Экспериментальное открытие магнитного взаимодействия двух проводников с током кто открыл
Перейти к содержимому

Экспериментальное открытие магнитного взаимодействия двух проводников с током кто открыл

Экспериментальное открытие магнитного взаимодействия двух проводников с током кто открыл

Тип 18 № 14160

Установите соответствие между научными открытиями и именами учёных, которым эти открытия принадлежат. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) экспериментальное открытие магнитного взаимодействия двух проводников с током

Опыт Ампера, Опыты Фарадея, Правило левой руки

Опыт Ампера. Взаимодействие двух параллельных проводников с током. Действие магнитного поля на проводник с током. Направление и модуль силы Ампера.

Если по параллельным проводникам текут электрические токи, то противоположно направленные токи отталкиваются, токи одного направления притягиваются (опыт Ампера).

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Эта сила прямо пропорциональна силе тока I, длине проводника l (части проводника, находящейся в магнитном поле) и величине магнитного поля (модулю вектора индукции магнитного поля В), а также зависит от угла между вектором индукции магнитного поля и проводником: Fa = BIlsinα, где
α = ∠(B;I)

Максимальная сила Ампера действует, если ток направлен перпендикулярно магнитному полю: Fa = BIl

Направление силы Ампера (правило левой руки): Если левую руку расположить так, чтобы вектор В входил в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

На рамку с током в магнитном поле действует пара сил, в результате чего она поворачивается (см. рисунок).

Электромагнитная индукция. Опыты Фарадея.

В 1831 г. М. Фаралей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает индукционный ток. (Индукция в данном случае — появление, возникновение.)

Индукционный ток в катушке возникает при:
— перемещении постоянного магнита относительно катушки;
— перемещении электромагнита относительно катушки;
— перемещении сердечника относительно электромагнита, вставленного в катушку;
— регулировании тока в цепи электромагнита;
— замыкании и размыкании цепи.

Явление возникновения электрического поля при изменении магнитного поля называется электромагнитной индукцией.

Если в изменяющееся магнитное поле поместить замкнутый проводящий контур, то появление тока в контуре свидетельствует о действии в контуре сторонних электрических сил (или о возникновении в контуре ЭДС индукции).

Явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего контур, является следствием электромагнитной индукции.

Основные области применении электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

К истории открытия магнитного взаимодействия

Со времен Древней Греции, вплоть до 1820 г. считалось, что электрические и магнитные явления имеют различную природу. Ряд ученых, среди которых центральное место занимает русский академик Ф.У.Т. Эпинус, высказывал гипотезу о существовании тесной связи между, электричеством и магнетизмом. Однако не было прямых доказательств существования такой связи.

Успех выпал на долю датского физика Ганса Христиана Эрстеда (1777—1851). Эрстед родился в Лангеланде. Свою деятельность он начал с изучения фармацевтики в аптеке отца. В 1794 г. Эрстед поступил в Копенгагенский университет, а в 1799 г. стал адьюнктом по кафедре фармацевтики на медицинском факультете. Далее он увлекается физикой и философией. С 1806 г. Эрстед становится профессором физики, устанавливает связи с. учеными Франции, Германии. Голландии и Англии, читает лекции, много экспериментирует. Его привлекают проблемы большого масштаба. В 1813 г. Эрстед публикует работу «Исследование тождества электрических и химических сил», где он доказывает, что «теплота и свет являются результатом электрического конфликта». Об интуитивном предчувствии связи между электричеством и магнетизмом говорят строки из его книги «Воззрения на химические законы природы», изданной в Берлине в 1812 г. и получившей широкую известность. «Следовало бы выяснить на опыте,— писал Эрстед,— действительно ли электричество в своем наиболее скрытом состоянии не оказывает никакого влияния на магнит как таковой». Не случайно успех пришел к тому, кто наиболее упорно искал. Результаты знаменитого опыта были сообщены ученому миру 21 июля 1820 г. в небольшом мемуаре «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку».

На первой странице исторического мемуара Эрстед пишет; «Основной вывод из этих опытов состоит в том, что магнитная стрелка отклоняется от своего положения равновесия под действием вольтаического аппарата и что этот эффект проявляется, когда контур замкнут, и он не проявляется, когда контур разомкнут».

Эрстед считает, что «конфликт» происходит не только внутри проводника, но «имеет довольно обширную сферу активности вокруг него». «Этот конфликт образует вихрь вокруг проволоки»,— пишет он и дает результату опыта следующее объяснение: «Отрицательная электрическая сила, или материя, описывает спираль слева направо и действует на северный полюс, не влияя на южный. Действие на южный полюс объясняется подобным же образом, если допустить, что положительная электрическая материя движется в противоположном направлении и обладает свойством действовать на южный полюс, не влияя на северный». В этом фантастическом объяснении выражена концепция близкодействия. Материя не действует там, где ее нет. Стрелка может поворачиваться только под действием электрической жидкости, вырывающейся из проводника. Мысль ученого является непосредственным, наивным выражением фактов.

Сообщение Эрстеда вызвало сенсацию. Всякий, кто умел сделать гальванический элемент и буссоль, заставлял магнитную стрелку двигаться под действием тока. Новые открытия вскоре посыпались, как из рога изобилия. Независимо, друг от друга Араго, Гей-Люссак и Зеебек открывают возможность намагничивания электрическим током. Араго показывает, что проводники с током подобно магнитам притягивают железные опилки. При этом открывается важный факт, что магнитное действие тока значительно усиливается, если проводник свертывается в спираль. Этим воспользовались И. Швейгер и И. Поггендорф для устройства первого измерительного электромагнитного прибора — мультипликатора, появившегося в этом же 1820 г.

Сам Эрстед устанавливает факт взаимного действия тока н магнита. Закрепив магнит и освободив провод с током, он показывает, что магнит отклоняет проводник с током. Вслед за этим Фарадей открывает возможность непрерывного вращения магнита вокруг тока.

В 1820 г. Био (1774—1862) и Савар (1791 — 1841) представили Парижской академии мемуар, «предметом которого было определение путем точных измерений физических законов, согласно которым металлическая проволока, соединяющая два полюса вольтаического аппарата, действует на тело магнита».

Открытие Эрстеда привлекло внимание гениального французского ученого Андре Мари Ампера (1775—1836).

Ампер родился в Лионе, в семье высококультурного коммерсанта. Уже в раннем возрасте он обнаружил феноменальные способности. В 12 лет он владел дифференциальным исчислением, к 18 годам прочитал основные работы Лагранжа, Эйлера, Д. Бернулли, основательно проштудировал все 20 томов знаменитого энциклопедического словаря Даламбера и Дидро, овладел латынью, греческим и итальянским языками. Его больше всего влечет математика. В 1802 г. Ампер опубликовал исследование по теории вероятности «Опыт математической теории игры». Работа эта обратила внимание секретаря Парижской академии Делямбра, и молодого ученого пригласили сначала в лионский лицей, а в 1807 г. предложили место профессора в знаменитой парижской политехнической школе. Здесь Ампер читал лекции по дифференциальному и интегральному исчислению, а в 1809 г. был назначен на должность профессора анализа. В 1814 г. Ампер был избран членом Парижской академии наук на место скончавшегося Лагранжа.

Ампер был поразительно разносторонен. Он занимается философией и обогащает ее оригинальными мыслями, публикует исследование о преломлении света и открывает независимо от Авогадро Известный химический закон, дает первую в истории науки классификацию химических элементов. Он серьезно занимался сравнительной зоологией и отстаивал мысль об эволюции биологических видов.

Опыт Эрстеда отвлек Ампера от математики, так же как Фарадея от химии. Оба гения одновременно обратили всю мощь своего интеллекта в область электромагнетизма. Получив известие об опыте Эрстеда, Ампер начал экспериментировать. Уже через неделю он получил новые результаты, а в конце 1820 г. почти на каждом из еженедельных заседаний Парижской академии наук докладывал о новых открытиях.

Ампер сформулировал правило для определения направления магнитного действия тока и ввел принятую физикой условность: за направление тока принимать направление движения положительного электричества. Он установил на опыте эквивалентность соленоида и постоянного магнита (кстати, термин «соленоид;» принадлежит Амперу). Он показал, что рамка с током устанавливается под действием магнетизма Земли перпендикулярно направлению магнитной стрелки. Совместно с Араго он произвел опыт по намагничиванию стального стержня, помещенного в соленоид.

В начале октября 1820 г. Ампер сообщил о своем важнейшем открытии: притяжении и отталкивании параллельных токов. Ученый подверг анализу два факта: первый — взаимодействие электрических токов, второй — эквивалентность сил, действующих на магнитную стрелку и на рамку с током. Земной магнетизм одинаково воздействует на постоянный магнит и на ток. Отсюда дерзкая мысль о том, что он обусловлен циркуляцией электрических токов. Магнетизм Земли, утверждает Ампер, следует приписать не жидкости или намагниченному ядру, а электрическим токам.

Земля — гигантский соленоид. Непрерывно циркулирующие токи возбуждают наблюдаемые магнитные действия. Отсюда еще более дерзкая мысль.

«Если электрические токи являются причиной направляющего действия Земли, то электрические токи будут также причиной направляющего действия одного магнита на другой. Следовательно, надлежит рассматривать магнит как собрание электрических токов, проходящих в плоскостях, перпендикулярных к его оси и направленных таким образом, что южный полюс магнита, которым он обращается к северу, находится справа от этих токов».

Какова же природа электрических токов, обусловливающих магнетизм? На этот вопрос Ампер отвечает впервые в 1821 г. в письме к голландскому физику Фан-Беку. Описав опыт с взаимодействием двух круговых токов, Ампер рассказывает: «Когда этот опыт был сделан, я рывел из него заключение, что электрические токи, присутствие которых вокруг каждой частицы магнита я уже предполагал, существуют вокруг этих частиц в железе, никеле и кобальте уже до намагничивания. Будучи, однако, направлены во всевозможные стороны, они не могут вызвать никакого результирующего внешнего действия, так как одни из них стремятся притянуть то, что другие отталкивают, подобно .тому, как свет, различные лучи которого поляризованы во всех направлениях, не обнаруживают никаких признаков поляризации».

Так появилась в физике гипотеза молекулярных токов — один из самых поразительных научных прогнозов. Ее плодотворность была одной из самых обильных. Сам Ампер сразу же открывает путь к важной истине: «Если эта точка зрения правильна, то можно надеяться возбудить до некоторой степени магнетизм в тех телах, которые до сих пор, казалось, не могут быть намагничены». Вскоре Фарадей блестяще подтвердил этот прогноз. Он доказал, что в большей или меньшей степени намагничиваются все вещества, установил деление веществ на ферро-, диа- и парамагнетики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *