Referat. Переменный ток
Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.
Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.
Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника
Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.
Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:
u = U_m \cdot \sin \omega t\) или \(
u = U_m \cdot \cos \omega t\) ,
где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае
i = I_m \cdot \sin (\omega t + \varphi_c)\) ,
где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.
Резистор в цепи переменного тока
Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.
Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).
Пусть напряжение на концах цепи меняется по гармоническому закону
u = U_m \cdot \sin \omega t\) .
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:
Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:
При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.
Катушка в цепи переменного тока
Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.
Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.
Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4). При изменениях силы тока по гармоническому закону
i = I_m \cdot \cos \omega t\) .
в катушке возникает ЭДС самоиндукции
e = -L \cdot i’ = I_m \cdot L \cdot \omega \cdot \sin \omega t\) ,
где L – индуктивность катушки, ω – циклическая частота переменного тока.
Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:
u = -e = -I_m \cdot L \cdot \omega \cdot \sin \omega t\) .
Следовательно, при изменении силы тока в катушке по гармоническому закону напряжение на ее концах изменяется тоже по гармоническому закону, но со сдвигом фазы:
u = I_m \cdot L \cdot \omega \cdot \cos (\omega t + \frac<\pi><2>)\) .
Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на π/2.
В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.
Произведение \(I_m \cdot L \cdot \omega\) является амплитудой колебаний напряжения на катушке:
U_m = I_m \cdot L \cdot \omega\) .
Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):
X_L = \frac
Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:
В отличие от электрического сопротивления проводника в цепи посто-янного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать обратно пропорционально частоте. Постоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю (XL = 0).
Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором пере-менного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.
Конденсатор в цепи переменного тока
Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.
При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.
Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.
Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока. При изменениях напряжения на обкладках конденсатора по гармоническому закону
u = U_m \cdot \cos \omega t\) ,
заряд на его обкладках изменяется по закону:
q = C \cdot u = U_m \cdot C \cdot \cos \omega t\) .
Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:
i = -U_m \cdot \omega \cdot C \cdot \sin \omega t = U_m \cdot \omega \cdot C \cdot \cos (\omega t + \frac<\pi><2>)\) .
Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на π/2 или колебания силы тока опережают по фазе колебания напряжения на π/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.
Произведение \(U_m \cdot \omega \cdot C\) является амплитудой колебаний силы тока:
I_m = U_m \cdot \omega \cdot C\) .
Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):
Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:
Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.
Закон Ома для электрической цепи переменного тока
Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой ω и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения.
В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:
u = u_R + u_L + u_C\) . (1)
Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:
i = I_m \cdot \cos \omega t\) . (2)
Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на π/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на π/2. Поэтому уравнение (1) можно записать так:
u = U_
где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.
Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.
При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im. Колебания напряжения на конденсаторе отстают по фазе на π/2 от колебаний силы тока, поэтому вектор \(
\vec U_
\vec I_
\vec U_
\vec I_
На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов \(
\vec U_
\vec U_
\vec U_m = \vec U_
Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна
Введя обозначение для полного сопротивления цепи переменного тока
выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:
Это выражение называют законом Ома для цепи переменного тока.
Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна ω∙t + φ. Поэтому мгновенное значение полного напряжения определяется формулой:
u = U_m \cdot \cos (\omega t + \varphi)\) . (8)
Начальную фазу φ можно найти из векторной диаграммы:
Величина cos φ играет важную роль при вычислении мощности в электрической цепи переменного тока.
Мощность в цепи переменного тока
Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:
Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U∙I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:
Пусть напряжение на концах цепи меняется по гармоническому закону
u = U_m \cdot \cos \omega t\)
(с тем же успехом, разумеется, вместо \(
u = U_m \cdot \cos \omega t\) можно было бы записать \(
u = U_m \cdot \sin \omega t\)), то и сила тока будет меняться со временем гармонически с той же частотой, но в общем случае будет сдвинута по фазе относительно напряжения:
i = I_m \cdot \cos (\omega t + \varphi_c)\) ,
где φc – сдвиг фаз между силой тока и напряжением. Поэтому для мгновенной мощности можно записать:
p = u \cdot i = U_m \cdot I_m \cdot \cos \omega t \cdot \cos (\omega t + \varphi_c)\) .
При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.
Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:
В рассматриваемом случае α = ω∙t и β = ω∙t + φc. Поэтому
p = \frac
Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю. Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:
При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:
Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = I∙U = I 2 ∙R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим
Действующим значением силы тока называют величину, в \(
\sqrt<2>\) раз меньшую ее амплитудного значения:
Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.
Аналогично можно доказать, что
действующее значение переменного напряжения в \(
\sqrt<2>\) раз меньше его амплитудного значения:
Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:
P = \frac
Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз φc между напряжением и током. Множитель cos φc в формуле называется коэффициентом мощности.
В случае, когда φc = ± π/2 , энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при φc = — π/2 (чисто индуктивное сопротивление участка цепи). График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.
Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.
При проектировании цепей переменного тока нужно добиваться, чтобы cos φc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.
Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos φc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой. Это уменьшает коэффициент мощности всей цепи. Повышение cos φc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos φc < 0,85.
Переменный электрический ток
Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.
Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.
DC — Direct Current — постоянный ток, не меняющий своей величины и направления.
В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.
При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.
Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.
Термины AC и DC применимы как для тока, так и для напряжения.
Параметры переменного тока и напряжения
Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:
Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.
Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz). Частота f = 1 /T
Циклическая частота ω — угловая частота, равная количеству периодов за 2π секунд.
Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°
Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.
Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.
Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.
i = i(t); u = u(t)
Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:
С учётом начальной фазы:
Здесь Iamp и Uamp — амплитудные значения тока и напряжения.
Амплитудное значение — максимальное по модулю мгновенное значение за период.
Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.
Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.
Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.
Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.
Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.
Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.
Для синусоидального тока и напряжения амплитудой Iamp (Uamp) среднеквадратичное значение определится из расчёта:
Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.
Коэффициент амплитуды и коэффициент формы
Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.
Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1
Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1
Переменный ток. Его характеристики
Электрическим током называют направленное движение заряженных частиц. Количественными характеристиками тока являются его сила тока (отношение заряда переносимого через поперечное сечение проводника в единицу времени) и его плотность, определяемая соотношением. Единицей измерения силы тока является ампер (1А — характерное значение тока, потребляемого бытовыми электронагревательными приборами). Необходимыми условиями существования тока являются наличие свободных носителей зарядов, замкнутой цепи и источника ЭДС (батареи), поддерживающего направленное движение.
Электрический ток может существовать в различных средах: в металлах, вакууме, газах, в растворах и расплавах электролитов, в плазме, в полупроводниках, в тканях живых организмов. При протекании тока практически всегда происходит взаимодействие носителей зарядов с окружающей средой, сопровождающееся передачей энергии последней в виде тепла. Роль источника ЭДС как раз и состоит в компенсации тепловых потерь в цепях. Электрический ток в металлах обусловлен движением относительно свободных электронов через кристаллическую решетку. Причины существования свободных электронов в проводящих кристаллах может быть объяснена только на языке квантовой механики.
Опыт показывает, что сила электрического тока, протекающего по проводнику, пропорциональна приложенной к его концам разности потенциалов (закон Ома). Постоянный для выбранного проводника коэффициент пропорциональности между током и напряжением называют электрическим сопротивлением. Сопротивление измеряют в омах (сопротивление человеческого тела составляет около 1000 Ом). Величина электрического сопротивления проводников слабо возрастает при увеличении их температуры. Это связано с тем, что при нагревании узлы кристаллической решетки усиливают хаотические тепловые колебания, что препятствует направленному движению электронов.
Во многих задачах непосредственный учет колебаний решетки оказывается весьма трудоемким. Для упрощения взаимодействия электронов с колеблющимися узлами оказывается удобным заменить их столкновениями с частицами газа гипотетических частиц — фононов, свойства которых подбираются так, чтобы получить максимально приближенное к реальности описание и могут оказываться весьма экзотическими. Объекты такого типа весьма популярны в физике и называются квазичастицами. Помимо взаимодействий с колебаниями кристаллической решетки движению электронов в кристалле могут препятствовать дислокации — нарушения регулярности решетки. Взаимодействия с дислокациями играют определяющую роль при низких температурах, когда тепловые колебания практически отсутствуют.
Некоторые материалы при низких температурах полностью утрачивают электрическое сопротивление, переходя в сверх проводящее состояние. Ток в таких средах может существовать без каких-либо ЭДС, поскольку потери энергии при столкновениях электронов с фононами и дислокациями отсутствуют. Создание материалов, сохраняющих сверхповодящее состояние при относительно высоких (комнатных) температурах и небольших токах является весьма важной задачей, решение которой произвело бы настоящий переворот в современной энергетике, т.к. позволило бы передавать электроэнергию на большие расстояния без тепловых потерь.
В настоящее время электрический ток в металлах используется главным образом для превращения электрической энергии в тепловую (нагреватели, источники света) или в механическую (электродвигатели). В последнем случае электрический ток используется в качестве источника магнитных полей, взаимодействие с которыми других токов вызывает появление сил.
1. Переменный ток
Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.
Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.
Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника.
Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.
Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой щ по синусоидальному или косинусоидальному закону:
где u – мгновенное значение напряжения, Um – амплитуда напряжения, щ – циклическая частота колебаний. Если напряжение меняется с частотой щ, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения.
Поэтому в общем случае:
где – разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.
2. Резистор в цепи переменного тока
Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.
Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).
Пусть напряжение на концах цепи меняется по гармоническому закону:
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:
Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:
При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.
1.1 Катушка в цепи переменного тока
Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.
Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.
Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4).
При изменениях силы тока по гармоническому закону:
в катушке возникает ЭДС самоиндукции:
где L – индуктивность катушки, щ – циклическая частота переменного тока.
Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:
Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на р/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на р/2.
В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.
Произведение Im ⋅ L ⋅ щ является амплитудой колебаний напряжения на катушке:
Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):
Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:
В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать обратно пропорционально частоте. Постоянный ток вообще «не замечает» индуктивности катушки. При щ = 0 индуктивное сопротивление равно нулю (XL = 0).
Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором переменного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.
1.2 Конденсатор в цепи переменного тока
Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.
При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.
Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.
Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока.
При изменениях напряжения на обкладках конденсатора по гармоническому закону:
заряд на его обкладках изменяется по закону:
Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:
Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на р/2 или колебания силы тока опережают по фазе колебания напряжения на р/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.
Произведение Um ⋅ щ ⋅ C является амплитудой колебаний силы тока:
Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):
Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:
Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.
1.3 Закон Ома для электрической цепи переменного тока
Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой щ и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения
В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:
Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:
Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на р/2.
Поэтому уравнение (1) можно записать так:
где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.
Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.
При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im Колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, поэтому вектор
UCm отстает от вектора Im на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на р/2, поэтому вектор ULm опережает вектор Im на угол 90° (рис. 9).
На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов Rm,
Cm,
Lm вращающихся с одинаковой угловой скоростью щ против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC, и uL на отдельных элементах цепи, т.е. сумме проекций векторов URm, UCm и ULm на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:
Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна:
Введя обозначение для полного сопротивления цепи переменного тока:
выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:
Это выражение называют законом Ома для цепи переменного тока.
Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна щt + ц. Поэтому мгновенное значение полного напряжения определяется формулой:
Начальную фазу ц можно найти из векторной диаграммы:
Величина cos ц играет важную роль при вычислении мощности в электрической цепи переменного тока.
1.4 Мощность в цепи переменного тока
Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:
Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U?I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным.
Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:
Пусть напряжение на концах цепи меняется по гармоническому закону:
При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.
Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:
Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю.
Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:
При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:
Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = IU = I 2 R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим:
Действующим значением силы тока называют величину, в √2 раз меньшую ее амплитудного значения:
Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.
Аналогично можно доказать, что действующее значение переменного напряжения в √2 раз меньше его амплитудного значения:
Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:
Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз цc между напряжением и током. Множитель cos цc в формуле называется коэффициентом мощности.
В случае, когда цc = ± р/2, энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при цc = – р/2 (чисто индуктивное сопротивление участка цепи).
График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.
Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.
При проектировании цепей переменного тока нужно добиваться, чтобы cos цc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.
Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos цc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой.
Это уменьшает коэффициент мощности всей цепи. Повышение cos цc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos цc < 0,85.
Чем будет ограничиваться максимальное значение амплитуды переменного тока
Рассмотрим подробнее кривую, изображающую зависимость мгновенного значения технического переменного тока (или напряжения) от времени (рис. 293). Прежде всего обращает на себя внимание тот факт, что этот ток (или напряжение) изменяется периодически, т. е. каждое мгновенное значение этих величин, например значение, соответствующее точке (или точке ), повторяется через один и тот же промежуток времени. Другими словами, сила тока (или напряжение) пробегает за этот промежуток времени все возможные значения, возвращаясь к исходному, т. е. совершает полное колебание. Промежуток времени, в течение которого сила тока (или напряжение) совершает полное колебание и принимает прежнее по модулю и знаку мгновенное значение, называется периодом переменного тока. Его принято обозначать буквой . Для сетей СССР и большинства других стран с, а так как изменение направления тока происходит два раза в течение каждого периода, то технический ток меняет свое направление 100 раз в секунду.
Рис. 293. Зависимость силы переменного тока от времени
Максимальное значение, которое может иметь переменный ток (или напряжение) в том или другом направлении, называется амплитудой этой величины. На рис. 293 амплитуда изображается отрезками . Амплитуду токов и напряжений обозначают или , а их мгновенные значения – и .
Число полных колебаний (циклов) синусоидального тока или напряжения за единицу времени называют частотой соответствующей величины и обозначают буквой . Очевидно,
За единицу частоты принимают частоту, равную одному колебанию в секунду. Эту единицу называют герцем (Гц) по имени немецкого физика Генриха Герца (1857-1394). Таким образом, технический переменный ток имеет частоту 50 Гц.
Вместо частоты вводят также величину , которую называют циклической или круговой частотой тока (напряжения). Она представляет собой число полных колебаний (циклов) данной величины за секунд.
Пока мы имеем дело только с одним синусоидальным переменным током или переменным напряжением, частота и амплитуда являются полными и исчерпывающими характеристиками этих величии, потому что начальный момент отсчета времени мы можем выбрать произвольно. Но когда нам приходится сопоставлять друг с другом две или несколько величин такого рода, мы должны учитывать и тот факт, что они могут достигать максимального значения не в один и тот же момент времени.
Две кривые на рис. 294,а изображают форму двух синусоидальных переменных токов с одной и той же частотой и амплитудой, но кривые эти смещены по оси абсцисс (оси времени) на отрезок, равный четверти, периода. Начальная точка отсчета времени выбрана так, что для первой кривой нулевые значения достигаются в моменты а амплитудные – в моменты . Вторая же кривая проходит через нулевые значения в моменты а через амплитудные – в моменты .
Рис. 294. Графическое изображение переменных токов одинаковой частоты и амплитуды, смещенных по фазе: а) два синусоидальных тока, смещенные по фазе на четверть периода; б) токи, изображаемые кривыми 2 и 3, смещены по фазе относительно кривой 1 на одну восьмую часть периода
В подобных случаях говорят, что эти два тока (или две другие синусоидальные величины) сдвинуты друг относительно друга по фазе, или, иначе, что между ними существует некоторый сдвиг фаз (или разность фаз), равный в данном примере четверти периода. Так как кривая 1 проходит через амплитудное значение, так же как и через любое другое соответствующее значение, раньше, чем кривая 2, то говорят, что она опережает кривую 2 по фазе или, иначе, что кривая 2 отстает по фазе от кривой 1.
153.1. На рис. 294,б кривые 2 и 3 сдвинуты относительно кривой 1 по фазе на одну восьмую периода. Определите, какая из этих кривых отстает по фазе от кривой 1 и какая опережает ее. Какова разность фаз между кривыми 2 и 3?
Во всех случаях, когда приходится сопоставлять синусоидальные величины или рассматривать их совместное действие (складывать или перемножать их), вопрос о соотношении фаз между этими величинами имеет очень важное значение. Таким образом, в общем случае, когда имеется несколько синусоидальных токов или напряжений, нужно характеризовать каждый из них тремя величинами: частотой, амплитудой и фазой или, точнее, сдвигом фаз между данным током (или напряжением) и каким-нибудь другим, относительно которого мы рассматриваем сдвиг фаз всех остальных.
Соотношения между фазами различных синусоидальных переменных токов очень удобно изучать при помощи петлевого осциллографа, имеющего в отличие от прибора, описанного в §152, не одну, а две отдельные рамки (петли), помещенные в общее магнитное поле (рис. 295). Развертка формы обоих токов, проходящих по этим петлям, по оси времени осуществляется одним и тем же вращающимся барабаном, так что точки двух получающихся на экране кривых, расположенные друг над другом, изображают мгновенные значения сравниваемых токов, соответствующие одному и тому же моменту времени.
Рис. 295. Двухпетлевой осциллограф для одновременной записи двух переменных токов, проходящих через петли 1 и 2
Точное математическое определение фазы синусоидальной переменной величины (тока или напряжения) таково. Мгновенное значение этой величины в какой-нибудь момент времени определяется значением величины , стоящей под знаком функции в формуле (151.2). Если начальный момент отсчета времени выбран уже так, чтобы мгновенное значение тока проходило через нуль в моменты то, вообще говоря, другой ток будет проходить через нуль в моменты , и закон его изменения со временем будет иметь вид
где буквой обозначено произведение . Фазой тока (или напряжения) в общем случае называют значение величины, стоящей под знаком функции в формуле (153.2), а величина определяет разность фаз сравниваемых токов (или напряжений). Если эта величина положительна, то первый ток опережает по фазе второй ток, а если она отрицательна, то первый ток отстает по фазе от второго. Фаза измеряется в радианах.