий . Фраунгофер был первым, кто описал темные линии на фоне непрерывного спектра в 1814 году. Эти линии в спектре Солнца образуются в результате поглощения квантов света в более холодных слоях солнечной атмосферы.
Наибольшую интенсивность непрерывный спектр имеет в области длин волн 430–500 нм. В видимой и инфракрасной областях спектр электромагнитного излучения Солнца близок к спектру излучения абсолютно черного тела с температурой 6000 К. Эта температура соответствует температуре видимой поверхности Солнца – фотосферы. В видимой области спектра Солнца наиболее интенсивны линии Н и К ионизованного кальция, линии бальмеровской серии водорода Нα, Нβ и Нγ.
Около 9 % энергии в солнечном спектре приходится на ультрафиолетовое излучение с длинами волн от 100 до 400 нм. Остальная энергия разделена приблизительно поровну между видимой (400–760 нм) и инфракрасной (760–5000 нм) областями спектра.
Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную. Постоянная составляющая характеризует радиоизлучение спокойного Солнца. Солнечная корона излучает радиоволны как абсолютно черное тело с температурой = 10 6 К. Переменная составляющая радиоизлучения Солнца проявляется в виде всплесков, шумовых бурь. Шумовые бури длятся от нескольких часов до нескольких дней. Через 10 минут после сильной солнечной вспышки радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца; это состояние длится от нескольких минут до нескольких часов. Это радиоизлучение имеет нетепловую природу.
Плотность потока излучения Солнца в рентгеновской области (0,1–10 нм) весьма мала (
5∙10 –4 Вт/м 2 и сильно меняется с изменением уровня солнечной активности. В ультрафиолетовой области на длинах волн от 200 до 400 нм спектр Солнца также описывается законами излучения абсолютно черного тела.
В ультрафиолетовой области спектра с длинами волн короче 200 нм интенсивность непрерывного спектра резко падает и появляются эмиссионные линии. Наиболее интенсивна из них водородная линия лаймановской серии ( = 121,5 нм). При ширине этой линии около 0,1 нм ей соответствует плотность потока излучения около 5∙10 –3 Вт/м 2 . Интенсивность излучения в линии приблизительно в 100 раз меньше. Заметны также яркие эмиссионные линии различных атомов, важнейшие линии принадлежат Si I ( = 181 нм), Mg II и Mg I, O II, O III, C III и другие.
Коротковолновое ультрафиолетовое излучение Солнца возникает вблизи фотосферы. Рентгеновское излучение исходит из хромосферы (
10 4 К), расположенной над фотосферой, и короны (
10 6 К) – внешней оболочки Солнца. Радиоизлучение на метровых волнах возникает в короне, на сантиметровых – в хромосфере.
Почему спектр солнца непрерывный
l max =2897,18 микронХград.
Зная величину l max (в микронах), можно на основании этой формулы по спектру определить температуру тела.
Мы обратились к спектральному распределению света в связи с вопросом о качестве солнечного света. Солнце, несомненно, есть накаленное тело, поэтому его спектр должен быть близок к спектрам, получаемым на Земле от наших ламп и свечей. В плохой спектроскоп с широкой щелью солнечный спектр действительно кажется непрерывным. При грубом измерении распределения энергии в этом спектре получается кривая, похожая на одну из кривых для черного излучения (фиг. 18). По виду этой кривой, а также из положения ее максимума можно вычислить приближенно температуру солнечной поверхности, если только предположить, что Солнце похоже на накаленное тело с черной поверхностью. Вычисление дает около 6000°. Установление более точной цифры имеет мало смысла, так как разные области солнечного диска различаются по накалу.
Наш глаз в смысле различения качества света много хуже самого плохого спектроскопа. Поэтому приведенные грубые результаты будут достаточны, когда в следующей главе придется сравнивать свойства солнечного света и глаза.
Физик и астроном, изучая Солнце, пользуются телескопами, совершенными спектроскопами, постоянно применяют вместо глаза фотографию. Им открываются такие детали солнечного света и его распределения по Солнцу, которые совершенно ускользают от невооруженного глаза.
В 1802 г. Волластон заметил свойство солнечного спектра, почему-то ускользнувшее от внимания Ньютона. Спектр оказался испещренным черными тонкими линиями. Позднее эти темные пропасти на ярком фоне солнечного спектра подробно изучил Фраунгофер; их называют поэтому линиями Фраунгофера. В табл. 1 даны главные линии Фраунгофера для видимого спектра. Ими часто пользуются для указания той или иной области солнечного спектра. Они всегда осгаются на своих местах и служат естественными отмотками на спектре Солнца. Во втором столбце указаны длины волн в миллимикронах, в третьем — цветность сиектральдой области, в которой линии расположены.
Мы сказали выше, что в плохой спектроскоп солнечный спектр кажется непрерывным, а кривая распределения энергия — правильной и плавной. Детальное изучение кривой распределения показывает что она сплошь изъедена зазубринами как в видимой, так и в невидимой области (фиг. 19). Эти зазубрины — следы линий Фраунгофера. В ультрафиолетовой области солнечный спектр довольно резко обрывается, причем граница колеблется в разное время дня и в разные времена года. Практически от Солнца до нас не доходят лучи с волнами короче 290 m m . Более короткие лучи поглощаются озоном, находящимся в верхних слоях атмосферы с максимумом около 30 км.
Фиг. 19. Распределение энергии в спектре Солнца
По оси абсцисс — длина волны в микронах, по оси ординат — интенсивность в относительных единицах
Как объяснить отсутствие некоторых цветов в солнечном спектре? Внесем в бесцветное спиртовое или газовое пламя поваренную соль. Пламя становится ярко-желтым; если посмотреть в спектроскоп (хороший), то сплошного спектра почти не видно, видны только рядом две желтые линии, длины волн которых в точности совпадают с фраунгоферовыми линиями D 1 и D 2 . Точность совпадения такова, что она не может быть случайной. Разница в том, что в случае пламени получаются светящиеся линии на темном фоне, а от Солнца, наоборот, — черные линии на блестящем фоне спектра.
В пламени соль распадается на хлор и натрий, светится натрий. Естественно предположить, что черные D-линии на Солнце вызываются также парами натрия. Действительно, если на пути непрерывного спектра, например от лампы накаливания, поместить сосуд с парами металлического натрия или газовое пламя, окрашенное солью, то области, соответствующие D-линиям, ослабляются; мы искусственно получим фраунгоферовы линии на фоне сплошного спектра. Стало быть, пары натрия способны и поглощать и излучать D-линии; осторожнее следует сказать, что в парах натрия громадное большинство атомов способно поглощать свет. Но, поглотив кванты света D-линии, атомы становятся «возбужденными», далее излучения не поглощают и, наоборот, через некоторое время отдают захваченную энергию в виде света. Иными словами, в накаленных парах соли есть нормальные, поглощающие атомы натрия и возбужденные, уже поглотившие и затем светящиеся.
В парах каждого элемента теми или иными способами можно возбудить свечение, состоящие из отдельных тонких спектральных линий. Число этих линий может быть очень большим. Это указывает на многообразие состояний, в которых атом может существовать «возбужденным».
Атомные линейные спектры, так же как и непрерывный спектр черного тела, оказались подчиняющимися квантовым законам. Это значит, в частности, что в них проявляется та же квантовая постоянная h . С другой стороны, линейные спектры есть выражение внутреннего строения атомов. Следовательно, строение атомов, подобно свету, подчиняется квантовым законам. Квантовые закономерности обнаруживаются также в спектрах и строении молекул. В весьма разреженном газообразном состоянии молекулы излучают «полосатые» спектры. При помощи спектральных приборов полосы удается разделить на множество очень тонких линий. Положение этих линий следует довольно простым квантовым законам. Мы убеждаемся еще раз, что у света и вещества есть важнейшие общие, родственные черты.
Вернемся к линейным спектрам.
Итак, у каждого элемента есть свои оптические приметы — спектральные линии, положение которых можно точно измерять и которые трудно смешать с другими. Находясь на Земле, можно по спектрам изучать химию Солнца и других светил. Пары элементов в солнечной атмосфере, пропуская на Землю сплошной спектр солнечного ядра, оставляют на нем свои следы в виде фраунгоферовых линий. В табл. 1 в последнем столбце указано, каким элементам соответствуют линии.
Часть линий получается от поглощения солнечного света в земной атмосфере, что также отмечено в таблице. Большинство химических элементов, находящихся на Земле, обнаружено и на солнечной поверхности. Не найдены главным образом такие тяжелые элементы, как золото, ртуть, таллий, висмут, радий и пр.
На фиг. 20 сравнивается количество атомов различных химических элементов в земной коре (крестики) и на поверхности Солнца (кружки). Слева отложены логарифмы относительных количество элементов; это значит, что, например, цифра 5 соответствует 10 5 атомов. Мы видим, что относительные количества некоторых атомов на поверхности Земли и Солнца расходятся очень сильно. Наоборот, почти совпадают такие элементы, как натрий, кремний, кальций, стронций. Отсутствие спектральных линий не может еще служить признаком отсутствия элемента. Линии могут лежать в ультрафиолетовой области, не доходящей до Земли. Ультрафиолетовый спектр Солнца закрыт от земного наблюдателя главным образом озоном, находящимся в земной атмосфере и сосредоточенным преимущественно в стратосфере на высотах 20-30 км.
Фиг. 20. Сравнение среднего относительного числа атомов различных химических элементов
на поверхности Солнца н в земной коре
После второй мировой войны захваченные в качестве трофеев в Германии ракеты Фау-2 были применены в США для фотографирования спектра Солнца на таких высотах, на которых озоновый слой находится уже позади. На фиг. 21 воспроизводятся фотографии солнечного спектра, снятые автоматически с ракеты на различных высотах. Высоты (в километрах) отложены слева. По оси абсцисс отложены длины волн в миллимикронах. Мы видим, что с высоты 25 км спектр начинает удлиняться в ультрафиолетовую сторону. На высоте в 34 км снятый спектр простирается приблизительно до 280 m m ; здесь он, однако, довольно резко прерывается. При дальнейшем подъеме, до 55 км, обнаруживается новая широкая область спектра примерно до 240 m m . Темная полоса при 280 m m , однако, остается. Она соответствует поглощению парами магния.
Фиг. 21. Солнечный спектр, снятый с ракет на различных высотах
На Солнце найдены не только атомы, но и простейшие молекулы, например ОН, CN, СаН, Н 2 и т. д.
Размеры Солнца огромны: поперечник его составляет около 1 400 000 км, т. е. в 110 раз больше, чем у Земли, а объем в 1 305 000 раз больше объема Земли. Но Земля значительно плотнее: средняя плотность Солнца по сравнению с водой 1,406, а Земли — 5,6. Общее количество вещества на Солнце в 330 420 раз больше, чем на Земле. Если выразить количество солнечного вещества в тоннах, то получится маловразумительное число 2Х10 27 (т. е. к двойке надо подписать 27 нулей); если бы Солнце теряло каждую секунду по миллиарду тонн, то для того чтобы «похудеть» наполовину, ему потребовалось бы 30 миллиардов лет!
Это гигантское скопление вещества мы знаем только с поверхности. Внутренняя жизнь Солнца неизвестна, о ней можно только догадываться. Поверхность Солнца далеко не однородна: если мы говорим о распределении энергии солнечного света, о его температуре, то разумеем всегда грубую среднюю величину. Видимое путешествие Солнца по небу сопровождается также кажущимся изменением распределения энергии в его спектре. На восходе и на закате Солнце кажется красным, его лучам приходится преодолевать большую толщу атмосферы, чем в зените.
На поверхности Солнца, главным образом в экваториальной области, почти всегда имеются пятна (фиг. 22). Пятна бывают иногда настолько большими, что их легко видеть глазом через закопченное стекло. В китайских летописях сохранилась запись о наблюдениях солнечных пятен невооруженным глазом еще в 28 г. до н.э. В 1858 г. на солнечном диске было видно пятно длиною в 230 000 км, т. е. в 18 раз больше диаметра Земли. Пятно занимало 1/36 общей видимой поверхности Солнца. Пятна имеют разнообразные формы с темным ядром в середине и более светлой каймой снаружи (фиг. 23).
Фиг. 22. Солнечный диск с минимумом ( слева ) и с максимумом ( справа ) пятен
Фиг. 23. Вид группы солнечных пятен
Спектроскопическое исследование показывает, что в области пятен находится главным образом водород и пары кальция. Вокруг пятен вращаются гигантские вихри, циклоны, состоящие иногда из потоков электрически заряженных частиц. Возникающие электрические токи сопровождаются огромными магнитными полями, вызывающими изменение (расщепление) спектральных линий. Эти спектральные изменения и позволяют обнаружить солнечные вихри.
Число пятен на Солнце изменяется периодически: длина периода около 11 лет. На фиг. 24 приведена кривая, доказывающая такую периодичность. По горизонтальной оси нанесены годы, по вертикальным — относительные числа пятен. Кривая охватывает громадный, почти двухвековой период, с 1749 по 1947 г. Периодичность выражена с полной очевидностью. Перед нами несомненный и очень важный для жизни Земли закон солнечной деятельности.
Фиг. 24. Одиннадцатилетний период солнечных пятен
На фиг. 25 повторена часть той же кривой, с 1836 по 1926 г., но здесь она сопоставлена с кривой магнитных возмущении на Земле за те же годы. Верхняя кривая изображает магнитные возмущения на Земле за те же годы. Очевиден параллелизм этих кривых. Таким образом, помимо тяготения и света, между Солнцем и Землей существуют и другие посредники. Теперь известно, что от Солнца к Земле постоянно летят потоки отрицательно заряженных частиц — электронов. Эти электрические потоки отклоняются магнитными полюсами Земли в полярные области и вызывают изменения магнетизма на Земле, отмеченные на фиг. 25. С другой стороны, проникая в верхние разреженные слои земной атмосферы, быстро летящие электроны заставляют светиться находящиеся там газы. Так объясняются северные сияния. Число северных сияний в полярных областях показывает такую же периодичность, как и солнечные пятна и магнитные возмущения на Земле.
Фиг. 25. Периодичность солнечных пятен
и параллелизм числа пятен и земных магнитных возмущений (верхняя кривая)
Изменения в числе солнечных пятен существенно влияют на перемены погоды и, следовательно, на растительность и на все живое на Земле. На фиг. 26 приводится фотография среза ствола сосны, из которой видно, что толщина годичных колец меняется с явным одиннадпатилетним периодом, следующим за периодичностью солнечных пятен.
Фиг. 26. Срез ствола сосны, показывающий, что толщина колец меняется с одиннадцатилетним периодом |
На фиг. 27 кривая солнечных пятен за 1830-1910 гг. сравнивается со средней кривой роста деревьев для нескольких европейских стран. Параллелизм вполне ясен и здесь, хотя картина осложняется действием других причин, не зависящих от солнечных пятен. Таким образом, несомненно, что солнечные пятна составляют важный фактор в жизни земной поверхности.
Фиг. 27. Сравнение кривой солнечных пятен ( нижняя кривая )
со средней кривой роста деревьев для нескольких европейских стран
Внешнюю оболочку, которую мы только и видим на Солнце в обычных условиях, называют фотосферой. Эта оболочка имеет зернистое, гранулярное строение, особенно ясное, если снимать солнечный диск в монохроматическом свете отдельной спектральной линии, например водорода или кальция (фиг. 28).
Фиг. 28. Спектрограмма Солнца, снятого в свете линий кальция ( а ) и водорода ( б ) |
Эти гранулы, разнообразных форм и размеров, очевидно, соответствуют облакам и парам газов, плавающим в фотосфере. Если смотреть с вершины горы вниз на облака (фиг. 29), то можно видеть такую же зернистость. Отдельные места фотосферы светятся особенно ярко; это так называемые факелы, в которых наиболее сильны линии кальция.
Фиг. 29. Вид с вершины высокой горы на облака
Во время полных солнечных затмений имеется возможность рассмотреть оболочку Солнца в деталях — мы видим ее как бы в поперечном разрезе (фиг. 30). Фотосфера окружена тонким слоем красного цвета, так называемой хромосферой; в нее проникают факелы из фотосферы. Толщина хромосферы около 10 000 км. Из нее вылетают колоссальные фонтаны светящегося газа, так называемые протуоеранцы, высота которых достигает иногда сотен тысяч километров.
Фиг. 30. Вид солнечной хромосферы с протуберанцами
Протуберанцы бывают, главным образом, двух типов — облакообразные и взрывные. В первых преимущественно светится водород, как и в самой хромосфере, во вторых же, наряду с водородом, сильно выражены линии металлических паров. За последнее время астрономы получили в свои руки новые удобные способы наблюдения протуберанцев в любое время, а не только при затмениях. Тщательно закрывая в телескопе солнечный диск до краев темным диском, применяя безукоризненные стекла (в смысле отсутствия рассеивающих пузырьков и свилей) и пользуясь, кроме того, хорошими светофильтрами, пропускающими только узкую часть спектра, можно наблюдать солнечные протуберанцы вне затмений. Кроме того, за последнее десятилетие разработаны в СССР и за рубежом весьма совершенные светофильтры, выделяющие практически только одну узкую спектральную линию. В результате стала вполне возможной кинематографическая съемка протуберанцев, открывающая такие особенности солнечных взрывов, которые ранее оставались совершенно скрытыми.
Между фотосферой и хромосферой расположен очень тонкий, так называемый обращающий слой, в котором, по-видимому, и возникают главные линии Фраунгофера. Во время полных солнечных затмений наблюдается невооруженным глазом поразительное явление так называемой короны (фиг. 31), простирающейся на миллионы километров от края Солнца.
Фиг. 31. Фотография солнечной короны, снятая во время полного солнечного затмения в сентябре 1937 г. Снимки производились через поляроид в двух его взаимно перпендикулярных положениях, отмеченных на фотографиях. Из различия снимков следует, что свет короны поляризован |
Корона имеет, вообще говоря, лучеобразную структуру. Иногда лучи приблизительно равномерно окружают солнечный диск, в других случаях корона особенно вытянута в определенных направлениях. В сечении короны можно различить три спектра.
Наиболее ярок непрерывный спектр внутреннего кольца короны. В этом спектре нет линий Фраунгофера; природа этой части короны до сих пор остается загадочной. Ее обычно приписывают рассеянию солнечных лучей в атмосфере электронов. Однако провести такое объяснение последовательно, до конца согласуя со всеми фактами, еще не удалось.
Второй спектр тоже непрерывный, но с фраунгоферовыми линиями; его приписывают отраженному свету фотосферы (отражать могут более холодные и удаленные от Солнца частицы пыли).
Третий спектр линейчатый и соответствует свечению атомов. Можно думать, что этот третий спектр возникает вследствие флуоресценции паров под влиянием солнечного света. На это указывают некоторые особенности поляризации этого спектра. Таким образом, Солнце на несколько миллионов километров окружено веществом в разреженном состоянии, частью в виде паров, частью в виде пыли. Эта пыль и пары могут отгоняться от Солнца электрическими силами и световым давлением. Впрочем, во многих отношениях солнечная корона остается еще непонятным явлением. Не исключена, например, возможность, что некоторая часть свечения короны вызывается своеобразным процессом «саморассеяния» лучей в результате пересечения интенсивных световых пучков вблизи Солнца,. Севременная теория света считается с возможностью такого процесса.
Наш мимолетный и крайне упрощенный очерк оптических явлений на поверхности Солнца мы закончим сведениями об энергии, излучаемой Солнцем. Эта энергия распределена по всему спектру и в невидимой и в видимой областях. На видимую область при этом падает около 40% всей энергии.
Представим себе, что Земля лишена атмосферы. Основываясь на прямых измерениях энергии солнечных лучей, действительно падающих на земную поверхность, и учитывая влияние атмосферы, можно рассчитать, что при отвесном падении солнечных лучей поверхность Земли без атмосферы получила бы в минуту в среднем 2 малые калории, или 0,033 малой калории в секунду на 1 кв. см. На самом деле часть этой энергии поглощается атмосферой.
Зная эту цифру, так называемую солнечную постоянную, легко вычислить общее количество энергии, излучаемое Солнцем в одну секунду. Для этого достаточно сделать естественное предположение, что Солнце излучает одинаково во все стороны, вычислить поверхность шара с радиусом в 150 млн. км (расстояние между Солнцем и Землей) и полученную площадь, выраженную в квадратных сантиметрах, помножить на солнечную постоянную, т. е. на 0,033 малой калории. При выполнении такого расчета приближенно получается 10 26 малых калорий в секунду (т. е. число, первая цифра которого 1, а за нею следует 26 нулей). Это число и само по себе мало наглядно, да и самое понятие калории довольно отвлеченное. Поэтому поучительно будет сделать следующий пересчет.
Современная физика выяснила, что энергия всегда эквивалентна массе. Первым и важнейшим указанием на эту связь служит факт давления света на тела, впервые открытый и измеренный П.Н. Лебедевым. Тонкими и исключительно трудными опытами Лебедев доказал, что свет, падая на зачерненную пластинку, полностью его поглощающую, давит на пластинку с силою, равной E / tc . Здесь Е — энергия света, поглощаемого за t секунд, а с — скорость света. Если пластинка не черная, а, наоборот, зеркальная, полностью отражающая свет, то давление на нее вдвое больше. Лебедев своими многолетними опытами показал далее, что свет оказывает давление не только на твердые тела, но и на газы. Это обстоятельство приобрело первостепенное значение для современной теории солнечных явлений.
По законам механики следует, что для того, чтобы остановить за время t какой угодно поток (водяной, световой), оказывающий давление, необходимо его «уравновесить» силой F , определяемой из соотношения Ft = mv , где mv — произведение массы, приносимой потоком, на его скорость и, носящее название количества движения. Итак, сила давления потока F равна изменению количества движения за 1 секунду, т.е. F = mv / t . В случае светового потока v = с (скорость света). Приравняв найденное выражение для силы давления величине, полученной согласно опытам Лебедева для давления света, найдем ( mc / t ) = ( E / tc ) , откуда m = ( E / c 2 ) *. Полученная формула определяет массу света m , эквивалентную его энергии Е . Это чрезвычайно важное уравнение получено в приведенном выводе в итоге применения законов механики к оптическим измерениям Лебедева и на первый взгляд имеет ограниченное применение — только для света. Впервые Эйнштейн указал, что уравнение
универсально и должно быть справедливым для любых видов энергии. Заключение Эйнштейна получает все большее и широкое экспериментальное подтверждение по мере развития новой физики, в особенности физики атома и атомного ядра, и в настоящее время должно рассматриваться как одно из важнейших положений науки.
Совершенно так же можно пересчитать энергию, получаемую в секунду всей Землей, на массу. Для этого нужно помнить, что одновременно освещается только половина земного шара и, кроме того, что солнечная постоянная относится к отвесным лучам. В результате пересчета получается совсем скромная и легко запоминаемая цифра — около 2 кг в секунду.
Эти пересчеты, делающие несколько осязаемой энергию, излучаемую Солнцем, имеют вместе с тем большой принципиальный смысл. Нас поражает масса Солнца и его практически неисчерпаемая энергия. Как собираются массы, подобные солнечной, и где источник их непрерывно излучаемой энергии? Массы стягиваются в солнечные центры, вероятно, всемирным тяготением. Но, по-видимому, солнечная масса почти предельная; бывают скопления вещества, раз в 10 превышающие массу Солнца, но дальнейшего нарастания астрономы не знают. Чем же объясняется такой предел?
При стягивании масс всемирным тяготением возникают колоссальные давления внутри светил и развиваются огромные температуры, которые должны достигать десятков миллионов градусов. Накаленная не только добела, но до рентгеновского света внутренность звезды излучает (по закону Планка, см. выше) наружу от центра чрезвычайно большие количества лучистой энергии. Этот внутренний свет давит от центра наружу на звездные массы. Таким образом, действию тяготения противодействует световое давление. Разумеется, это противодействие не может превзойти вызывающего его тяготения. Но к световому давлению добавляется центробежная сила, сопровождающая вращение звезды. Когда сумма светового давления и центробежных сил будет равна силе тяготения, дальнейшее нарастание массы светила должно прекратиться. Теоретический расчет показал, что, действительно, массы, порядка солнечной, должны быть во Вселенной предельными. Таков частичный ответ астрофизики на вопрос о происхождении солнечной массы.
Но чем возмещается энергия, теряемая Солнцем в виде излучения? В свое время предполагалось, что поток метеоров, падающих на Солнце в количестве (по массе), равном примерно сотой части Земли, за год в состоянии дать нужную компенсацию. Указывалось также, что сжатие поперечника Солнца на 75 м в год должно сопровождаться развитием тепла, вполне равноценным лучистой отдаче. Таким образом можно бы объяснить существование Солнца в его современном виде по крайней мере в течение 100 млн. лет. Этот срок, однако, ничтожен; геология и астрофизика требуют по меньшей мере десятков миллиардов лет для. Солнца. Такого длительного бытия Солнца не могут объяснить названные предположения.
Источники излучения Солнца и звезд надо искать по направлениям совсем иным — в запасах энергии, раскрытых новой физикой. Соотношение между энергией и массой, о котором мы только что говорили, указывает в самом общем виде, что любое скопление массы может рассматриваться как эквивалент энергии. Каждый грамм массы — это огромная энергия, величину которой можно вычислить, помножив массу на квадрат скорости света. Грамм массы оказывается равным 20 тыс. млрд. калорий. Для получения такой же энергии пришлось бы сжечь 20 тыс. тонн угля.
Мы заговорили об угле как простом примере источника тепловой энергии. Полезно несколько вдуматься в этот пример. Кусок угля — это инертная масса, с механической точки зрения мало отличающаяся от камня. Кусок лежал сотни тысяч лет в инертном состоянии, пока, наконец, не попал в руки человека, сумевшего превратить скрытую энергию угля * посредством горения в кислороде в доступную форму тепла.
Какими же путями скрытая энергия, эквивалентная массе, может превращаться в доступные формы световой или тепловой энергии? С точки зрения представлений современной физики можно указать три таких пути. Путь первый — это полное превращение частиц вещества, например протонов, в свет. В предыдущей главе мы говорили о процессе превращения света в вещество, о переходе светового кванта в электрон и позитрон. Однако возможен и обратный процесс. Вероятность его в обычных условиях необычайно мала, но внутри Солнца при колоссальной плотности вещества, огромных давлениях и температурах, измеряемых миллионами градусов, подобные процессы могут происходить много чаще. В итоге этих процессов вся масса исчезающих частиц проявится в энергии света. Во избежание довольно часто встречающейся ошибки при этом важно заметить, что масса не исчезает, не превращается в энергию, как это иногда говорят; масса остается в виде массы получающихся фотонов, но только эквивалентная энергия из формы недоступной становится вполне доступной — световой.
Второй путь перехода скрытой энергии, эквивалентной массе, в энергию доступную состоит в распаде атомных ядер. Давний известный пример этого — распад атома радия. Однако этот естественный процесс происходит чрезвычайно редко, он не может служить источником значительных количеств энергии. Важнейшим шагом вперед в вопросе использования распада атомного ядра как источника энергии было открытие распада изотопа атома урана с атомным весом 235, входящего в количестве 0,7% в обычный уран, под действием медленных нейтронов. Главное преимущество этого процесса состоит в том, что он имеет цепной характер. В результате распада ядра возникают снова нейтроны, в свою очередь вызывающие распад, и т. д. Получается цепь распадающихся ядер, причем каждое звено этой цепи сопровождается выделением значительной энергии. На основе этого явления построена вся техника освобождения атомной энергии сегодняшнего дня. Для Солнца этот процесс, по-видимому, не имеет значения; внутри Солнца, на основании весьма правдоподобных теоретических представлений, ядер тяжелых и других атомов урана нет.
Имеется, однако, третий путь превращения скрытой энергии, неразрывно связанной с массой, в доступные формы. Этот путь противоположен второму, он состоит не в распаде, а, наоборот, в усложнении, в синтезе атомных ядер. Это давно известие из сопоставления атомных весов. Например, атомный вес водорода равен 1,0080, а атомный вес гелия 4,003. Но гелий должен быть построен из четырех атомов водорода 4Х1,0080=4,032. Сравнивая эту величину и указанный атомный вес гелия, мы получаем заметную разницу 4,032 — 4,003 = 0,029 *. Единственное объяснение этой разницы со.стоит в том, что при образовании ядра гелия из ядер водорода (протонов) исчезает значительная масса, она превращается в излучение или в другие формы энергии. Энергия эта громадна: при превращении 1 г водорода в гелий должна выделяться энергия в 5 млн. раз большая, чем энергия, получаемая при сжигании 1 г водорода в присутствии 8 г кислорода в воду.
В наших земных лабораториях мы не можем воссоздать тех огромных давлений и температур, которые должны быть внутри Солнца. Можно с несомненностью утверждать одно: излучение должно сопровождаться уменьшением солнечной массы. Солнце, так сказать, само себя сжигает, но не в обычном химическом смысле, когда продукты горения остаются бесполезной инертной массой; здесь масса переходит в мировое пространство в виде активной формы энергии — световой радиации; два литра воды по массе равны свету, получаемому всей Землей от Солнца в секунду. Но мы хорошо знаем, что за счет двух килограммов света живет вся Земля, в то время как два литра воды это незаметная «мелочь».
Солнечные лучи несут с собой солнечную массу. Свет — не бестелесный посланник Солнца, а само Солнце, часть его, долетевшая до нас в совершенной, раскрытой, в энергетическом смысле, форме, в форме света.
Спектр излучения света Солнца что он из себя представляет?
Солнечный свет это электромагнитное излучение, исходящее от Солнца. На Земле наша атмосфера фильтрует излучение Солнца, защищая нас от вредного излучения и изменяя его цвет.
Откуда он берется?
Давайте посмотрим на все длины волн света в солнечном излучении. Как вы, наверное, знаете, огромная температура и давление в ядре, заставляют превращаться водород в атомы гелия. Часть энергии, из этого слияния, выделяется в форме гамма-лучей. Эти гамма-лучи поглощаются частицами на Солнце, а затем повторно переизлучаются. Фотонам требуется 200.000 лет, чтобы выбраться из ядра в космическое пространство. Поверхность Солнца, называется фотосферой, и именно в фотосфере, свет, наконец, вырывается в космос. Спустя долгое путешествие сквозь Солнце, фотоны теряют энергию и их длина волны изменяется.
Это хорошая новость, иначе развитие жизни на Земле, под постоянным облучением гамма-лучами, было бы затруднительно.
Спектр излучения света Солнца это смесь различных длин волн. Тепло, которое мы ощущаем, это инфракрасное излучение с диапазоном длин волн от 1400 нм до 1 мм. Видимый свет, имеет длину волны от 400 до 700 нм.
В космосе, солнечный свет кажется белым, но здесь, на Земле, мы видим его желтым, потому что наша атмосфера отклоняет синие и фиолетовые фотоны.
Ультрафиолетовое излучение, к счастью, поглощается атмосферой Земли, оно довольно опасно для жизни. Спектр Солнечного света непрерывный, и в нем множество темных линий, вызванных его поглощением в холодных слоях его атмосферы. Вся жизнь на Земле зависит от солнечной радиации. Это основной источник энергии на Земле, он управляет погодой на планете и океанической циркуляцией. Без этого источника энергии, Земля замерзнет.
Солнечный спектр
Перед вами — видимая часть солнечного спектра в интервале от 4000 до 7000 Å (ангстрем — это внесистемная единица длины, равная 10 −10 м, то есть 10 Å=1 нм). Изображение создано на основе данных цифрового атласа, полученных при помощи фурье-спектрографа обсерватории McMath-Pierce Solar Observatory, расположенной в пустыне Сонора (штат Аризона, США). Эта обсерватория является частью комплекса Национальной обсерватории Китт-Пик (Kitt Peak National Observatory).
Это сплошная, непрерывная лента перехода от красного до фиолетового, разбитая на 50 полос по 60 ангстрем. Лента испещрена вертикальными фраунгоферовыми линиями — темными перерывами в радуге солнечного спектра, разделяющими ленту на отдельные «кирпичики». Наличие этих линий объясняется присутствием в атмосфере Солнца элементов, атомы которых поглощают свет на определенных частотах. Поэтому в местах спектра, соответствующих этим частотам, образуются темные провалы.
При взгляде на Солнце невооруженным глазом мы видим его ярким желтым или белым раскаленным диском. Но еще Исаак Ньютон, разложив солнечный свет в спектр при помощи стеклянной призмы, показал, что в нем присутствуют, плавно переходя друг в друга, все видимые нами цвета от красного до фиолетового. На самом деле диапазон солнечного излучения, конечно, гораздо шире. Видимый нами свет — это узкая часть электромагнитного спектра, простирающегося от гамма-излучения до многокилометровых радиоволн (подробнее можно посмотреть на нашем интерактивном плакате).
На этой схеме хорошо видно, сколь малый фрагмент из всего многообразия электромагнитных волн способен увидеть человек. Видимый свет заключен между ультрафиолетовым и инфракрасным участками электромагнитного спектра. Вверху указана частота в герцах, то есть в колебаниях в секунду. Например, частота 10 10 Гц, соответствующая микроволновому диапазону, означает, что волна за одну секунду успевает сделать 10 миллиардов колебаний. Внизу серой ленты подписаны длины волн в метрах. То есть тому же микроволновому диапазону соответствуют сантиметровые волны. Поскольку скорость света в вакууме постоянна, длина волны и ее частота связаны: их произведение всегда дает скорость света. В самом деле, свет за секунду проходит 300 000 000 м, а волна делает 10 миллиардов колебаний, значит, за время одного колебания она успевает пройти 0,03 метра, или 3 сантиметра, что соответствует диапазону сантиметровых волн. Изображение с сайта ru.wikipedia.org
Солнце светит, не ограничивая себя узкой полосой видимого света: внеатмосферные наблюдения зафиксировали излучение в диапазоне от 0,001 Å до 1 км (атмосфера поглощает часть солнечного излучения). Излучает Солнце и в рентгене, и в инфракрасной области, и в ультрафиолете, и даже в области радиоволн.
График зависимости мощности солнечного излучения (в ваттах на квадратный метр) от длины волны. Внешний, полупрозрачный контур, демонстрирует спектр солнечного излучения в космосе, за пределами земной атмосферы. Он уходит, постепенно снижая интенсивность, далеко вправо — до значений в миллионы нм. В этом диапазоне сконцентрирована практически вся излучаемая Солнцем энергия. Далее, до радиоволн километровой длины, о которых говорилось выше, интенсивность резко снижается. Внутренний контур — это спектр на уровне моря, с учетом поглощения части излучения атмосферой. Радужная вертикальная полоса соответствует видимому свету. Изображение с сайта fondriest.com
Солнечный спектр, как видно на главном фото, сплошной, но перекрывается темными провалами линий поглощения. Что это значит? Любое вещество, как мы знаем со времен Демокрита, состоит из атомов. Сами же атомы, чего не знал Демокрит, состоят из ядра и электронов и имеют свои энергетические уровни — фиксированные значения энергии, которыми могут обладать электроны, находящиеся вокруг ядра. Переход электрона с уровня на уровень сопровождается испусканием (или поглощением) энергии в виде света.
Рассмотрим этот процесс на примере атома водорода. Переходы могут происходить и со второго уровня на первый, и с пятого на третий. Все возможные переходы с вышележащих уровней на какой-то один называются спектральной серией. Так, переходы на первый уровень — это серия Лаймана, на второй — серия Бальмера и так далее. При этих переходах излучаются кванты света (фотоны) определенной частоты и длины волны.
Спектральные серии водорода. На схеме подписаны значения длин волн, соответствующие фотону, излучаемому при переходах между уровнями (n). Например, в серии Бальмера при переходе с шестого уровня на второй будет излучен фотон с длиной волны 410 нм. Изображение с сайта ru.wikipedia.org
Фотоны в видимом диапазоне излучаются только при переходах с верхних уровней на второй уровень. Все переходы на первый уровень (серия Лаймана) лежат в ультрафиолетовой области, на третий и выше — в инфракрасной. Чем больше энергия фотона, тем больше его частота и тем, соответственно, меньше длина волны. Переход с третьего уровня на второй излучает меньше всего энергии, так как разница между столь близкими уровнями невелика. Поэтому фотон получается самый низкоэнергетичный для этой серии и с самой большой длиной волны — 6565 Å (или 656,5 нм). Он дает красную полосу в спектре водорода (поскольку 6565 Å — это длина волны красного цвета). «Падения» с более высоких уровней будут давать фотоны со всё большим смещением в фиолетовую часть спектра.
Электроны, находящиеся внутри атома, «спрыгивают» с вышележащих уровней на второй, излучая разницу энергии в виде фотона определенной частоты. Белыми стрелками изображены переходы с третьего, четвертого, пятого и шестого уровней. Внизу изображен получающийся спектр атома водорода, под ним указана длина волны (в ангстремах). Нижнее изображение — с сайта grotrian.nsu.ru
Спектры излучения атомов имеют, таким образом, четкие раздельные светящиеся линии, частота которых соответствует частотам излученных фотонов. Такой спектр называется линейчатым. В 1859 году физик Густав Кирхгоф и химик Роберт Бунзен показали, что спектрам излучения атомов различных веществ соответствуют различные наборы линий в спектрах. Иными словами, линейчатый спектр каждого элемента уникален, как отпечаток пальца, и по этому отпечатку его можно идентифицировать. Так появился спектральный анализ.
Благодаря этим уникальным портретам атомов стало возможным выявить присутствие вещества в любом теле, смеси жидкостей или газов, спектр которого мы получили и можем рассмотреть. Но чтобы обладать линейчатым спектром, вещество должно состоять из таких отдельных атомов, то есть быть разреженным атомарным газом. Например, в хромосфере (части атмосферы) Солнца присутствует в виде очень разреженного газа ионизированный кальций.
Видимый линейчатый спектр излучения кальция. Изображение с сайта grotrian.nsu.ru
Если же вещество состоит из молекул, а не из отдельных атомов, его спектры становятся более «размазанными», состоящими из широких полос. В молекулах из-за взаимодействия атомов появляются новые энергетические уровни с близкими значениями энергий, и картина от них выглядит как широкие полосы. В том же случае, когда вещество находится в твердом или жидком состоянии или представляет собой газ, находящийся под высоким давлением, его молекулы постоянно взаимодействуют и порождают уже не уровни, а целые энергетические зоны, переходы между которыми и внутри которых дают сплошной спектр излучения.
Виды спектров излучения: а) линейчатый, атомный: состоит из отдельных узких линий. b) молекулярный: полосы молекулярного газа состоят из множества узких полос, таких же, как у линейчатых спектров, просто они расположены очень плотно друг к другу. с) сплошной: излучение происходит на всех частотах
Вот такой же сплошной спектр и у Солнца. Сплошным спектром обладают плотные, жидкие или твердые тела, притом тела горячие, нагретые достаточно, чтобы тепловое взаимодействие их молекул создавало множественные энергетические зоны. Для описания такого теплового излучения физики (а именно, всё тот же Густав Кирхгофф) ввели понятие абсолютно черного тела (АЧТ) — некоего абстрактного идеального объекта, который всю полученную энергию возвращает только в виде теплового излучения. Абсолютно черное тело не отражает ничего из падающего на него излучения — ни единого кванта ни в каком диапазоне. Всё, что попадает на него, идет на увеличение его внутренней энергии. Нагреваясь, АЧТ начинает излучать само, давая тот самый сплошной спектр нагретых тел. Цветовая температура, указываемая на некоторых осветительных приборах, например на лампах (6000 К — «холодный белый свет» и т. д.), — это как раз температура АЧТ, при которой оно излучает свет того же цвета (тона), что и маркируемый прибор (К, кельвин — температурная шкала, предложенная лордом Кельвином, начало которой совпадает с абсолютным нулем, а шаг равен градусу по шкале Цельсия).
В 2014 году был создан искусственный материал из углеродных нанотрубок, больше всего приближающийся по своим свойствам к гипотетическому АЧТ, — vantablack. В видимом диапазоне он поглощает 99,965% падающего на него света (см. картинку дня Самый черный материал). В прошлом году был создан еще более черный материал с коэффициентом поглощения 99,995%, что в 10 раз чернее vantablack.
Наше Солнце по своему спектру очень близко к излучению АЧТ, нагретого до температуры 6000 К. Однако природа его излучения совсем другая, чем у твердого нагретого тела. Ответственность за изображение Солнца, каким мы его видим, несет фотосфера — часть атмосферы Солнца, где и формируется непрерывный спектр солнечного излучения. Это небольшой слой глубиной порядка 300–400 км. Фотосфера представляет собой вовсе не твердое тело — это газ, раскаленный и очень сильно разреженный (плотность фотосферы равна в среднем 10 −9 г/см 3 — одна миллиардная грамма на кубический сантиметр, в миллион раз меньше плотности воздуха). Газ этот состоит из водорода (74%), гелия (25%), а также кислорода и находящихся в газообразном состоянии прочих элементов (железа, углерода, магния, серы и других), на долю которых приходится примерно 1% от общей массы. Тем не менее спектр его излучения вовсе не линейчатый.
Спектр излучения Солнца и спектр абсолютно черного тела. Сплошными линиями показаны наблюдаемые данные, штрихованными — спектр АЧТ при указанной температуре. В области видимого и инфракрасного излучения экспериментальные данные хорошо согласуются с линией АЧТ при температуре 6000 К (в длинноволновой области температура равна 10 4 К и 10 5 К). Изображение с сайта astronet.ru
В фотосфере присутствуют металлы, которые очень легко ионизируются то есть теряют электроны с внешних оболочек, слабо связанных с ядром. Температуры фотосферы недостаточно, чтобы ионизировать гелий или водород, а вот электроны металлов, «разогреваясь», получают достаточно энергии, чтобы покинуть атом металла и отправиться в свободный полет. Врезаясь в атомы водорода, они «остаются там жить», порождая очень любопытное явление — отрицательные ионы водорода (см. Hydrogen anion). «Вселяясь» на свободные энергетические уровни, электроны испускают разницу между своей прежней энергией и энергией своего новообретенного уровня в атоме водорода в виде кванта света.
Этот процесс подобен описанному выше излучению при переходах между уровнями, однако, поскольку электрон прилетает извне и может обладать абсолютно любой энергией, а не только строго равной энергии вышележащих слоев, излучение происходит не в узких линейчатых диапазонах, соответствующих разностям значений энергии перехода, а в любом диапазоне. Иными словами, если переходы внутри того же атома водорода дают, как мы видели на изображении его спектра, набор излучений на одном и том же наборе частот, то излучение кванта от «приземлившегося» внешнего электрона может быть каким угодно и дать линию в любой части спектра.
Однако остается атом в этом состоянии недолго. По сотне миллионов раз в секунду он испускает фотоны, переводя электроны на более низкие энергетические уровни, сталкивается с новыми электронами, поглощает фотоны и так далее. Жизнь кипит: атом водорода постоянно излучает и поглощает фотоны, теряет электроны, сталкивается с новыми, снова излучает, но уже в другом месте спектра. Из-за обилия таких актов излучения, а также из-за огромного количества атомов все длины волн в спектре излучения оказываются занятыми. Фотосфера излучает во всем диапазоне, образуя таким образом сплошной спектр.
Как мы уже сказали, атом может не только излучать фотоны, но и поглощать. И кроме спектров излучения бывают и спектры поглощения, которые выглядят как темные провалы (полоски) в сплошном красивом спектре. Они возникают, когда те же самые атомы сами оказываются в потоке света. Тогда летящие фотоны возбуждают электроны и «закидывают их наверх», на высокоэнергетические уровни. Электроны держатся там недолго и снова спрыгивают вниз, однако переизлучают уже во всех возможных направлениях без разбору, из-за чего в направлении первоначального пучка света лучей именно с такой длиной волны отправится гораздо меньше, и в этом месте у спектра будет провал.
Спектр натрия. (а) — эмиссионный, или излучательный: две яркие полосы на фоне черного фона, 589,0 нм и 589,59 нм (так называемый «дублет натрия»); (b) — поглощательный (абсорбционный): те же две полосы на тех же точно частотах, но это уже черные полосы отсутствия света на фоне сплошного спектра. Изображение с сайта Висконсинского университета astro.wisc.edu
Именно такие провалы на главном изображении и делят непрерывные красочные полоски солнечного спектра на отдельные «кирпичики». Обнаружил их в 1802 году английский химик Уильям Воластон, правда не придав этому никакого значения. А вот немецкий физик Йозеф Фраунгофер придал и взялся в 1814 году за их изучение. Он описал более пятисот таких темных «провалов» в солнечном спектре, и они называются теперь фраунгоферовыми линиями.
Эти линии дают входящие в состав фотосферы элементы, причем любопытно, что большой вклад вносят те, чье присутствие весьма невелико, например те же металлы. Связано это с низкими потенциалами ионизации металлов: их внешним электронам, слабо связанным с ядром, для перехода на другой энергетический уровень и, соответственно, для поглощения кванта света нужно в несколько раз меньше энергии, чем водороду. Водороду же, чтобы поглощать в видимом спектре, необходимо иметь электрон не на основном уровне, а на втором. Как мы говорили, электроны, спускаясь с более высоких уровней на второй, испускают фотоны в видимом диапазоне. Это серия Бальмера. И наоборот, чтобы поглотить фотон в видимом спектре, атом должен иметь электрон на этом втором уровне, чтобы энергии фотона было достаточно ровно на «закидывание» электрона на один из «верхних рубежей». Но чтобы иметь электрон на «втором этаже», атому водорода необходимо быть возбужденным, чего в условиях фотосферы сложно достичь: слишком низка температура. Поэтому количество таких возбужденных и потому поглощающих водородных атомов крайне мало — относительно их общего числа, конечно же.
Таким образом, при температуре фотосферы водород остается нейтральным (за исключением описанных выше отрицательных ионов, но таким становится только один атом водорода на сто миллионов, и вклад они вносят в спектр излучения фотосферы, а не поглощения), а металлы и прочие элементы фотосферы ионизируются, поглощая для этого фотоны, и почти все их атомы участвуют в создании темных полос спектра поглощения (более подробный вывод см. в новости Сесилия Пейн — хозяйка звездной кухни в разделе «Солнце: кальций и водород», «Элементы», 27.05.2020).
Упрощенная версия главного изображения: линии поглощения в солнечном спектре. Каждая из этих темных полос соответствует какому-либо элементу. В центре видны линии дублета натрия. Справа — H-α — линия водорода, доминирующая в видимой части спектра (тот самый переход со второго энергетического уровня на третий с поглощением фотона с длиной волны 656 нм). Слева оставляют след атомы кальция, потерявшие один электрон (ионы Ca II); они излучают и поглощают свет на нескольких длинах волн, в частности, на 396,8 нм и 393,3 нм в фиолетовой области спектра. Это линии Ca-H и Ca-K (более сильные, то есть более интенсивные, линии обозначают буквами от A до K) однократно ионизированного кальция. Прочие черные линии соответствуют спектрам поглощения других элементов; установить, каким, можно по буквенным обозначениям, соответствующим фраунгоферовым линиям. Изображение с сайта ru.wikipedia.org
Со времен Фраунгофера, открывшего и описавшего свыше 500 линий поглощения, их число выросло более чем до 25 000 — это, конечно, уже во всем спектре, не только в видимой его части. По этим спектральным провалам можно делать выводы о строении и составе Солнца (так, например, был открыт гелий, в честь Солнца и названный).
Увеличенная часть главного изображения. Так выглядит знакомый нам дублет натрия. Длина волны (в ангстремах) подписана под спектральной лентой. Название элемента, которому принадлежит линия, — над ней. Рассмотреть весь спектр Солнца в подробностях, где каждая линия поглощения подписана, можно, скачав файл по ссылке
Изучение Солнца в различных электромагнитных диапазонах позволяет делать выводы о его активности и происходящих там процессах; собственно, это основной способ получения информации о преобразованиях энергии, происходящих в нашей звезде. Например, в ультрафиолете получены картины движения плазмы, сопровождающие пересоединение магнитных линий в атмосфере — основного кандидата на объяснение повышенной температуры солнечной короны (см. задачу «Магнитное пересоединение»).
Слева — кадр из видеосъемки Солнца в рентгеновском диапазоне, сделанной японским спутником Hinode в январе 2012 года. Сама поверхность Солнца в рентгене почти не излучает, поэтому выглядит на снимке как черная сфера. Рентгеновское излучение дает солнечная корона, разогретая до миллионов градусов (красный «туман»), и солнечные вспышки (небольшие яркие пятна). Справа — изображение в ультрафиолете на длине волны 171 Å, полученное Обсерваторией солнечной динамики также в 2012 году. Яркими выглядят активные области — вспышки и петли плазмы вдоль линий магнитных полей. Фото с сайта nasaviz.gsfc.nasa.gov. Оба кадра изначально монохромны и раскрашены. Считается, что человеческий глаз лучше воспринимает контраст между различно окрашенными объектами
Линии поглощения помогают получать информацию о солнечной структуре из разных слоев. С высотой меняются физические характеристики солнечной атмосферы и, соответственно, состояние элементов, что сказывается на их спектрах. Линии поглощения позволяют рассматривать Солнце без ослепляющей засветки фотосферы — для этого нужно использовать светофильтр, имеющий узкую полосу пропускания именно на частоте линии поглощения. Так рассматривают свет, идущий от хромосферы, обычно невидимой в ярком свете фотосферного слоя.