Что быстрее лазер или скорость света
Перейти к содержимому

Что быстрее лазер или скорость света

ВОЗМОЖНА ЛИ СВЕРХСВЕТОВАЯ СКОРОСТЬ?

Наверное, всем — даже людям, далеким от физики, — известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Она обозначается буквой с и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с. Скорость света в вакууме — одна из фундаментальных физических констант. Невозможность достижения скоростей, превышающих с , вытекает из специальной теории относительности (СТО) Эйнштейна. Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с . Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.

Для начала напомним основные аспекты, относящиеся к проблеме скорости света. Прежде всего: почему нельзя (при обычных условиях) превысить световой предел? Потому, что тогда нарушается фундаментальный закон нашего мира — закон причинности, в соответствии с которым следствие не может опережать причину. Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с , последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.

Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени. Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем — испущенные позавчера, потом — неделю, месяц, год назад и так далее. Если бы источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка. То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.

Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации. Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, — к ней можно только приближаться. Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего «покоящегося» наблюдателя). При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе — при скорости, равной с , — масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается. Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также «всепроникающая» частица — нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с. )

Теперь о скорости передачи сигнала. Здесь уместно воспользоваться представлением света в виде электромагнитных волн. Что такое сигнал? Это некая информация, подлежащая передаче. Идеальная электромагнитная волна — это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий. Cкорость перемещения фазы cинусоидальной волны — так называемая фазовая скорость — может в среде при определенных условиях превышать скорость света в вакууме. Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала — его еще нет. Чтобы создать сигнал, надо сделать какую-то «отметку» на волне. Такой отметкой может быть, например, изменение любого из параметров волны — амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами — группы волн. Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. «Наука и жизнь» № 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение «при обычных условиях», ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с .

Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности. Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) — причина, а событие 2 (взрыв) — следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом — дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину.

Уместно подчеркнуть, что «сверхсветовой запрет» теории относительности накладывается только на движение материальных тел и передачу сигналов. Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, представим себе две лежащие в одной плоскости достаточно длинные линейки, одна из которых расположена горизонтально, а другая пересекает ее под малым углом. Если первую линейку двигать вниз (в направлении, указанном стрелкой) с большой скоростью, точку пересечения линеек можно заставить бежать сколь угодно быстро, но эта точка — не материальное тело. Другой пример: если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.

Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое — они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое — свет нельзя остановить.

Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистриро вать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.

Однако в 60-х же годах было экспериментально обнаружено явление, поначалу приведшее физиков в замешательство. Об этом подробно рассказано в статье А. Н. Ораевского «Сверхсветовые волны в усиливающих средах» (УФН № 12, 1998 г.). Здесь мы кратко приведем суть дела, отсылая читателя, интересующегося подробностями, к указанной статье.

Вскоре после открытия лазеров — в начале 60-х годов — возникла проблема получения коротких (длительностью порядка 1 нс = 10 -9 с) импульсов света большой мощности. Для этого короткий лазерный импульс пропускался через оптический квантовый усилитель. Импульс расщеплялся светодели тельным зеркалом на две части. Одна из них, более мощная, направлялась в усилитель, а другая распространялась в воздухе и служила опорным импульсом, с которым можно было сравнивать импульс, прошедший через усилитель. Оба импульса подавались на фотоприемники, а их выходные сигналы могли визуально наблюдаться на экране осциллографа. Ожидалось, что световой импульс, проходящий через усилитель, испытает в нем некоторую задержку по сравнению с опорным импульсом, то есть скорость распространения света в усилителе будет меньше, чем в воздухе. Каково же было изумление исследователей, когда они обнаружили, что импульс распространялся через усилитель со скоростью не только большей, чем в воздухе, но и превышающей скорость света в вакууме в несколько раз!

Оправившись от первого шока, физики стали искать причину столь неожиданного результата. Ни у кого не возникло даже малейшего сомнения в принципах специальной теории относительности, и именно это помогло найти правильное объяснение: если принципы СТО сохраняются, то ответ следует искать в свойствах усиливающей среды.

Не вдаваясь здесь в детали, укажем лишь, что подробный анализ механизма действия усиливающей среды полностью прояснил ситуацию. Дело заключалось в изменении концентрации фотонов при распространении импульса — изменении, обусловленном изменением коэффициента усиления среды вплоть до отрицательного значения при прохождении задней части импульса, когда среда уже поглощает энергию, ибо ее собственный запас уже израсходован вследствие передачи ее световому импульсу. Поглощение вызывает не усиление, а ослабление импульса, и, таким образом, импульс оказывается усиленным в передней и ослабленным в задней его части. Представим себе, что мы наблюдаем за импульсом при помощи прибора, движущегося со скоростью света в среде усилителя. Если бы среда была прозрачной, мы видели бы застывший в неподвижности импульс. В среде же, в которой происходит упомянутый выше процесс, усиление переднего и ослабление заднего фронта импульса будет представляться наблюдателю так, что среда как бы подвинула импульс вперед. Но раз прибор (наблюдатель) движется со скоростью света, а импульс обгоняет его, то скорость импульса превышает скорость света! Именно этот эффект и был зарегистрирован экспериментаторами. И здесь действительно нет противоречия с теорией относительности: просто процесс усиления таков, что концентрация фотонов, вышедших раньше, оказывается больше, чем вышедших позже. Со сверхсветовой скоростью перемещаются не фотоны, а огибающая импульса, в частности его максимум, который и наблюдается на осциллографе.

Таким образом, в то время как в обычных средах всегда происходит ослабление света и уменьшение его скорости, определяемое показателем преломления, в активных лазерных средах наблюдается не только усиление света, но и распространение импульса со сверхсветовой скоростью.

Некоторые физики пытались экспериментально доказать наличие сверхсветового движения при туннельном эффекте — одном из наиболее удивительных явлений в квантовой механике. Этот эффект состоит в том, что микрочастица (точнее говоря, микрообъект, в разных условиях проявляющий как свойства частицы, так и свойства волны) способна проникать через так называемый потенциальный барьер — явление, совершенно невозможное в классической механике (в которой аналогом была бы такая ситуация: брошенный в стену мяч оказался бы по другую сторону стены или же волнообразное движение, приданное привязанной к стене веревке, передавалось бы веревке, привязанной к стене с другой стороны). Сущность туннельного эффекта в квантовой механике состоит в следующем. Если микрообъект, обладающий определенной энергией, встречает на своем пути область с потенциальной энергией, превышающей энергию микрообъекта, эта область является для него барьером, высота которого определяется разностью энергий. Но микрообъект «просачивается» через барьер! Такую возможность дает ему известное соотношение неопределенностей Гейзенбер га, записанное для энергии и времени взаимодействия. Если взаимодействие микрообъекта с барьером происходит в течение достаточно определенного времени, то энергия микрообъекта будет, наоборот, характеризоваться неопределенностью, и если эта неопределен ность будет порядка высоты барьера, то последний перестает быть для микрообъекта непреодолимым препятствием. Вот скорость проникновения через потенциальный барьер и стала предметом исследований ряда физиков, полагающих, что она может превышать с .

В июне 1998 года в КЈльне состоялся международный симпозиум по проблемам сверхсветовых движений, где обсуждались результаты, полученные в четырех лабораториях — в Беркли, Вене, КЈльне и во Флоренции.

И, наконец, в 2000 году появились сообщения о двух новых экспериментах, в которых проявились эффекты сверхсветового распространения. Один из них выполнил Лиджун Вонг с сотрудниками в исследовательском институте в Принстоне (США). Его результат состоит в том, что световой импульс, входящий в камеру, наполненную парами цезия, увеличивает свою скорость в 300 раз. Получалось, что главная часть импульса выходит из дальней стенки камеры даже раньше, чем импульс входит в камеру через переднюю стенку. Такая ситуация противоречит не только здравому смыслу, но, в сущности, и теории относитель ности.

Сообщение Л. Вонга вызвало интенсивное обсуждение в кругу физиков, большинство которых не склонны видеть в полученных результатах нарушение принципов относительно сти. Задача состоит в том, полагают они, чтобы правильно объяснить этот эксперимент.

В эксперименте Л.Вонга световой импульс, входящий в камеру с парами цезия, имел длительность около 3 мкс. Атомы цезия могут находиться в шестнадцати возможных квантовомеханических состояниях, называемых «сверхтонкие магнитные подуровни основного состояния». При помощи оптической лазерной накачки почти все атомы приводились только в одно из этих шестнадцати состояний, соответствующее почти абсолютному нулю температуры по шкале Кельвина (-273,15 о C). Длина цезиевой камеры составляла 6 сантиметров. В вакууме свет проходит 6 сантиметров за 0,2 нс. Через камеру же с цезием, как показали выполненные измерения, световой импульс проходил за время на 62 нс меньшее, чем в вакууме. Другими словами, время прохождения импульса через цезиевую среду имеет знак «минус»! Действительно, если из 0,2 нс вычесть 62 нс, получим «отрицательное» время. Эта «отрицательная задержка» в среде — непостижимый временной скачок — равен времени, в течение которого импульс совершил бы 310 проходов через камеру в вакууме. Следствием этого «временного переворота» явилось то, что выходящий из камеры импульс успел удалиться от нее на 19 метров, прежде чем приходящий импульс достиг ближней стенки камеры. Как же можно объяснить такую невероятную ситуацию (если, конечно, не сомневаться в чистоте эксперимента)?

Судя по развернувшейся дискуссии, точное объяснение еще не найдено, но несомненно, что здесь играют роль необычные дисперсионные свойства среды: пары цезия, состоящие из возбужденных лазерным светом атомов, представляют собой среду с аномальной дисперсией. Напомним кратко, что это такое.

Дисперсией вещества называется зависимость фазового (обычного) показателя преломления n от длины волны света l. При нормальной дисперсии показатель преломления увеличивается с уменьшением длины волны, и это имеет место в стекле, воде, воздухе и всех других прозрачных для света веществах. В веществах же, сильно поглощающих свет, ход показателя преломления с изменением длины волны меняется на обратный и становится гораздо круче: при уменьшении l (увеличении частоты w) показатель преломления резко уменьшается и в некоторой области длин волн становится меньше единицы (фазовая скорость V ф > с ). Это и есть аномальная дисперсия, при которой картина распространения света в веществе меняется радикальным образом. Групповая скорость V гр становится больше фазовой скорости волн и может превысить скорость света в вакууме (а также стать отрицательной). Л. Вонг указывает на это обстоятельство как на причину, лежащую в основе возможности объяснения результатов его эксперимента. Следует, однако, заметить, что условие V гр > с является чисто формальным, так как понятие групповой скорости введено для случая малой (нормальной) дисперсии, для прозрачных сред, когда группа волн при распространении почти не меняет своей формы. В областях же аномальной дисперсии световой импульс быстро деформируется и понятие групповой скорости теряет смысл; в этом случае вводятся понятия скорости сигнала и скорости распространения энергии, которые в прозрачных средах совпадают с групповой скоростью, а в средах с поглощением остаются меньше скорости света в вакууме. Но вот что интересно в эксперименте Вонга: световой импульс, пройдя через среду с аномальной дисперсией, не деформируется — он в точности сохраняет свою форму! А это соответствует допущению о распространении импульса с групповой скоростью. Но если так, то получается, что в среде отсутствует поглощение, хотя аномальная дисперсия среды обусловлена именно поглощением! Сам Вонг, признавая, что многое еще остается неясным, полагает, что происходящее в его экспериментальной установке можно в первом приближении наглядно объяснить следующим образом.

Световой импульс состоит из множества составляющих с различными длинами волн (частотами). На рисунке показаны три из этих составляющих (волны 1-3). В некоторой точке все три волны находятся в фазе (их максимумы совпадают); здесь они, складываясь, усиливают друг друга и образуют импульс. По мере дальнейшего распространения в пространстве волны расфазируются и тем самым «гасят» друг друга.

В области аномальной дисперсии (внутри цезиевой ячейки) волна, которая была короче (волна 1), становится длиннее. И наоборот, волна, бывшая самой длинной из трех (волна 3), становится самой короткой.

Следовательно, соответственно меняются и фазы волн. Когда волны прошли через цезиевую ячейку, их волновые фронты восстанавливаются. Претерпев необычную фазовую модуляцию в веществе с аномальной дисперсией, три рассматриваемые волны вновь оказываются в фазе в некоторой точке. Здесь они снова складываются и образуют импульс точно такой же формы, как и входящий в цезиевую среду.

Обычно в воздухе и фактически в любой прозрачной среде с нормальной дисперсией световой импульс не может точно сохранять свою форму при распространении на удаленное расстояние, то есть все его составляющие не могут быть сфазированы в какой-либо удаленной точке вдоль пути распространения. И в обычных условиях световой импульс в такой удаленной точке появляется спустя некоторое время. Однако вследствие аномальных свойств использованной в эксперименте среды импульс в удаленной точке оказался сфазирован так же, как и при входе в эту среду. Таким образом, световой импульс ведет себя так, как если бы он имел отрицательную временную задержку на пути до удаленной точки, то есть пришел бы в нее не позже, а раньше, чем прошел среду!

Большая часть физиков склонна связывать этот результат с возникновением низкоинтенсивного предвестника в диспергирующей среде камеры. Дело в том, что при спектральном разложении импульса в спектре присутствуют составляющие сколь угодно высоких частот с ничтожно малой амплитудой, так называемый предвестник, идущий впереди «главной части» импульса. Характер установления и форма предвестника зависят от закона дисперсии в среде. Имея это в виду, последовательность событий в эксперименте Вонга предлагается интерпретировать следующим образом. Приходящая волна, «простирая» предвестник впереди себя, приближается к камере. Прежде чем пик приходящей волны попадет на ближнюю стенку камеры, предвестник инициирует возникновение импульса в камере, который доходит до дальней стенки и отражается от нее, образуя «обратную волну». Эта волна, распространяясь в 300 раз быстрее с , достигает ближней стенки и встречается с приходящей волной. Пики одной волны встречаются со впадинами другой, так что они уничтожают друг друга и в результате ничего не остается. Получается, что приходящая волна «возвращает долг» атомам цезия, которые «одалживали» ей энергию на другом конце камеры. Тот, кто наблюдал бы только начало и конец эксперимента, увидел бы лишь импульс света, который «прыгнул» вперед во времени, двигаясь быстрее с.

Л. Вонг считает, что его эксперимент не согласуется с теорией относительности. Утверждение о недостижимости сверхсветовой скорости, полагает он, применимо только к объектам, обладающим массой покоя. Свет может быть представлен либо в виде волн, к которым вообще неприменимо понятие массы, либо в виде фотонов с массой покоя, как известно, равной нулю. Поэтому скорость света в вакууме, считает Вонг, не предел. Тем не менее Вонг признает, что обнаруженный им эффект не дает возможности передавать информацию со скоростью больше с .

«Информация здесь уже заключена в переднем крае импульса, — говорит П. Милонни, физик из Лос-Аламосской национальной лаборатории США. — И может создаться впечатление о сверхсветовой посылке информации, даже когда вы ее не посылаете».

Большинство физиков считают, что новая работа не наносит сокрушительного удара по фундаментальным принципам. Но не все физики полагают, что проблема улажена. Профессор А. Ранфагни из итальянской исследовательской группы, осуществившей еще один интересный эксперимент 2000 года, считает, что вопрос еще остается открытым. Этот эксперимент, проведенный Даниэлом Мугнаи, Анедио Ранфагни и Рокко Руггери, обнаружил, что радиоволны сантиметрового диапазона в обычном воздухе распространяются со скоростью, превышающей с на 25%.

Резюмируя, можно сказать следующее. Работы последних лет показывают, что при определенных условиях сверхсветовая скорость действительно может иметь место. Но что именно движется со сверхсветовой скоростью? Теория относительности, как уже упоминалось, запрещает такую скорость для материальных тел и для сигналов, несущих информацию. Тем не менее некоторые исследователи весьма настойчиво пытаются продемонстри ровать преодоление светового барьера именно для сигналов. Причина этого кроется в том, что в специальной теории относительности нет строгого математического обоснования (базирующегося, скажем, на уравнениях Максвелла для электромагнитного поля) невозможности передачи сигналов со скоростью больше с . Такая невозможность в СТО устанавливается, можно сказать, чисто арифметически, исходя из эйнштейновской формулы сложения скоростей, но фундаментальным образом это подтверждается принципом причинности. Сам Эйнштейн, рассматривая вопрос о сверхсветовой передаче сигналов, писал, что в этом случае «. мы вынуждены считать возможным механизм передачи сигнала, при использовании которого достигаемое действие предшествует причине. Но, хотя этот результат с чисто логической точки зрения и не содержит в себе, по-моему, никаких противоречий, он все же настолько противоречит характеру всего нашего опыта, что невозможность предположения V > с представляется в достаточной степени доказанной». Принцип причинности — вот тот краеугольный камень, который лежит в основе невозможности сверхсветовой передачи сигналов. И об этот камень, по-видимому, будут спотыкаться все без исключения поиски сверхсветовых сигналов, как бы экспериментаторам не хотелось такие сигналы обнаружить, ибо такова природа нашего мира.

В заключение следует подчеркнуть, что все вышеизложенное относится именно к нашему миру, к нашей Вселенной. Такая оговорка сделана потому, что в последнее время в астрофизике и космологии появляются новые гипотезы, допускающие существование множества скрытых от нас Вселенных, соединенных топологическими туннелями -перемычками. Такой точки зрения придерживается, например, известный астрофизик Н. С. Кардашев. Для внешнего наблюдателя входы в эти туннели обозначаются аномальными полями тяготения, подобно черным дырам. Перемещения в таких туннелях, как предполагают авторы гипотез, позволят обойти ограничение скорости движения, накладыва емое в обычном пространстве скоростью света, и, следовательно, реализовать идею о создании машины времени. Не исключено, что в подобных Вселенных действительно могут происходить необычные для нас вещи. И хотя пока что такие гипотезы слишком уж напоминают сюжеты из научной фантастики, вряд ли следует категорически отвергать принципиальную возможность многоэлементной модели устройства материального мира. Другое дело, что все эти другие Вселенные, скорее всего, останутся чисто математическими построениями физиков-теоретиков, живущих в нашей Вселенной и силой своей мысли пытающихся нащупать закрытые для нас миры.

Скорость света – как измерить, чему равна в вакууме, воздухе, воде

Ничто во Вселенной не может быть быстрее скорости света. Узнайте в этой статье, что представляет собой эта особая величина и как на самом деле можно измерить скорость света.

Скорость света c – это одна из самых важных фундаментальных констант в физике. Значение скорости света – 299 792 458 м / (с точностью до ±1,2 м/с) [1] (что примерно равно 300 000 километров в секунду). Это означает, что за одну секунду свет преодолевает расстояние в 300 000 километров. Например, если вы стоите на Луне и светите сильным источником света в сторону Земли, свет проходит 1,25 секунды, прежде чем его можно будет увидеть здесь.

На самом деле, это значение скорости является точным, поскольку, по международному соглашению, определение метра гласит, что один метр – это длина, которую свет проходит в вакууме за 1 / 299792458 секунд.

Заметим, однако, что это действительно только скорость света в вакууме. Если свет проходит через среду, даже если это всего лишь воздух, эта скорость уменьшается.

Помните! Скорость света c точно определена как 299 792 458 метров в секунду. Ничто не движется быстрее света.

Насколько велика скорость света?

Трудно представить, насколько велика скорость света. Лучше всего представить себе это в сравнении со скоростями, которые вам более знакомы. В следующей таблице рассмотрим, как быстро движутся другие вещи в нашей повседневной жизни по сравнению со скоростью света.

Объект Скорость в м/с (с округлением)
Человек 1,5
Гоночный автомобиль 100
Звуковые волны 343
Сверхзвуковой самолет 400
Скорость света 300 000 000

Однако это скорость света в вакууме (например, в космическом пространстве). Если свет движется в среде, такой как воздух, его скорость иногда значительно уменьшается.

Скорость света – это максимальная скорость всей материи и информации. На обычных путях ничто не движется быстрее, чем скорость света в вакууме c. Это означает, что не только свет, но и все остальное подчиняется этому ограничению скорости. К ним относятся, например, электромагнитное излучение и гравитационные волны. Такие волны и частицы движутся со скоростью света, независимо от скорости и направления их источника. Это относится и к движущемуся объекту. Например, если поезд едет с включенными фарами, свет все равно будет двигаться со скоростью света, независимо от того, насколько быстро движется поезд. Частицы и материя, чья масса не равна нулю, могут приближаться к скорости света, но никогда не достигают ее.

Скорость света в различных средах

В прозрачных средах, таких как воздух или стекло, свет распространяется медленнее, чем скорость света в вакууме. То же самое относится и к электромагнитным волнам в проводниках. Они также движутся медленнее скорости света. Это отношение скорости света c к скорости в среде v называется показателем преломления n= c / v.

Скорость света в воздухе.

В воздухе этот показатель преломления для видимого света составляет 1,0003. Поэтому в воздухе свет проходит на около 90 километров в секунду медленнее, чем в вакууме, то есть c / 1,0003 ≈ 299910 км / с .

Скорость света в воде.

В воде коэффициент преломления составляет около 1,3 , поэтому скорость света снижается до 230 769 километров в секунду, то есть c / 1,3 ≈ 230 769 км / с .

Скорость света в стекле.

В стекле коэффициент преломления равен 1,5. Если вы рассчитаете это, как и раньше, то получите скорость около 200 000 километров в секунду, то есть c / 1,5 ≈ 200 000 км / с .

Измерение скорости света

Когда вы включаете дома свет, кажется, что свет сразу же заполняет комнату. Но если смотреть на него на очень больших расстояниях и с помощью более совершенных измерительных приборов, чем ваш невооруженный глаз, конечная скорость света становится очевидной.

Существует множество подобных экспериментов. Однако в одном интересном варианте в качестве мишени используется наша Луна.

Представьте, что вы поместили зеркало на поверхность Луны. Теперь вы используете лазер, чтобы направить свет с Земли на это зеркало, и ждете, сколько времени пройдет, пока вы увидите отраженный свет. Только примерно через 2,5 секунды вы увидите вспышку зеркала.

Так с какой скоростью v движется свет вашего лазера?

Вы можете рассчитать её. Луна находится на расстоянии 384 400 километров от Земли. Ваш лазерный свет должен преодолеть это расстояние дважды. Один раз, чтобы добраться от вашего местонахождения до Луны, а затем еще раз, чтобы вернуться от Луны обратно к вам. Лазеру требуется 2,5 секунды, чтобы преодолеть это расстояние.

v = расстояние / время = 2 * 384 400 км / 2,5 с = 307 520 км / с .

Это не совсем соответствует реальному значению около 300 000 километров в секунду, но очень близко. С помощью более точных измерительных приборов можно более точно определить скорость света.

Кстати, свету требуется еще больше времени, чтобы пройти путь от Солнца до Земли. Свету, излучаемому Солнцем, требуется в среднем 8 минут и 17 секунд, чтобы достичь нас на Земле.

Солнце земля скорость света

Солнечному свету требуется в среднем 8 минут 17 секунд, чтобы достигнуть Земли [1]

Определение скорости света сыграло в науке очень важную роль. Была не только выяснена природа света, но и установлено, что никакое тело не может двигаться со скоростью, превышающей скорость света в вакууме. Это стало ясно после создания теории относительности.

[2]

Единицы измерения

Теперь вы увидели, что скорость указывается в метрах в секунду, а также в километрах в секунду или километрах в час. С помощью простых вычислений вы можете самостоятельно перевести значения в соответствующие единицы измерения.

Чтобы было легче вычислить, мы округлим и скажем, что скорость света составляет 300 000 000 метров в секунду (300 000 000 м/с).

Скорость света в км / с .

Пересчет в километры в секунду относительно прост. В одном километре 1000 метров. Вы знаете, что свет распространяется со скоростью 300 000 000 метров в секунду, тогда 300 000 000 м / 1000 = 300 000 км.

Это означает, что за одну секунду ваш свет распространяется на 300 000 километров.

Скорость света в км / ч .

Теперь вы знаете, какое расстояние проходит свет за одну секунду. Теперь вам просто нужно экстраполировать это на часы. В часе 60 минут. В одной минуте 60 секунд, тогда 60 * 60 с = 3600 с. Таким образом, в одном часе 3600 секунд.

В итоге получаем: ( 300 000 км * 3600 ) / ( 1 c * 3600 ) = 1 080 000 000 км / 3600 с = 1 080 000 000 км / ч.

Поэтому свет распространяется в вакууме со скоростью примерно 1 080 000 000 000 км/ч (километров в час).

Скорость света в электродинамике

Классическая физика описывает свет как тип электромагнитной волны. Кроме того, уравнения Максвелла описывают классическое поведение электромагнитных волн.

Законы Максвелла предскажут волны в пустоте со скоростью: c = 1 / ε0 * μ0 , где ε0 – электрическая постоянная и μ0 – магнитная постоянная.

В современной квантовой физике теория квантовой электродинамики (КЭД) описывает электромагнитное поле. В этом случае свет является фундаментальным возбуждением (также называемым квантом) электромагнитного поля. Это возбуждение принимает форму фотона. В рамках КЭД фотоны являются безмассовыми частицами. Поэтому, согласно специальной теории относительности, они движутся через вакуум со скоростью света.

Скорость света простыми словами: что это такое, как считается и измеряется

Скорость света – это ключевое понятие квантовой физики. Но для большинства это просто скоростной предел для любого физического объекта в нашей Вселенной. А заодно и безграничный источник вдохновения для фантастов.

Что такое скорость света

Физическое определение термина достаточно простое. Под «скоростью» ученые понимают быстроту перемещения света. То есть, как быстро световые частицы могут преодолевать различные расстояния.

Движение световых частиц

Однако вокруг нас пространство не пустое. На Земле есть жидкости и газы. Мы их можем не видеть, но эти вещества состоят из молекул, которые становятся препятствиями для частиц света – фотонов. Поэтому их скорость может различаться в разных средах и достигает максимума только в пустоте вакуума.

В вакууме

Современными учеными эта величина принята за максимальную и постоянную. Именно от нее производятся расчеты для определения других констант. Наиболее точно измерить, какая скорость света в вакууме получилось только в 1975 году. В космической пустоте он перемещается со скоростью: 299792458 м/с. Погрешность вычислений составляет около 1,2 м/с. Но для простоты значение округляется до 300000 км/с.

В прозрачной среде

Через воздух, стекло, воду и другие прозрачные субстанции свет движется медленнее, чем через вакуум. И для каждого вещества есть своя степень «замедления», которая называется абсолютным показателем преломления света и записывается в формулах, как «n». Фактически он означает во сколько раз фотоны медленнее перемещаются через вещество.

Так для воздуха n=1,003, а для воды n=1,33. То есть в водной среде фотоны будут на 33% медлительнее и станут двигаться со скоростью «всего лишь» 225341 км/с.

Рассеивание света в воде

Как отличается скорость света на Земле и в космосе

Объединяя эти данные, получается, что за пределами нашей, да и любой другой планеты в вакууме скорость распространения света считается максимальной и постоянной. Это верхний предел, быстрее которого ни один объект, с некоторыми оговорками, двигаться не может. На Земле же свет постоянно замедляется из-за различных веществ, через которые фотонам приходится «продираться». Поэтому скорость приходится каждый раз вычислять с поправкой для конкретной среды.

Планеты и звезды

Числовое значение, обозначения и единицы измерения

Это достаточно сложный вопрос. Световая скорость обозначается в СИ, как «с». Ее впервые высчитал в 1676 году Олаф Рёмер. У него получилось с= 220000 км/с. И на протяжении веков последующие исследователи старались скорректировать эти данные.

В 20-м веке ученые все также постепенно усложняли эксперименты, постоянно уточняя скорость света. Предельной точности они смогли достичь после того, как в 1970-х годах были созданы первые лазеры. Но в результате оказалось, что все равно остаются погрешности около 1,2 м/c. Проблема была в том, что сам метр – мера не совсем точная. Его определяли, как одну десятимиллионную часть расстояния от Северного полюса до экватора, которое измерять тоже приходилось вручную и через метры. Задачу решили нестандартно.

В 1975 году на пятнадцатой Генеральной конференции по мерам и весам было принято, что последние полученные данные 299792458 м/с стали считаться эталонными для вакуума. А в 1983 на семнадцатой конференции все перевернули с ног на голову. Метром стало расстояние, которое преодолевает свет за 1/299792458 часть секунды.

Фундаментальная роль в физике

Прежде чем углубляться в научные теории, надо разобраться в самом «простом» вопросе: что такое свет? Проблема заключается в том, что в зависимости от условий эксперимента луч ведет себя то как поток частиц, которые называются «фотоны», то как волна.

Поэтому с 17 века в научном мире велись споры:

  1. Часть исследователей верила, что свет – это часть эфира, всепроникающей сущности, которая колеблется, вызывая привычные нам электромагнитные явления. Эту идею постулировал Рене Декарт.
  2. Некоторые ученые считали, что свет – это только набор летящих частиц. Их корпускулярную теорию сформулировал Исаак Ньютон.
  3. Другие доказывали, что свет – волна. Их волновую теорию доказал нидерландский физик Христиан Гюйгенс.

Физик И. Ньютон

К концу 19 века именно эфирная теория света считалась наиболее достоверной. Но все изменил опыт Майкельсона-Морли в 1887 году. Американские ученые решили замерить скорость света вдоль потока эфира и поперек. Так они хотели узнать, насколько стремительны эфирные потоки. Но исследователи были поражены, когда оказалось, что свет двигался во всех направлениях одинаково. Это означало, что никакой эфир его не передвигает.

Теория электромагнетизма Максвелла ввела в физику понятие электромагнитного поля, которое распространяется вокруг заряженных тел. При этом его движение можно фактически определить только если обозначить какую-либо точку отсчета и систему координат. Эта теория помогла объяснить волновую природу света.

В 1901 году на основе идеи Альберта Эйнштейна, немец Макс Планк пришел к выводу, что свет излучается и поглощается строго порционно, по квантам, в зависимости от длины волны. Эти порции были названы фотонами, объяснившими корпускулярную теорию.

Объединив эти данные Альберт Эйнштейн создал свою теорию относительности. Он заявил, что скорость света в вакууме не зависит ни от источника, ни от положения наблюдателя. То есть, она постоянная. Этот простой тезис буквально перевернул все понимание физики элементарных частиц. Если делать логические выводы на тезисах Эйнштейна, получается, что:

  1. Скорость света одинакова для всех безмассовых частиц и волн. То есть любое излучение в вакууме будет перемещаться с одинаковой стремительностью.
  2. Е=mc 2 . Это легендарное уравнение означает, что у любого вида энергии есть определенная масса. При этом последняя равна в покое объему энергии, которая заключена в объекте, умноженной на постоянную скорость света в квадрате.
  3. Сокращение длины. Это теория Хендрика Лоренца, согласно которой, чем быстрее движется объект, тем короче он становится. При этом сам Эйнштейн верил, что подобное явление сродни оптической иллюзии. В то же время другие ученые считают, что такое сокращение объективно.
  4. Пространство-время. В специальной теории относительности время является не отдельной величиной, а еще одним измерением, подобно длине, ширине и высоте. Этот постулат доказывается тем, что на больших скоростях время для движущегося объекта замедляется.

Физик А. Эйнштейн

Скорость света в вакууме используется как константа в изучении большинства явлений современными физиками, даже если они не имеют прямого отношения к свету, как гравитация. Впоследствии эти знания используются в передовых разработках. Для примера, на спутниках GPS и Международной космической станции часы настраиваются с поправкой на 0,01 с в год из-за искривления времени на орбите.

Верхний предел скорости

Согласно специальной теории относительности максимальная скорость света распространяется только на частицы, у которых нет массы. То есть любой предмет или живое существо не сможет ее достигнуть. Логика этого заявления вытекает из исследований Эйнштейна и Лоренца.

Чем больше становится скорость объекта, тем сильнее увеличивается его энергия. В формулу Е=мс 2 добавляется гамма-фактор Лоренца, учитывающий уменьшение длины и замедление времени. При приближении к скорости света этот коэффициент стремится к бесконечности. То есть для достижения предела стремительности объекту, как минимум, потребуется бесконечная энергия. При этом сам он будет становиться все меньше, пока не превратится в точку с бесконечной массой, для которой время полностью остановится. А значит и движение.

Формулы в физике

В 1910 году Альберт Эйнштейн и Арнольд Зоммерфельд придумали мысленный эксперимент. Они допустили, что существуют электромагнитные частицы тахионы, которые могут двигаться быстрее скорости света. В таком случае они направятся назад во времени и смогут перенести информацию в прошлое. Но современная физика считает подобное невозможным, ведь тогда нарушится причинно-следственная связь.

С другой стороны тахионы и перемещения во времени стали благодатной почвой для фантастов. Один из наиболее знаменитых персонажей, связанных с этой темой – Флэш из вселенной комиксов DC. Его способности перемещаться во времени авторы связывают с использованием тахионов и преодолением верхнего предела скорости.

Как посчитать значение фундаментальной константы

Самый простой способ, которым можно воспользоваться – теоретический. Благодаря электромагнитной теории Максвелла, известно, что световую скорость можно вычислить через электрическую и магнитную постоянные по формуле с 2 =1/(e0m0). По итогам в 1907 году ученые Роза и Дорси получили результат с точностью до 22 км/с.

Другой современный вариант измерения потребует наличия специального объемного резонатора. С его помощью можно точно провести независимое исследование длины волны и частоты излучения, а потом перемножить, высчитав скорость света. Данный вариант при знании размеров прибора вплоть до микрометров, позволяет высчитать предел скорости с точностью до 3 км/с.

Как измеряли скорость света?

Люди пытались узнать, насколько же быстр световой луч еще с древности. Но учитывая чересчур высокие скоростные характеристики исследуемого объекта, большинство ученых приходили к выводу, что свет распространяется мгновенно. Есть 3 самых известных опыта, которые отлично демонстрируют эволюцию подхода к изучению вопроса.

Опыт Галилея

В 1607 году великий Галилео Галилей усомнился, что скорость светового луча бесконечна и предложил простую идею для опровержения. Он с помощником встал на разные холмы, расстояние между которыми было заранее посчитано. Вначале один из них должен был открыть заслонку фонаря. Как только второй исследователь увидит свет, он тоже должен был посветить в обратную сторону.

Ученый Галилео Галилей

Дальше предстояла задача школьного уровня. Удвоенное расстояние надо было поделить на время. Но визуальных задержек движения света ученый не заметил, поэтому признал затею провальной. Проблема измерения была не только в реально слишком большой стремительности изучаемого объекта, но и в физиологических ограничениях скорости реакции самих исследователей.

Опыт Рёмера и Брэдли

Почти 70 лет спустя проблему бесконечной скорости света частично решил датский астроном Олаф Рёмер. Он следил за Юпитером. Оказалось, что когда Земля улетает от планеты дальше, то затмения спутника Ио начинают запаздывать на 22 минуты. Это отклонение от расчетных значений астроном приписал скорости света в космосе, приблизительно получив значение 212000 км/с. Такая большая погрешность возникла потому, что ученый не смог учесть элипсовый изгиб траекторий движения планет.

Физик Олаф Рёмер

В 1676 году Олаф Рёмер сообщил о своем открытии в Парижской академии, но не стал писать полноценного научного труда. Поэтому официально идею признали после открытия Джеймсом Брэдли аберрации – изменения направления излучения в зависимости от выбранной системы отсчета. Проще говоря, англичанин математически доказал, что небесные тела движутся не по кругу, а по элипсовидной траектории, вычислил ее и уточнил скорость света до 308000 км/с.

Однако нетрудно догадаться, что погрешности астрономических вычислений не позволяют максимально точно вычислить, насколько же быстр свет. Для этого надо было иметь более контролируемые лабораторные условия на Земле.

Опыт Физо

В 1849 году новую задачу смог решить французский ученый Арман Ипполит Луи Физо, усовершенствовав идею Галилео и исключив из нее человеческий фактор. В его опыте световой луч проходил через зубчатое колесо, постоянно прерываясь. Эти прерывания фиксировались на расстоянии 8,63 км. По его вычислениям получилось значение 313300 км/с.

Ученый Арман Ипполит Луи Физо

Но основная суть этого опыта в том, что впервые ученые получили возможность полностью контролировать все этапы эксперимента. Осталось только подождать чуть более 100 лет, чтобы наука получила более точные методы измерения. Что и случилось в 1975 году, когда с помощью лазеров исследователи смогли достигнуть пределов точности в рамках метрической системы.

Возможна ли сверхсветовая скорость?

Физики предполагают несколько вариантов, как нечто может двигаться быстрее световой скорости. Но в них есть несколько оговорок: таким образом невозможно передать информацию, массу или энергию.

Для примера:

  1. Парадокс Эйнштейна-Подольского-Розена. В нем предполагается, что если 2 квантовые частицы запутаны, то одна изменяется одновременно с другой. Но это происходит только в том случае, когда ее видит наблюдатель. То есть, если они расположены далеко друг от друга, это изменение может передаваться и определяться быстрее скорости света. Но так как наблюдатель не может предсказать, как изменится квантовая частица, то информация не передается так быстро.
  2. Эффект Хартмана. Он подразумевает, что скорость волны, проходящей через непрозрачный туннель увеличивается пропорционально толщине барьера, независимо от времени. Теоретически, виртуальные частицы таким образом могут преодолеть скоростной предел. Но с их помощью не получится передать энергию или информацию.
  3. Сфера Хаббла. Вселенная расширяется. Люди способны ее наблюдать только в тех пределах, в которых скорость расширения меньше, чем у света. Фактически за этой границей объекты движутся быстрее предела. Но и здесь стоит уточнить, что это не их собственная скорость, а скорее изменение самого пространства.

На данный момент не существует теории, которая смогла бы обеспечить возможность преодолеть скорость света на Земле или в космосе. Но исследования данного вопроса продолжаются.

Какая скорость света и как ее вообще измерили

Если объяснять простыми словами, скорость света — это временной промежуток, за который световой луч проходит какое-нибудь расстояние. Время принято измерять в секундах. Однако некоторые ученые используют другие единицы измерения. Расстояние тоже измеряется по-разному. В основном — это метр. То есть, эту величину считают в м/с. Физика объясняет это следующим образом: явление, которое движется с определенной скоростью (константой). Чтобы легче понять, давайте рассмотрим следующий пример. Велосипедист движется с быстротой 20 км/ч. Хочет догнать водителя автомобиля, скорость которого равна 25 км/ч. Если посчитать, то авто едет на 5 км/час быстрее велосипедиста. С лучами света дела обстоят по-другому. Как быстро бы ни двигался первый и второй человек, свет, относительно них, движется с постоянной быстротой.

  • 1 Числовое значение, обозначения и единицы измерения
  • 2 Фундаментальная роль в физике
    • 2.1 Верхний предел скорости
    • 4.1 В среде
    • 16.1 Опыт Галилея
    • 16.2 Опыт Рёмера и Брэдли
    • 16.3 Опыт Физо

    Числовое значение, обозначения и единицы измерения

    Какая скорость света и как ее вообще измерили

    Скорость света в вакууме обычно обозначается строчной буквой c , что означает « постоянная» или латинское celeritas (что означает «быстрота, быстрота»). В 1856 году Вильгельм Эдуард Вебер и Рудольф Кольрауш использовали c для другой постоянной, которая, как позже было показано, равна √ 2 скорости света в вакууме. Исторически символ V использовался в качестве альтернативного символа скорости света, введенного Джеймсом Клерком Максвеллом в 1865 году. В 1894 году Пол Друде пересмотрел определение c в его современном значении. Эйнштейн использовал V в своих оригинальных немецкоязычных статьях по специальной теории относительности в 1905 году, но в 1907 году он переключился на c , которая к тому времени стала стандартным символом скорости света.

    Иногда c используется для обозначения скорости волн в любой материальной среде, а c 0 — для скорости света в вакууме. Это индексируемое обозначение, которое одобрено в официальной литературе СИ, имеет ту же форму, что и другие связанные константы: а именно, μ 0 для проницаемости вакуума или магнитной постоянной, ε 0 для диэлектрической проницаемости или электрической постоянной вакуума и Z 0 для импеданса свободное место . В этой статье c используется исключительно для обозначения скорости света в вакууме.

    Какая скорость света и как ее вообще измерили

    С 1983 года метр был определен в Международной системе единиц (СИ) как расстояние, которое свет проходит в вакууме за 1 /299 792 458 секунды. Это определение фиксирует скорость света в вакууме точно на 299 792 458 м / с . Как размерная физическая константа , численное значение c различно для разных систем единиц. В разделах физики, в которых часто встречается c , например, в теории относительности, обычно используются системы естественных единиц измерения или геометризованная система единиц, где c = 1 . При использовании этих единиц c не отображается явно, потому что умножение или деление на 1 не влияет на результат.

    Фундаментальная роль в физике

    Смотрите также: Специальная теория относительности и односторонняя скорость света

    Скорость, с которой световые волны распространяются в вакууме, не зависит ни от движения источника волн, ни от инерциальной системы отсчета наблюдателя. Эта неизменность скорости света была постулирована Эйнштейном в 1905 году после того, как она была мотивирована теорией электромагнетизма Максвелла и отсутствием доказательств существования светоносного эфира ; с тех пор это постоянно подтверждается многими экспериментами. Можно только экспериментально проверить, что двусторонняя скорость света (например, от источника к зеркалу и обратно) не зависит от кадра, потому что невозможно измерить одностороннюю скорость света (например, , от источника к удаленному детектору) без каких-либо соглашений о том, как часы на источнике и на детекторе должны быть синхронизированы. Однако, приняв синхронизацию Эйнштейна для часов, односторонняя скорость света по определению становится равной двусторонней скорости света. Специальная теория относительности исследует последствия этой инвариантности с с предположением о том , что законы физики одинаковы во всех инерциальных системах отсчета. Одним из следствий этого является то, что c — это скорость, с которой все безмассовые частицы и волны, включая свет, должны перемещаться в вакууме.

    Какая скорость света и как ее вообще измерили

    Лоренц — фактор γ в зависимости от скорости. Он начинается с 1 и приближается к бесконечности, когда v приближается к c .

    Специальная теория относительности имеет много противоречивых и экспериментально проверенных следствий. К ним относятся эквивалентность массы и энергии ( E = mc 2 ) , сокращение длины (движущиеся объекты укорачиваются) и замедление времени (движущиеся часы идут медленнее). Коэффициент γ, на который длина сокращается, а время увеличивается, известен как фактор Лоренца и определяется выражением γ = (1 — v 2 / c 2 ) −1/2 , где v — скорость объекта. Отличие γ от 1 незначительно для скоростей, намного меньших, чем c , таких как большинство обычных скоростей — и в этом случае специальная теория относительности близко аппроксимируется теорией относительности Галилея — но она увеличивается при релятивистских скоростях и расходится до бесконечности, когда v приближается к c . Например, коэффициент замедления времени γ = 2 возникает при относительной скорости 86,6% скорости света ( v = 0,866 c ). Точно так же коэффициент замедления времени γ = 10 возникает при v = 99,5% c .

    Результаты специальной теории относительности можно суммировать, рассматривая пространство и время как единую структуру, известную как пространство-время (где c связывает единицы пространства и времени), и требуя, чтобы физические теории удовлетворяли специальной симметрии, называемой лоренц-инвариантностью , математическая формулировка которой содержит параметр c . Лоренц — инвариантность является почти универсальным допущением для современных физических теорий, таких как квантовая электродинамика , квантовая хромодинамика , в Стандартной модели в физике элементарных частиц и общей теории относительности . Таким образом, параметр c широко используется в современной физике, появляясь во многих контекстах, не связанных со светом. Например, общая теория относительности предсказывает, что c — это также скорость гравитации и гравитационных волн . В неинерциальных системах отсчета (гравитационно искривленное пространство-время или ускоренные системы отсчета ) местная скорость света постоянна и равна c , но скорость света по траектории конечной длины может отличаться от c , в зависимости от того, как расстояния и времена определены.

    Обычно предполагается, что фундаментальные константы, такие как c, имеют одинаковое значение в пространстве-времени, что означает, что они не зависят от местоположения и не меняются со временем. Однако в различных теориях предполагалось, что скорость света могла со временем измениться . Не было найдено убедительных доказательств таких изменений, но они остаются предметом текущих исследований.

    Также обычно предполагается, что скорость света изотропна , что означает, что она имеет одно и то же значение независимо от направления, в котором она измеряется. Наблюдения за излучением ядерных уровней энергии в зависимости от ориентации излучающих ядер в магнитном поле (см. Эксперимент Хьюза-Древера ) и вращающихся оптических резонаторов (см. Эксперименты с резонаторами ) наложили строгие ограничения на возможные двусторонние анизотропия .

    Верхний предел скорости

    Согласно специальной теории относительности, энергия объекта с массой покоя m и скоростью v определяется выражением γmc 2 , где γ — коэффициент Лоренца, определенный выше. Когда v равно нулю, γ равно единице, что дает начало знаменитой формуле E = mc 2 для эквивалентности массы и энергии . Коэффициент γ приближается к бесконечности, когда v приближается к c , и потребуется бесконечное количество энергии, чтобы разогнать объект с массой до скорости света. Скорость света — это верхний предел скорости объектов с положительной массой покоя, и отдельные фотоны не могут двигаться быстрее скорости света. Это экспериментально установлено во многих тестах релятивистской энергии и импульса .

    Какая скорость света и как ее вообще измерили

    Событие A предшествует B в красной рамке, одновременно с B в зеленой рамке и следует за B в синей рамке.

    В более общем смысле, сигналы или энергия не могут двигаться быстрее, чем c . Один из аргументов в пользу этого следует из нелогичного вывода специальной теории относительности, известной как относительность одновременности . Если пространственное расстояние между двумя событиями A и B больше, чем временной интервал между ними, умноженный на c, тогда есть системы отсчета, в которых A предшествует B, другие, в которых B предшествует A, и другие, в которых они одновременны. В результате, если бы что-то двигалось быстрее, чем c, относительно инерциальной системы отсчета, оно двигалось бы назад во времени относительно другой системы отсчета, и причинность была бы нарушена. В такой системе отсчета «следствие» может наблюдаться раньше его «причины». Такое нарушение причинности никогда не регистрировалось и привело бы к таким парадоксам , как тахионный антителефон .

    Наблюдения и эксперименты со сверхсветовой скоростью

    Бывают ситуации, в которых может показаться, что материя, энергия или несущий информацию сигнал движутся со скоростью больше c , но это не так. Например, как обсуждается ниже при распространении света в разделе среды , многие скорости волны могут превышать c . Так , например, фазовая скорость от рентгеновских лучей через большинство стекол может обычно превышать C , но фазовая скорость не определяет скорость , с которой волны передают информацию.

    Если лазерный луч быстро проходит через удаленный объект, пятно света может двигаться быстрее, чем c , хотя первоначальное движение пятна задерживается из-за времени, которое требуется свету, чтобы добраться до удаленного объекта со скоростью c . Однако единственные движущиеся физические объекты — это лазер и излучаемый им свет, который движется со скоростью c от лазера к различным положениям пятна. Точно так же тень, проецируемая на удаленный объект, может двигаться быстрее, чем c , после задержки во времени. Ни в том, ни в другом случае материя, энергия или информация не движутся быстрее света.

    Скорость изменения расстояния между двумя объектами в системе отсчета, относительно которой оба движутся (их скорость приближения ), может иметь значение, превышающее c . Однако это не отражает скорость какого-либо отдельного объекта, измеренную в одном инерциальном кадре.

    Некоторые квантовые эффекты передаются мгновенно и, следовательно, быстрее, чем c , как в парадоксе ЭПР . Пример включает квантовые состояния двух частиц, которые могут быть запутаны . Пока одна из частиц не будет обнаружена, они существуют в суперпозиции двух квантовых состояний. Если частицы разделены и наблюдается квантовое состояние одной частицы, квантовое состояние другой частицы определяется мгновенно. Однако невозможно контролировать, какое квантовое состояние примет первая частица при ее наблюдении, поэтому информация не может быть передана таким образом.

    Другой квантовый эффект, который предсказывает возникновение скоростей, превышающих скорость света, называется эффектом Хартмана : при определенных условиях время, необходимое виртуальной частице для туннелирования через барьер, постоянно, независимо от толщины барьера. Это может привести к тому, что виртуальная частица пересечет большой промежуток быстрее света. Однако с помощью этого эффекта нельзя отправлять информацию.

    Так называемое сверхсветовой движение наблюдается в некоторых астрономических объектов, таких как релятивистские струи из радиогалактиках и квазаров . Однако эти струи не движутся со скоростью, превышающей скорость света: кажущееся сверхсветовое движение — это эффект проекции, вызванный объектами, движущимися со скоростью, близкой к скорости света, и приближающимися к Земле под небольшим углом к ​​лучу зрения: поскольку свет который был испущен, когда струя находилась дальше, потребовалось больше времени, чтобы достичь Земли, время между двумя последовательными наблюдениями соответствует большему времени между моментами испускания световых лучей.

    В моделях расширяющейся Вселенной чем дальше галактики находятся друг от друга, тем быстрее они расходятся. Это отступление происходит не из-за движения в пространстве, а скорее из-за расширения самого пространства . Например, галактики, далекие от Земли, кажутся удаляющимися от Земли со скоростью, пропорциональной их расстоянию. За пределами границы, называемой сферой Хаббла , скорость увеличения их расстояния от Земли становится больше, чем скорость света.

    Распространение света

    В классической физике свет описывается как разновидность электромагнитной волны . Классическое поведение электромагнитного поля описывается уравнениями Максвелла , которые предсказывают, что скорость c, с которой электромагнитные волны (такие как свет) распространяются в вакууме, связана с распределенной емкостью и индуктивностью вакуума, иначе, соответственно, известной как электрическая постоянная ε 0 и магнитной постоянной μ 0 уравнением c знак равно 1/ε0μ0.

    Какая скорость света и как ее вообще измерили

    В современной квантовой физике электромагнитное поле описывается теорией квантовой электродинамики (КЭД). В этой теории свет описывается фундаментальными возбуждениями (или квантами) электромагнитного поля, называемыми фотонами . В КЭД фотоны являются безмассовыми частицами и, следовательно, согласно специальной теории относительности, они движутся со скоростью света в вакууме.

    Были рассмотрены расширения КЭД, в которых фотон имеет массу. В такой теории его скорость будет зависеть от его частоты, а инвариантная скорость c специальной теории относительности будет тогда верхним пределом скорости света в вакууме. Никаких изменений скорости света в зависимости от частоты при тщательном тестировании не наблюдалось, что накладывает жесткие ограничения на массу фотона. Полученный предел зависит от используемой модели: если массивный фотон описывается теорией Прока , экспериментальная верхняя граница его массы составляет примерно 10 -57 граммов ; если масса фотона генерируется механизмом Хиггса , экспериментальный верхний предел менее точен, m ≤10 -14 2c эВ / (примерно 2 × 10 -47 г).

    Другой причиной того, что скорость света зависит от его частоты, может быть неприменимость специальной теории относительности к сколь угодно малым масштабам, как предсказывают некоторые предложенные теории квантовой гравитации . В 2009 году при наблюдении гамма-всплеска GRB 090510 не было обнаружено никаких доказательств зависимости скорости фотона от энергии, что подтверждает жесткие ограничения в конкретных моделях квантования пространства-времени на то, как на эту скорость влияет энергия фотона для энергий, приближающихся к планковскому масштабу .

    В среде

    В среде свет обычно не распространяется со скоростью, равной c ; более того, разные типы световых волн будут распространяться с разной скоростью. Скорость, с которой распространяются отдельные гребни и впадины плоской волны (волны, заполняющей все пространство, только с одной частотой ), называется фазовой скоростью v p . Физический сигнал с конечной протяженностью (импульс света) распространяется с другой скоростью. Большая часть импульса проходит с групповой скоростью v g , а его самая ранняя часть проходит со скоростью фронта v f .

    Синяя точка движется со скоростью ряби, фазовой скоростью; зеленая точка движется со скоростью огибающей, групповой скоростью; а красная точка движется со скоростью передней части импульса, скорости фронта.

    Фазовая скорость важна для определения того, как световая волна распространяется через материал или от одного материала к другому. Его часто представляют в виде показателя преломления . Показатель преломления материала определяется как отношение c к фазовой скорости v p в материале: большие показатели преломления указывают на более низкие скорости. Показатель преломления материала может зависеть от частоты света, интенсивности, поляризации или направления распространения; однако во многих случаях его можно рассматривать как константу, зависящую от материала. Показатель преломления воздуха составляет около 1,0003. Более плотные среды, такие как вода , стекло и алмаз , имеют показатели преломления около 1,3, 1,5 и 2,4 соответственно для видимого света. В экзотических материалах, таких как конденсаты Бозе – Эйнштейна, близкие к абсолютному нулю, эффективная скорость света может составлять всего несколько метров в секунду. Тем не менее, это представляет собой поглощение и переизлучение задержку между атомами, как это делают все медленнее чем- гр скорость материальных веществ. В качестве крайнего примера «замедления» света в веществе две независимые группы физиков заявили, что они «полностью остановили» свет, пропуская его через конденсат Бозе-Эйнштейна элемента рубидий . Однако популярное описание «остановки» света в этих экспериментах относится только к свету, который накапливается в возбужденных состояниях атомов, а затем повторно излучается в произвольно более позднее время, стимулированный вторым лазерным импульсом. За то время, когда он «остановился», он перестал светиться. Этот тип поведения обычно микроскопически верен для всех прозрачных сред, которые «замедляют» скорость света.

    В прозрачных материалах показатель преломления обычно больше 1, что означает, что фазовая скорость меньше c . В других материалах показатель преломления может стать меньше 1 для некоторых частот; в некоторых экзотических материалах показатель преломления может даже стать отрицательным. Требование о том , причинности не нарушаются означает , что действительные и мнимые части по диэлектрической проницаемости из любого материала, соответствующие соответственно показатель преломления и к коэффициенту ослабления , связаны с отношениями крамерсов-Кронига . На практике это означает, что в материале с показателем преломления менее 1 поглощение волны настолько быстрое, что никакой сигнал не может быть отправлен быстрее, чем c .

    Импульс с разными групповыми и фазовыми скоростями (который возникает, если фазовая скорость не одинакова для всех частот импульса) со временем размазывается — процесс, известный как дисперсия . Некоторые материалы имеют исключительно низкую (или даже нулевую) групповую скорость для световых волн — явление, называемое медленным светом , которое было подтверждено в различных экспериментах. Противоположное, групповые скорости, превышающие c , также было показано в эксперименте. Должна быть даже возможность, чтобы групповая скорость стала бесконечной или отрицательной, с импульсами, перемещающимися мгновенно или назад во времени.

    Однако ни один из этих вариантов не позволяет передавать информацию быстрее, чем c . Невозможно передать информацию световым импульсом быстрее, чем скорость самой ранней части импульса ( скорость фронта ). Можно показать, что это (при определенных предположениях) всегда равно c .

    Частица может перемещаться через среду быстрее, чем фазовая скорость света в этой среде (но все же медленнее, чем c ). Когда заряженная частица делает это в диэлектрическом материале, излучается электромагнитный эквивалент ударной волны , известный как черенковское излучение .

    Свет и вопрос скорости

    Свет в современной физике играет ключевую роль, ведь, как выяснилось, преодолеть значение его скорости на данном этапе развития нашей цивилизации невозможно. Много лет потребовалось для того, чтобы измерить, чему равна скорость света. До этого ученые провели немало исследований, пытаясь дать ответ на самые важный вопрос «чему равна скорость распространения в вакууме света?».
    На данный момент времени ученые доказали, что скорость распространения света (СРС) обладает следующими характеристиками:

    • она постоянна;
    • она неизменна;
    • она недостижима;
    • она конечна.

    Обратите внимание! Скорость света на текущий момент развития науки является абсолютно недостижимой величиной. У физиков существуют только некоторые предположения, что происходит с объектом, который гипотетически достигает значения скорости распространения светового потока в вакууме.

    Какая скорость света и как ее вообще измерили

    Скорость светового потока

    Почему же так важно, с какой быстротой продвигается свет в вакууме? Ответ прост. Ведь вакуум находится в космосе. Поэтому узнав, какой цифровой показатель имеет скорость света в вакууме, мы сможем понять, с какой максимально возможной быстротой можно перемещаться по просторам Солнечной системы и за ее пределами.
    Элементарными частичками, которые переносят свет в нашей Вселенной, являются фотоны. А быстрота, с которой продвигается свет в вакууме, считается абсолютной величиной.

    Обратите внимание! Под СРС подразумевается быстрота продвижения электромагнитных волн. Интересно, что свет одномоментно являет собой элементарные частицы (фотоны) и волну. Это следует из корпускулярно-волновой теории. Согласно ней при определенных ситуациях свет ведет себя подобно частице, а при других – подобно волне.

    На данный момент времени распространение света в космосе (вакууме) считается фундаментальной постоянной, которая не зависит от выбора используемой инерциальной системы отсчета. Данное значение относится к физическим фундаментальным постоянным. При этом значение СРС характеризует в целом основные свойства геометрии пространства-времени.
    Современные представления характеризуют СРС как константу, которая является предельной допустимым значением для движения частиц, а также распространения их взаимодействия. В физике эта величина обозначается латинской буквой «с».

    История изучения вопроса

    В древние времена, как ни удивительно, еще античные мыслители задавались вопросом распространения света в нашей вселенной. Тогда считалось, что это бесконечная величина. Первую оценку физическому явлению скорости света дал Олаф Ремер лишь в 1676 г. Согласно его расчетам распространение света составляло примерно 220 тысяч км/с.

    Обратите внимание! Олаф Ремер дал приблизительное значение, но, как в последствии выяснилось, не очень отдаленное от реального.

    Правильное значение скоростного показателя, с которым продвигается свет в вакууме, было определенно только через полвека после Олафа Ремера. Это смог сделать французский физик А.И.Л. Физо, проведя особый эксперимент.

    Какая скорость света и как ее вообще измерили

    Он смог измерить это физическое явление путем измерения времени, за которое луч прошел определенный и точно измеренный участок.
    Опыт имел следующий вид:

    • источник S испускал световой поток;
    • он отражался от зеркала (3);
    • после этого световой поток прерывался при помощи зубчатого диска (2);
    • затем оно проходил базу, расстояние которого равнялось 8 км;
    • после этого световой поток отражался зеркалом (1) и отправлялся в обратный путь к диску.

    В ходе эксперимента световой поток попадал в промежутки между зубцами диска, и его можно было наблюдать через окуляр (4). Физо определял время прохождения луча по скорости вращения диска. В результате этого эксперимента он получил значение с = 313300 км/с.
    Но это не конец исследований, которые были посвящены данному вопросу. Конечная формула расчета физической константы появилась благодаря многим ученым, включая и Альберта Эйнштейна.

    Эйнштейн и вакуум: конечные результаты расчета

    Сегодня каждый человек на Земле знает, что предельно допустимой величиной перемещения материальных объектов, а также любых сигналов, считается именно скорость света в вакууме. Точное значение этого показателя — почти 300 тыс. км/с. Если быть точным, то скорость распространения в вакууме света составляет 299 792 458 м/с.
    Теорию о том, что невозможно превысить данное значение, выдвинул известный физик прошлого Альберт Эйнштейн в своей специальной теории относительности или СТО.

    Обратите внимание! Теория относительности Эйнштейна считается незыблемой до момента появления реальных доказательств того, что передача сигнала возможна на скоростях, превышающих СРС в вакууме.

    Какая скорость света и как ее вообще измерили

    Теория относительности Эйнштейна

    Но сегодня некоторые исследователи открыли явления, которые могут служить предпосылкой к тому, что СТО Эйнштейна может быть изменена. При некоторых специально заданных условиях имеется возможность отслеживать появление сверхсветовых скоростей. Интересно то, что при этом нарушение теории относительности не происходит.

    Почему нельзя двигаться быстрее света

    На сегодняшний день в данном вопросе существуют некоторые «подводные камни». Например, почему при обычных условиях константа СРС не может быть преодолена? По принятой теории в этой ситуации будет нарушаться фундаментальный принцип строения нашего мира, а именно — закон причинности. Он утверждает, что следствие по определению не способно опережать свою причину. Образно говоря, не может быть такого, что сначала медведь упадет замертво, а только потом раздастся выстрел охотника, застрелившего его. А вот если СРС превысить, то события должны начать происходить в обратной последовательности. В результате время начнет свой обратный бег.

    Так чему все же равна скорость распространения светового луча?

    После многочисленных исследований, которые приводились с целью определения точного значения, чему равно СРС, были получены конкретные цифры. На сегодняшний день с = 1 079 252 848,8 километров/час или 299 792 458 м/c. а в планковских единицах данный параметр определяется как единица. Это означает, что энергия света за 1 единицу планковского времени проходит 1 планковскую единицу длины.

    Обратите внимание! Эти цифры справедливы только для условий, которые имеются в вакууме.

    Какая скорость света и как ее вообще измерили

    Формула значения постоянной

    Но в физике для более простого способа решения задач используется округленное значение — 300 000 000 м/c.
    Это правило в нормальных условиях касается всех объектов, а также рентгеновских лучей, гравитационных и световых волн видимого для нас спектра. Кроме этого ученые доказали, что частицы, обладающие массой, могут приближаться к скорости светового луча. Но они не в состоянии достичь ее или превысить.

    Обратите внимание! Максимальная скорость, приближенная к световой, была получена при исследовании космических лучей, разгоняемых в специальных ускорителях.

    Стоит отметить, что эта физическая константа зависит от того, в какой среде она измеряется, а именно от показателя преломления. Поэтому ее реальный показатель может разниться в зависимости от частот.

    Как посчитать значение фундаментальной константы

    На сегодняшний день существуют различные методы определения СРС. Это могут быть:

    • астрономические способы;
    • усовершенствованный метод Физо. Здесь зубчатое колесо заменяют на современный модулятор.

    Обратите внимание! Ученые доказали, что показатели СРС в воздухе и в вакууме практически совпадают. А воде он меньше примерно на 25%.

    Для расчета величины распространения светового луча используют следующую формулу.

    Какая скорость света и как ее вообще измерили

    Формула для расчета скорости света

    Эта формула подходит для расчета в вакууме.

    Почему ничто не может преодолеть скорость света?

    Какая скорость света и как ее вообще измерили

    Если вы создадите или обнаружите объект, обладающий отличной от нуля массой или имеющий свойство каким-либо образом взаимодействовать с другими частицами, то вы изобретете машину времени. При этом ничего подобного в известном нам мире не наблюдалось ни разу. Упрощая научный язык, опишем ситуацию следующим образом:

    Представим события X и Y, при этом событие X является причиной события Y, а Y, соответственно, является следствием X. Например, событие X — это вспышка сверхновой в далекой галактике, а Y — это регистрация ее частиц астрономами на Земле. Если расстояние между X и Y больше, чем время между ними (T), умноженное на скорость света (C), то в разных системах отсчета мы получим три разных результата:

    1. Событие X произошло раньше события Y;
    2. Событие Y произошло раньше события X;
    3. События X и Y произошли одновременно.

    Очевидно, что два последних варианта едва ли возможны с точки зрения современной науки, а значит ничто не может переместиться или передать информацию быстрее скорости света.

    Впрочем, как насчет такой ситуации: вы берете очень мощный фонарик, направляете его на Марс, а в луче света двигаете палец — если вы делаете это достаточно быстро, то тень от вашего пальца «бегает» на поверхности Марса быстрее скорости света, что опровергает нашу теорию.

    На самом деле, нет. Перемещение тени нельзя назвать перемещением объекта с массой, также как сама по себе тень ни с чем не взаимодействует, а является лишь отсутствием света. Фотоны же от вашего фонарика долетят до Марса с уже известной нам скоростью 299 792 458 метров в секунду.

    Таблица перевода из Километров в час в Скорости света в вакууме

    Километр в час Скорость света в вакууме

    10 * 109 5 * 1010 10 * 1010 2.5 * 1011 5 * 1011 10 * 1011 2.5 * 1012 5 * 1012
    9.266 46.328 92.657 231.642 463.283 926.567 2 316.417 4 632.835

    Таблица перевода из Скоростей света в вакууме в Километры в час

    Скорость света в вакууме Километр в час

    1 5 10 25 50 100 250 500
    1.08 * 109 5.4 * 109 1.08 * 1010 2.7 * 1010 5.4 * 1010 1.08 * 1011 2.7 * 1011 5.4 * 1011

    Как выглядит скорость света для самого света

    Один из методов, который Эйнштейн использовал для формулирования своей специальной теории относительности, заключался в мысленной визуализации того, как Вселенная будет выглядеть с точки зрения фотона. Эйнштейн считал, что существование для фотона выглядело бы очень странно. Например, если бы вы были фотоном, время не имело бы для вас значения. Казалось бы, что все происходит мгновенно.

    Проведём небольшой мысленный эксперимент. Действующие лица:

    1. Обычный фотон, зародившийся на поверхности звезды в другой галактике на расстоянии около 4 миллиардов световых лет от Солнечной системы.
    2. Наблюдатель на Земле, который во что бы то ни стало хочет увидеть свет именно с этим фотоном.

    Человеку на Земле придётся ждать ровно 4 миллиарда лет пока фотон долетит до его сетчатки. Для фотона же всё выглядит так: в одно мгновение он был создан, а в следующее он отражается или поглощается поверхностью глазного яблока. Фотон не пережил течения времени — его рождение и смерть произошли мгновенно.

    Какая скорость света и как ее вообще измерили

    Скорость света можно воспринимать как «бесконечную скорость». Распространенное заблуждение — думать, что световая скорость такая же, как и любая другая конечная скорость. Скорость света конечна только с точки зрения наблюдателя; с точки зрения фотона она бесконечна. Если вы двигаетесь со скоростью, равной скорости света, вы можете отправиться куда угодно ровно за ноль секунд.

    Ничто не может двигаться быстрее света, потому что скорость света можно рассматривать как бесконечную. Достичь или превзойти эту константу означало бы движение со скоростью бесконечно км/ч.

    Скорость света наглядно

    Ученые астрофизики в большинстве случаев лишены возможности проводить полноценные эксперименты в лабораториях, как это делают, например, биологи или химики, ввиду масштабов исследуемых процессов. При этом каждому астроному доступен самый большой полигон, на котором постоянно происходят грандиозные испытания — это вся обозримая Вселенная с квазарами, радиопульсарами, черными дырами и прочими любопытными объектами.

    Однако самые интересные астрофизические открытия в наши дни выглядят как малопонятные сложные графики, а публика вынуждена довольствоваться обработанными снимками лишь нескольких инструментов, таких как телескоп имени Хаббла. Тем не менее, официальная наука нынче осознает важность медийной деятельности и всячески пытается визуализировать для обывателя процессы, которые невозможно просто представить в голове.

    Например, сотрудник NASA Джеймс О’Донохью, продемонстрировал скорость света относительно нашей планеты (упразднив в своих расчетах влияние атмосферы) — луч света облетает Землю 7,5 раз всего за одну секунду, каждый раз преодолевая более 40 тысяч километров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *