Постройте изображение стрелки в линзе какое это изображение
Перейти к содержимому

Постройте изображение стрелки в линзе какое это изображение

Постройте изображение стрелки в линзе (рис. 4.43).

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Тонкие линзы. Построение изображений.

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка , то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке .

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка называется изображением точки .

Если в точке пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке концентрируется энергия световых лучей.

Если же в точке пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть — расстояние от точки до линзы, — фокусное расстояние линзы. Имеются два принципиально разных случая: и (а также промежуточный случай ). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: . Точечный источник света расположен дальше от линзы, чем левая фокальная плоскость (рис. 1 ).

Рис. 1. Случай a>f: действительное изображение точки S

Луч , идущий через оптический центр, не преломляется. Мы возьмём произвольный луч , построим точку , в которой преломлённый луч пересекается с лучом , а затем покажем, что положение точки не зависит от выбора луча (иными словами, точка является одной и той же для всевозможных лучей ). Тем самым окажется, что все лучи, исходящие из точки , после преломления в линзе пересекаются в точке и теорема об изображении будет доказана для рассматриваемого случая .

Точку мы найдём, построив дальнейший ход луча . Делать это мы умеем: параллельно лучу проводим побочную оптическую ось до пересечения с фокальной плоскостью в побочном фокусе , после чего проводим преломлённый луч до пересечения с лучом в точке .

Теперь будем искать расстояние от точки до линзы. Мы покажем, что это расстояние выражается только через и , т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча .

Опустим перпендикуляры и на главную оптическую ось. Проведём также параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

Но , так что соотношение (4) переписывается в виде:

Отсюда находим искомое расстояние от точки до линзы:

Как видим, оно и в самом деле не зависит от выбора луча . Следовательно, любой луч после преломления в линзе пройдёт через построенную нами точку , и эта точка будет действительным изображением источника

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника пересекаются после линзы в одной точке — его изображении — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2 .

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3 ).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5 ). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

Теперь разделим обе части этого равенства на a:

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для . В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6) . Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что не зависит от расстояния (рис. 1, 2 ) между источником и главной оптической осью!

Это означает, что какую бы точку отрезка мы ни взяли, её изображение будет находиться на одном и том же расстоянии от линзы. Оно будет лежать на отрезке — а именно, на пересечении отрезка с лучом , который пойдёт сквозь линзу без преломления. В частности, изображением точки будет точка .

Тем самым мы установили важный факт: изображением отрезка лужит отрезок . Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

Собирающая линза: действительное изображение предмета.

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая . Здесь можно выделить три характерных ситуации.

1. . Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4 ; двойной фокус обозначен ). Из формулы линзы следует, что в этом случае будет (почему?).

Рис. 4. : изображение действительное, перевёрнутое, увеличенное

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Из подобия треугольников и получим:

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. . В этом случае из формулы (6) находим, что и . Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5 ).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. . В этом случае из формулы линзы следует, что (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6 ).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

Собирающая линза: мнимое изображение точки.

Второй случай: . Точечный источник света расположен между линзой и фокальной плоскостью (рис. 7 ).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом , идущим без преломления, мы снова рассматриваем произвольный луч . Однако теперь на выходе из линзы получаются два расходящихся луча и . Наш глаз продолжит эти лучи до пересечения в точке .

Теорема об изображении утверждает, что точка будет одной и той же для всех лучей , исходящих из точки . Мы опять докажем это с помощью трёх пар подобных треугольников:

Снова обозначая через расстояние от до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

Величина не зависит от луча , что и доказывает теорему об изображении для нашего случая . Итак, — мнимое изображение источника . Если точка не лежит на главной оптической оси, то для построения изображения удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8 ).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9 ).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая . Сначала переписываем это соотношение в виде:

а затем делим обе части полученного равенства на a:

Сравнивая (7) и (11) , мы видим небольшую разницу: перед слагаемым стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина , вычисляемая по формуле (10) , не зависит также от расстояния между точкой и главной оптической осью. Как и выше (вспомните рассуждение с точкой ), это означает, что изображением отрезка на рис. 9 будет отрезок .

Собирающая линза: мнимое изображение предмета.

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10 ). Оно получается мнимым, прямым и увеличенным.

Рис. 10. : изображение мнимое, прямое, увеличенное

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай полностью разобран. Как видите, он качественно отличается от нашего первого случая . Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай .

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай: . Источник света расположен в фокальной плоскости линзы (рис. 11 ).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника , расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки ? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч и произвольный луч (рис. 12 ). На выходе из линзы имеем два расходящихся луча и , которые наш глаз достраивает до пересечения в точке .

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка будет одной и той же для всех лучей . Действуем с помощью всё тех же трёх пар подобных треугольников:

Величина b не зависит от луча span
, поэтому продолжения всех преломлённых лучей span
пересекутся в точке — мнимом изображении точки . Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10) . В случае их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации и .

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13 ).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14 ).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

а потом разделим обе части полученного равенства на a:

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7) , (11) и (14) можно записать единообразно:

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина считается отрицательной;
— для рассеивающей линзы величина считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

Рассеивающая линза: мнимое изображение предмета.

Величина , вычисляемая по формуле (13) , опять-таки не зависит от расстояния между точкой и главной оптической осью. Это снова даёт нам возможность построить изображение предмета , которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15 ).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Построение в линзах

Для введённых нами линз существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .

Собирающая и рассеивающая линзы (ход лучей)

Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).
  3. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают изображение ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт изображение ().

Аналогично сферическому зеркалу, получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы:

  • (источник находится очень далеко от линзы). В этом случае мы можем считать, что все лучи от источника идут параллельно друг другу (рис. 2). Пустим два луча параллельно главной оптической оси линзы.

Собирающая линза (источник в бесконечности)

Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное).

  • (источник находится за двойным фокусным расстоянием) (рис. 3).

Собирающая линза (источник за двойным фокусом)

Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое). Положение — между фокусом и двойным фокусом.

  • (источник находится ровно в двойном фокусе) (рис. 4).

Собирающая линза (источник в двойном фокусе)

Рис. 4. Собирающая линза (источник в двойном фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (того же размера, действительное, перевёрнутое). Положение — ровно в двойном фокусе.

  • (источник между фокусом и двойным фокусом) (рис. 5)

Собирающая линза (источник между двойным фокусом и фокусом)

Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое). Положение — за двойным фокусом.

  • (источник находится ровно в фокусе собирающей линзы) (рис. 6)

Собирающая линза (источник в фокусе)

Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет.

  • (источник находится между фокусом и главным оптическим центром) (рис. 7)

Собирающая линза (источник перед фокусом)

Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.

  • (источник находится очень далеко от линзы). В этом случае, мы можем считать, что все лучи от источника идут параллельно друг другу (рис. 8). Пустим два луча параллельно главной оптической оси линзы.

Рассеивающая линза (источник в бесконечности)

Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое).

  • любое другое положение источника (рис. 9).

Рассеивающая линза (произвольное положение источника)

Рис. 9. Рассеивающая линза (произвольное положение источника)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (продолжение отражённого луча проходит через передний фокус) и идущего через главный оптический центр линзы (не преломляется). Тогда изображением будет пересечение продолжений преломлённых лучей.

Второй тип задач связан с формулой тонкой линзы. Такие задачи основываются на числовых данных параметров, характеризующих положение источника, изображения или фокуса линзы. Рассмотрим произвольную систему (рис. 10). Пусть положение источника (), изображения () и фокуса системы () задано.

Формула тонкой линзы

Рис. 10. Формула тонкой линзы

Тогда взаимосвязь между параметрами положения элементов можно описать формулой:

  • где
    • — фокусное расстояние линзы,
    • — расстояние от предмета до линзы,
    • — расстояние от изображения до линзы.

    Важно: для использования формулы (1) необходимо помнить правило расстановки знаков. Если линза собирающая, то , если рассеивающая, то . В случае действительных предметов и изображений: , , а в случае мнимых предметов и изображений: и .

    И последним параметром, характеризующим линзы или систему линз, является оптическая сила линзы (). Её нахождение довольно простое:

    • где
      • — оптическая сила линзы/системы линз,
      • — фокус линзы/системы линз.

      Размерность оптической силы линзы: м=дптр (диоптрии). Оптическая сила собирающей линзы положительна, рассеивающей — отрицательна.

      Вывод: задачи с линзами, в целом, разделены на два класса. Задачи на построение основываются на рисунках 2-9. Достаточно проанализировать ход лучей и найти изображение (рис.1). Численные значения в дано указывают на задачи на формулу тонкой линзы (1).

      Постройте изображение предмета в линзе. Какое это изображение?

      Т. к. линза собирающая, то изображение начала стрелки будет в точке 2F за линзой. Луч 1, смотри рисунок.

      Конец стрелки находится в токе фокуса F. Луч 2 идет после линзы параллельно главной оптической оси. Изображение этой точки будет бесконечно удалено.

      Изображение будет увеличенное. располагаться будет на оптической оси.

      Дано: a = 0,8 м/с(в квадрате); t = 10сек; V = 2м/с;

      Решение: V(со значком вектора) = V(нулевое, со значком вектора) + at = 2м/с + 0,8 м/с(в квадрате)

      Ответ:

      Сшара=4π*еps0*eps*R, eps0=8.9*20^-12 Ф/м

      Зависимость сопротивления проводника от температуры записывается уравнением:
      R = Ro*(1 + α*t) (смотри фото)

      Температурный коэффициент вольфрама (из таблиц):
      α = 0,0046 1/°C

      По условию:
      R = 35,8 Ом

      Находим сопротивление нити при 0°С:
      Ro = R / (1+α*t) = 35,8 / (1+0,0046*20) ≈ 32,8 Ом

      По закону Ома находим сопротивление включенной в сеть лампочки:
      R₁ = U/I = 120/0,33 ≈ 364 Ом

      Находим температуру нити накала лампочки:
      R₁ = Ro*(1 + α*t₁)
      1+α*t₁ = R₁/R₀ = 364 / 32,8 ≈11,1
      α*t₁ = 11,1 — 1 = 10,1
      t₁ = 10,1 / 0,0046 ≈ 2 200 °C

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *