Куда направлен вектор силы тяжести
Перейти к содержимому

Куда направлен вектор силы тяжести

Сила тяжести

Сила тяжести — сила, действующая на любое физическое тело, находящееся вблизи поверхности Земли или другого астрономического тела.

Независимо от веса тела, его формы, размеров, направления, вещества, из которого оно состоит и его агрегатного состояния, Земля притягивает его к своей поверхности. Именно поэтому тело, подброшенное вверх, не улетает ввысь, а водоемы не вытекают в атмосферу.

Причины возникновения, куда направлена

В 1682 году И.Ньютон открыл закон всемирного тяготения, согласно которому все тела Вселенной притягиваются друг к другу. Сила их притяжения различна, поскольку у каждого из них своя масса. Ньютон назвал такие силы гравитационными и высказал предположение, что они направлены вдоль линии, которая теоретически соединяет их центры.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Имеются ввиду центры масс. Например, у шара центр массы совпадает с геометрическим центром. Однако такая особенность характерна не для всех форм.

Чем больше масса у тела, тем с большей силой оно притягивает другие тела к себе. Поскольку планета имеет значительную массу, подброшенное вверх тело (если силу броска не компенсирует другая сила) обязательно притянется землей и упадет на нее.

Таким образом, становится понятным, что на поверхности планеты на все тела действует сила, названная силой тяжести, которая заметна визуально, в отличие от взаимодействия тел с незначительными массами.

Силы

Сила тяжести актуальна с позиции организации жизни на Земле. поскольку только благодаря ей у поверхности нашей планеты удерживается атмосфера, а водный океан не изливает свои воды в безвоздушное пространство.

Человеку и другим позвоночным животным природа подарила специальный аппарат (вестибулярный), с помощью которого они определяют характеристики силы земного притяжения и не теряют физической ориентации в пространстве.

Чему равна сила тяжести, формула для вычисления

Формула для определения силы тяжести вытекает из уравнения, характеризующего действие всемирного тяготения.

Если тело, имеющее массу m находится вблизи поверхности Земли, массу которой обозначить М, а радиус Rз, то оно будет притягиваться с силой:

\(F=G\times(M\div R_з2)\times m\)

Величина \(G×M÷R_з2\) обозначается в физике буквой g и называется ускорением свободного падения. Следовательно, формула приобретает следующий вид:

Вектор силы тяжести направлен в центр Земли. Если другие силы, действующие на тело, имеют нулевые значения либо уравновешивают друг друга, оно, получая ускорение свободного падения, приземляется на землю. Средняя величина g для равна 9,81 м/с 2 .

Через эту же формулу, зная g и Rз, можно определить массу земного шара. После проведенных вычислений итоговая цифра равна 5,98*10 24 кг.

Удаление от поверхности Земли влияет на интенсивность притяжения (в обратной пропорциональности к квадрату расстояния, включая интервал от поверхности до центра Земли).

Ускорение свободного падения, как связано с силой тяжести

Действие на тело силы тяжести вызывает его свободное падение на землю, при отсутствии воздействия других сил либо их взаимно гасящем характере. Оно происходит с ускорением, которое измеряется в единицах — м/с 2 и имеет обозначение g.

Согласно проведенным исследованиям по измерению ускорения свободного падения, был сделан вывод, что его значения почти не отличаются в точках с различными координатами. Поэтому в любом месте Земли оно принимается равным 9,8м/с 2 .

Однако с увеличением высоты подъема предмета над Землей, сила тяжести, которая на него действует, уменьшается. Следовательно, ускорение свободного падения также становится меньшим. Так, расчет модуля на высоте h можно провести по формуле:

g=G\times M\div(R+h) 2

На высоте 300 ки от Земли ускорение свободного падения на 1м/с 2 меньше, чем у ее поверхности.

Механизм появления ускорение свободного падения связан с законом всемирного тяготения, при условии, что одним из взаимодействующих тел является Земля. Действует он при условии, что падению не оказывается существенного сопротивления, а возникающие при этом силы трения или упругости суммарно уменьшают силу тяжести, взятую по модулю.

Земля не является абсолютным шаром, поскольку ее экваториальный радиус по размеру превышает полярный. Этот факт является пояснением того, что на полюсе ускорение свободного падения значительнее, чем на экваторе.

Из всего сказанного можно сделать вывод, что сила тяжести и ускорение свободного падения не находятся в прямой зависимости. Тела, имеющие различные массы, приземляются на Землю с одинаковой скоростью при одном условии: если они находятся в вакууме и силы сопротивления воздуха отсутствуют. Для такого случая записать уравнение для свободно падающего тела можно так:

Из уравнения вытекает, что его результат не имеет взаимосвязи с массой тела. Например, слон будет падать в вакууме так же быстро, как таракан. Скорость можно высчитать по формуле:

Сила тяжести в физике — формулы и определения с примерами

Почему все подброшенные вверх тела падают на Землю ? Почему на санках легко съезжать с горки, а вверх их нужно тянуть?

Подбросьте вверх мяч. Поднявшись на некоторую высоту, он начнёт двигаться вниз и упадёт на Землю. Парашютист, выпрыгнувший из самолёта, падает вниз и после раскрытия парашюта. С появлением дождевой тучи на Землю падает густой дождь. Как бы высоко мы не прыгали вверх, всегда опускаемся на Землю.

Все тела, находящиеся на Земле или вблизи неё, взаимодействуют с ней: Земля притягивает тела, а они притягивают Землю.

Поскольку масса у Земли очень большая, то в результате взаимодействия с нею заметно изменяют свои скорости и положения именно тела, а Земля практически остаётся на месте.

Силу, с которой Земля притягивает к себе любое тело, называют силой тяжести.

От чего зависит сила тяжести

Из опыта с яблоками, выполненного ранее, можем сделать вывод, что на два яблока, подвешенных на пружине, действует сила тяжести больше, чем на одно, так как масса двух яблок больше массы одного. Силу тяжести обозначают Сила тяжести в физике - формулы и определения с примерами

Единицей силы тяжести, как и любой другой, в СИ является один ньютон (1Н). Эта единица названа в честь английского учёного Исаака Ньютона, впервые сформулировавшего основные законы движения тел и законы тяготения. 1 ньютон (1 Н) равен силе тяжести, которая действует на тело массой приблизительно 102 г.

Тогда на тело массой 1кг действует сила тяжести 9,81 Н, т. е. Сила тяжести в физике - формулы и определения с примерами

Как, пользуясь единицей силы 1 Н, определить силу тяжести, которая действует на тело любой массы?

Поскольку на тело массой 1 кг действует сила тяжести 9,81 Н, то на тело массой т будет действовать сила тяжести, в т раз большая.

Чтобы определить силу тяжести Сила тяжести в физике - формулы и определения с примерами, действующую на тело, нужно постоянную для данной местности величину Сила тяжести в физике - формулы и определения с примерами= 9,81 Сила тяжести в физике - формулы и определения с примерамиумножить на массу тела Сила тяжести в физике - формулы и определения с примерами, выраженную в килограммах: Сила тяжести в физике - формулы и определения с примерами

Но притяжение существует не только между Землёй и телами на ней или вблизи неё. Все тела притягиваются друг к другу. Например, притягиваются между собой Земля и Луна, Солнце и Земля или другие планеты, корабли в море, предметы в комнате. Вследствие притяжения Земли к Луне на Земле возникают приливы и отливы (рис. 69).

Сила тяжести в физике - формулы и определения с примерами

Вода в океанах поднимается дважды в сутки на несколько метров.

Благодаря силе тяжести атмосфера удерживается возле Земли, реки текут сверху вниз, Луна удерживается возле Земли, планеты двигаются по орбитам вокруг Солнца.

Явление притяжения всех тел Вселенной друг к другу называют всемирным тяготением.

Исаак Ньютон доказал, что сила притяжения между телами тем больше, чем больше массы этих тел и чем меньше расстояние между телами. Если бы сила тяжести на Земле вдруг исчезла, то все незакреплённые на ее поверхности тела от любого небольшого толчка разлетелись бы во все стороны в космическом пространстве.

Каково направление силы тяжести

Опыт. Если взять отвес или привязанный к нити какой-либо предмет (рис. 70), то увидим, что нить с грузиком вследствие действия на него силы тяжести всегда направлена к Земли вдоль прямой, которую называют вертикалью.

Сила тяжести в физике - формулы и определения с примерами

Выполнив этот опыт во всех точках Земли, учёные убедились, что сила тяжести всегда направлена к центру Земли.

Силу тяжести изображают в виде вертикальной стрелки, направленной вниз и приложенной к определённой точке тела (рис. 71 а, б).

Кстати:

Кроме планет с их спутниками вокруг Солнца двигаются малые планеты, которые еще называют астероидами. Наибольшая из них — Церера — имеет статус карликовой планеты и радиусом почти в 20 раз, а по массе в 7500 раз меньше Земли. Сила тяжести на ней настолько мала, что человек, оттолкнувшись от поверхности планеты, мог бы улететь с нее.

Вот как описывает основатель теории космонавтики К,Э. Циолковский в рассказе «Путь к звездам» условия пребывания человека на этом астероиде: «На Земле я могу свободно нести еще одного человека такого же веса, как я. На Весте так же легко могу нести в 30 раз больше. На Земле я могу подпрыгнуть на 50см. На Весте такое же усилие дает прыжок в 30м. Это высота десятиэтажного дома или огромной сосны. Там легко перепрыгивать через рвы и ямы шириной с крупную реку. Можно перепрыгнуть через 15-метровые деревья и дома. И это без разгона».

Сила тяготения

Все тела возле Земли падают на ее поверхность, если их ничто не удерживает. В чем причина этого явления?

Как тела падают на Землю

Рассмотрим фотографию падения шарика, на которой положение шарика фиксировалось на пленке через равные интервалы времени (рис. 45). Если линейкой отмерить расстояние между изображениями шарика в различные моменты времени, то можно заметить, что эти расстояния постепенно увеличиваются. Это свидетельствует о том, что скорость шарика при падении постепенно увеличивается.

Сила тяжести в физике - формулы и определения с примерами

Как увеличивается скорость падающего тела

Если вспомнить определение силы, по которому сила изменяет скорость тела, то можно сделать вывод, что на шарик действует сила, направленная к Земле.

Силу, действующую на каждое тело со стороны Земли, называют силой тяготения.

Измерения показывают, что скорость тела, падающего на поверхность Земли при отсутствии сопротивления воздуха, каждую секунду увеличивается на 9,8 Сила тяжести в физике - формулы и определения с примерами.

Как рассчитать силу тяготения

Если знать массу тела, то можно рассчитать силу тяготения. Способ таких расчетов подсказывают результаты опытов.

Возьмем динамометр и подвесим к нему гирьку массой 102 г, стрелка динамометра остановится на отметке 1 Н. Если подвесить два таких груза, то динамометр покажет силу 2 Н и т. д. С этого опыта можно сделать вывод, что сила тяжести пропорциональна массе тела.

Сила тяготения пропорциональна массе тела:Сила тяжести в физике - формулы и определения с примерами

Коэффициент пропорциональности Сила тяжести в физике - формулы и определения с примерамиравен приблизительноСила тяжести в физике - формулы и определения с примерами

Для расчетов при решении задач иногда принимают, чтоСила тяжести в физике - формулы и определения с примерами

Если знать такую зависимость силы тяготения от массы, то можно заранее рассчитать ее значение.

Например, необходимо определить, что покажет динамометр, если на его крючок повесить гирю массой 500 г.

Дано:

Сила тяжести в физике - формулы и определения с примерами

Решение

Сила тяжести в физике - формулы и определения с примерами

Ответ. Стрелка динамометра покажет 4,9 Н.

Какая природа силы тяготения

Сила тяготения является проявлением общего закона природы, действующего во всей Вселенной закона всемирного тяготения. Открытый и сформулированный в XVII в. английским физиком Ньютоном, он утверждает, что сила гравитационного притяжения во Вселенной пропорциональна массам взаимодействующих тел и зависит от расстояния между ними.

Сила тяжести в физике - формулы и определения с примерами

где R — расстояние между телами, m1 и m2 — массы взаимодействующих тел, Сила тяжести в физике - формулы и определения с примерами— гравитационная постоянная.

Сила тяготения, как проявление гравитационного взаимодействия Земли, является следствием взаимодействия всех тел с Землей. Поэтому в расчетах силы тяготения пользуются только массой данного тела. Характеристики Земли отображены в обобщенной форме в коэффициенте Сила тяжести в физике - формулы и определения с примерами

Работа силы тяжести

Каждая сила, действующая на движущееся тело, совершает работу. Проанализируем более подробно работу, совершаемую силой тяжести. При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна mg. Пусть тело массой m падает с высоты h1 до высоты h2 (рис. 132). Модуль перемещения Сила тяжести в физике - формулы и определения с примерамиравен при этом h1h2 . Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:
Сила тяжести в физике - формулы и определения с примерами(1)

Сила тяжести в физике - формулы и определения с примерами
Рис. 132

Высоты h1 и h2 можно отсчитывать от любого уровня. Это может быть уровень поверхности Земли, пола класса или поверхности стола и т. д. Высоту выбранного уровня принимают равной пулю. Поэтому этот уровень называют нулевым.

Если тело падает с высоты h до нулевого уровня, то работа силы тяжести:

Сила тяжести в физике - формулы и определения с примерами(2)

Теперь выясним, какую работу совершает сила тяжести, если тело движется не по вертикали. Для этого рассмотрим движение тела по наклонной плоскости. Пусть тело массой m совершило перемещение Сила тяжести в физике - формулы и определения с примерами, равное по модулю длине наклонной плоскости (рис. 133). Работа силы тяжести в этом случае равна: Сила тяжести в физике - формулы и определения с примерами, где Сила тяжести в физике - формулы и определения с примерами— угол между вектором перемещения и вектором силы тяжести. Из рисунка видно, что Сила тяжести в физике - формулы и определения с примерами. Поэтому
Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами
Рис. 133

Мы получили для работы силы тяжести такое же выражение, как и в случае движения тела по вертикали (см. формулу (2)). Отсюда следует, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. Работа силы тяжести определяется только изменением высоты относительно некоторого уровня.

Теперь докажем, что работа силы тяжести определяется формулой (2) при движении по любой траектории. Например, некоторое тело бросили горизонтально с высоты h (рис. 134). Как известно, траекторией такого движения является парабола. Мысленно разобьем траекторию на маленькие участки Сила тяжести в физике - формулы и определения с примерами, такие, что их можно считать прямыми линиями. Каждый из них можно считать маленькой наклонной плоскостью, а движение по траектории AB рассматривать как движение по множеству наклонных плоскостей. Работа силы тяжести на каждой из них равна произведению силы тяжести на изменение высоты. Например, на участке А2А3 работа равна mg(h2-h3). Полную же работу силы тяжести на всем пути найдем, сложив работу на каждом участке:

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами
Рис. 134

Таким образом, работа силы тяжести не зависит от формы траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях тела, т. е. вычисляется но формуле (1). Отсюда следует, что если тело движется по замкнутой траектории, где начальное и конечное положения тела совпадают, то работа силы тяжести равна нулю. Такие силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положениями тела в пространстве, называются потенциальными или консервативными. Другое определение потенциальных сил: это такие силы, работа которых по замкнутой траектории равна нулю.

Для потенциальных сил можно ввести понятие потенциальной энергии. Действительно, формула (I) может быть переписана следующим образом:

Правая часть этого равенства представляет собой изменение величины mgh, взятое с противоположным знаком.

Понятие кинетической энергии, изменение которой равно работе сил, действующих на тело. Теперь мы встретились еще с одной величиной, изменение которой (но с противоположным знаком) тоже равно работе силы — в данном случае работе силы тяжести. Величину, равную mgh, называют потенциальной энергией П тела в гравитационном поле. Тогда формулу (3) можно записать в виде:
Сила тяжести в физике - формулы и определения с примерами(4)

Говорят, что работа силы тяжести равна убыли потенциальной энергии тела в гравитационном поле Земли.
Если тело падает с высоты h до нулевого уровня, то работа силы тяжести равна его начальной потенциальной энергии:
Сила тяжести в физике - формулы и определения с примерами

Следовательно, потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты. Например, этим пользуются при забивании свай на строительных площадках (рис. 135). Чтобы поднять тело с нулевого уровня на эту же высоту, должна быть совершена работа другой силой, направленной против силы тяжести.

Сила тяжести в физике - формулы и определения с примерами
Рис. 135

Потенциальная энергия зависит от положения тела относительно нулевого уровня и, следовательно, от координат тела. Так как пулевой уровень может быть выбран произвольно, то и потенциальная энергия определяется неоднозначно. Однако физический смысл имеет разность потенциальных энергий тела ΔП, а эта разность не зависит от выбора нулевого уровня.

Сила тяжести является силой, с которой Земля притягивает тело. Тело обладает потенциальной энергией, потому что оно взаимодействует с Землей. Не было бы Земли, не было бы и силы притяжения, а следовательно, и потенциальной энергии тела. Поэтому потенциальная энергия — это энергия взаимодействия, в данном случае тела и Земли.

Главные выводы:

  1. Работа силы тяжести не зависит от формы траектории, а определяется начальным и конечным положениями тела.
  2. Работа силы тяжести равна нулю, если тело возвращается в исходное положение.
  3. Сила тяжести является потенциальной силой.
  4. Потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты.
  5. Потенциальная энергия — это энергия взаимодействия тел.

Сила тяжести и напряженность гравитационного поля

Как вы знаете, по современным научным представлениям взаимное притяжение между телами осуществляется посредством особого вида материи — гравитационного поля. Каждое тело вокруг себя создает гравитационное поле. Как и другие физические поля, гравитационное поле имеет свою силовую характеристику — напряженность гравитационного поля.

Напряженность гравитационного поля — это векторная физическая величина, равная отношению силы притяжения, действующей на материальную точку (тело) в гравитационном поле, к его массе:

Сила тяжести в физике - формулы и определения с примерами

Где Сила тяжести в физике - формулы и определения с примерами— напряженность гравитационного поля, Сила тяжести в физике - формулы и определения с примерами— масса материальной точки (тела), Сила тяжести в физике - формулы и определения с примерами— сила притяжения, действующая на материальную точку в гравитационном поле.

От чего зависит модуль напряженности гравитационного поля

Чтобы ответить на этот вопрос, определим модуль напряженности гравитационного поля для произвольной точки на поверхности Земли и на высоте Сила тяжести в физике - формулы и определения с примерамиот поверхности Земли:

Сила тяжести в физике - формулы и определения с примерами

Здесь Сила тяжести в физике - формулы и определения с примерамии Сила тяжести в физике - формулы и определения с примерами— силы притяжения на поверхности Земли и на высоте h соответственно, Сила тяжести в физике - формулы и определения с примерами— масса Земли, Сила тяжести в физике - формулы и определения с примерами— радиус Земли.

Модуль напряженности гравитационного поля в некоторой точке прямо пропорционален массе источника данного поля и обратно пропорционален

квадрату расстояния до этой точки. Модуль напряженности гравитационного поля не зависит от массы тела, помещенного в это поле. Вектор напряженности гравитационного поля в произвольной точке поля направлен вдоль радиуса к центру источника поля (b). В данной точке гравитационного поля модуль и направление напряженности гравитационного поля совпадают с модулем и направлением ускорения свободного падения.

Сила тяжести в физике - формулы и определения с примерами

Являются ли напряженность гравитационного поля и ускорение свободного падения одной и той же величиной

На помещенное в гравитационное поле произвольное тело действует сила притяжения со стороны источника поля. В результате тело получает ускорение (ускорение свободного падения), направленное к центру источника поля (например, центру Земли). Это ускорение сообщается телу действующей на него силой тяжести гравитационного поля.

Сила тяжести — это сила, с которой Земля (планета) притягивает тела. Сила тяжести равна произведению массы тела, помещенного в гравитационное поле Земли (планеты), на ускорение свободного падения:

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести всегда приложена к центру массы тела и направлена вертикально вниз (перпендикулярно к горизонтальной поверхности) к центру Земли (планеты) (с).

Сила тяжести в физике - формулы и определения с примерами

Из вышесказанного ясно, что понятия «напряженность гравитационного поля» и «ускорение свободного падения» имеют разный физический смысл. Так, напряженность гравитационного поля появляется в случае возникновения поля, а ускорение свободного падения возникает в результате действия силы тяжести при помещении в это поле произвольного тела (пробное тело).

Сила тяжести и вес тела

Если выпустить из рук карандаш, он обязательно упадет. Если поставить рюкзак на скамейку, она (хоть и незаметно для глаз) прогнется. Если подвесить к резиновому шнуру какое-нибудь тело, шнур растянется. Все это — следствия притяжения Земли. При этом репортажи с космических станций демонстрируют нам вроде бы «исчезновение» земного притяжения — космонавты и все вещи на борту находятся в состоянии невесомости.

Гравитационное взаимодействие:

Почему любой предмет, например выпущенный из руки карандаш, капля дождя, лист дерева и т. д., падает вниз? Почему стрела, выпущенная из лука, не летит все время прямо, а в конце концов падает на землю? Почему Луна движется вокруг Земли? Причина всех этих явлений в том, что Земля притягивает к себе все тела (рис. 20.1).

При этом все тела притягивают к себе Землю. Например, притяжение к Луне вызывает на Земле приливы и отливы (рис. 20.2). В результате притяжения к Солнцу наша планета и все другие планеты Солнечной системы движутся вокруг Солнца по определенным орбитам. В 1687 г. Исаак Ньютон сформулировал закон, согласно которому между всеми телами Вселенной существует взаимное притяжение. Такое взаимное притяжение объектов называют гравитационным взаимодействием или всемирным тяготением. Опираясь на опыты и математические расчеты, Ньютон доказал, что интенсивность гравитационного взаимодействия увеличивается с увеличением масс взаимодействующих тел. Именно поэтому легко убедиться в том, что всех нас притягивает Земля, и при этом мы совсем не ощущаем притяжение соседа по парте.

В физике силу гравитационного притяжения Земли, действующую на тела вблизи ее поверхности*, называют силой тяжести.

Сила тяжести Сила тяжести в физике - формулы и определения с примерами — это сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее.

Сила тяжести приложена к телу, которое притягивается Землей, и направлена вертикально вниз, к центру Земли (рис. 20.3).

Многочисленными опытами доказано, что сила тяжести, действующая на тело, прямо пропорциональна массе этого тела: Сила тяжести в физике - формулы и определения с примерамигде Сила тяжести в физике - формулы и определения с примерами— значение силы тяжести; m — масса тела; g — коэффициент пропорциональности, который называют ускорением свободного падения.

Будем считать, что, когда говорят «вблизи поверхности Земли», имеют в виду расстояние, не превышающее нескольких десятков километров.

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами

Вблизи поверхности Земли ускорение свободного падения равно приблизительно 9,8 ньютона на килограмм: Сила тяжести в физике - формулы и определения с примерамиЗначение ускорения свободного падения несущественно изменяется на экваторе и полюсах Земли (рис. 20.4), при подъеме над поверхностью Земли и при спуске в шахту. Используя рис. 20.4, определите, на сколько сила тяжести, действующая на вас, на экваторе меньше, чем на полюсе.

Сила тяжести в физике - формулы и определения с примерами

Что физики называют весом тела

Из-за притяжения к Земле все тела сжимают или прогибают опору либо растягивают подвес. Сила, которая характеризует такое действие тел, называется весом тела (рис. 20.5).

Сила тяжести в физике - формулы и определения с примерами

Вес тела Сила тяжести в физике - формулы и определения с примерами — это сила, с которой вследствие притяжения к Земле тело давит на горизонтальную опору или растягивает вертикальный подвес. Единица веса в СИ, как и любой другой силы,— ньютон Сила тяжести в физике - формулы и определения с примерамиЕсли тело находится в состоянии покоя или прямолинейного равномерного движения, то его вес совпадает по направлению с силой тяжести и равен ей по значению: P=mg. Однако в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу (рис. 20.6).

Для упрощения расчетов в случаях, когда большая точность не существенна, можно считать, что g= 10 Н/кг.

Сила тяжести в физике - формулы и определения с примерами

Состояние невесомости

Вы наверняка хорошо знаете термин «невесомость», но его значение многие понимают неправильно. Например, считают, что невесомость — это состояние, которое наблюдается только в космосе, где нет воздуха, или там, где отсутствует гравитация. Но это не так! Отсутствие воздуха само по себе не вызывает невесомости, а от гравитации вообще не спрячешься — во Вселенной нет ни одного уголка, где бы не действовали силы всемирного тяготения*. На самом деле невесомость — это отсутствие веса. Уберите у тела опору или подвес — и оно окажется в состоянии невесомости. (Обратите внимание: сопротивление воздуха тоже является своего рода опорой!)

Невесомость — это такое состояние тела, при котором тело не действует на опору или подвес. Тело вблизи поверхности Земли находится в состоянии невесомости, если на него действует только одна сила — сила тяжести. На короткое время невесомость легко создать и дома. Можно, например, подпрыгнуть — и вы на мгновение окажетесь в состоянии невесомости: в данном случае, пока выдвигаетесь вниз, сопротивление воздуха пренебрежимо мало и можно считать, что на вас действует только сила тяжести. Постоянно в состоянии невесомости находятся космические орбитальные станции и все, что на них находится (рис. 20.7). Это связано с тем, что космические корабли «постоянно падают» на Землю из-за ее притяжения и в то же время остаются на орбите благодаря своей огромной скорости. У нетренированного человека длительное пребывание в состоянии невесомости, как правило, сопровождается тошнотой, нарушением работы мышц, вестибулярного аппарата**, нервными расстройствами, именно поэтому космонавты проходят серьезную физическую подготовку (рис. 20.8).

Плотность материи в нашей Вселенной очень мала (2-3 атома Гидрогена на 1 м 3 ), потому во Вселенной в среднем очень мала и гравитация. Ее называют микрогравитацией. Вестибулярный аппарат — орган чувств у людей и позвоночных животных, воспринимающий изменение положения тела в пространстве и направление движения. Этот орган отвечает, например, за способность человека различать в темноте, где верх, а где низ.

Сила тяжести в физике - формулы и определения с примерами

Итоги:

Во Вселенной все тела притягиваются друг к другу. Такое взаимное притяжение тел называют всемирным тяготением. Сила тяжести — сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее. Сила тяжести вычисляется по формуле Сила тяжести в физике - формулы и определения с примерамии направлена вертикально вниз, к центру Земли. Вес Сила тяжести в физике - формулы и определения с примерамитела — это сила, с которой вследствие притяжения к Земле тело действует на горизонтальную опору или вертикальный подвес. Следует различать силу тяжести и вес тела: сила тяжести приложена к самому телу, а вес — к опоре или подвесу; вес тела равен по значению силе тяжести (P=mg) только в состоянии покоя тела или его равномерного прямолинейного движения. Когда тело движется под действием только силы тяжести, то оно находится в состоянии невесомости (его вес равен нулю).

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Куда направлен вектор силы тяжести

В данном параграфе мы напомним Вам о силе тяжести, центростримительном ускорение и весе тела

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

где М — масса Земли; R — радиус Земли.
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле F т =GMm/R 2 модуль ускорения свободного падения g находят по формуле

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы F т =GMm/R 2 видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

На ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета — Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.
Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес — это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Согласно приведенному выше определению понятия «вес», можно написать, что Р=-Fyп. Из формулы: F т + F уп =mа. с учетом того, что F т =mg, следует, что mg-mа=-F yп . Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. Из формулы: P=m(g-a)

следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

Сила тяготения.

Темы кодификатора ЕГЭ: силы в механике, закон всемирного тяготения, сила тяжести, ускорение свободного падения, вес тела, невесомость, искусственные спутники Земли.

Любые два тела притягиваются друг к другу — по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой.

Закон всемирного тяготения.

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами и притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:

Коэффициент пропорциональности называется гравитационной постоянной. Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаимного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой примерно кг.

Формула (1) , будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1. Формула (1) справедлива, если тела являются однородными шарами. Тогда — расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2. Формула (1) справедлива, если одно из тел — однородный шар, а другое — материальная точка, находящаяся вне шара. Тогда сстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1) для силы притяжения тела (например, искусственного спутника) к планете.

Сила тяжести.

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести — это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести — это сила притяжения к Земле.

Пусть тело массы лежит на поверхности Земли. На тело действует сила тяжести , где — ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

где — масса Земли, км — радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:

Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы и радиуса .

Если тело находится на высоте над поверхностью планеты, то для силы тяжести получаем:

Здесь — ускорение свободного падения на высоте :

В последнем равенстве мы воспользовались соотношением

которое следует из формулы (2) .

Вес тела. Невесомость.

Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела. Вес тела — это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).

Рис. 1. Сила тяжести, реакция опоры и вес тела

На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести (в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости (так называемая реакция опоры). На опору со стороны тела действует сила — вес тела. По третьему закону Ньютона силы и равны по модулю и противоположны по направлению.

Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:

С учётом равенства получаем . Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.

Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вверх. Найти вес тела.

Решение. Направим ось вертикально вверх (рис. 2 ).

Рис. 2. Вес тела больше силы тяжести.

Запишем второй закон Ньютона:

Перейдём к проекциям на ось :

Отсюда . Следовательно, вес тела

Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.

Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вниз. Найти вес тела.

Решение. Направим ось вертикально вниз (рис. 3 ).

Рис. 3. Вес тела меньше силы тяжести.

Схема решения та же. Начинаем со второго закона Ньютона:

Переходим к проекциям на ось :

Отсюда c. Следовательно, вес тела

В данном случае вес тела меньше силы тяжести. При (свободное падение тела с опорой) вес тела обращается в нуль. Это — состояние
невесомости, при котором тело вообще не давит на опору.

Искусственные спутники.

Для того, чтобы искусственный спутник мог совершать орбитальное движение вокруг планеты, ему нужно сообщить определённую скорость. Найдём скорость кругового движения спутника на высоте над поверхностью планеты. Масса планеты , её радиус (рис. 4 )

Рис. 4. Спутник на круговой орбите.

Спутник будет двигаться под действием единственной силы — силы всемирного тяготения, направленной к центру планеты. Туда же направлено и ускорение спутника — центростремительное ускорение

Обозначив через массу спутника, запишем второй закон Ньютона в проекции на ось, направленной к центру планеты: , или

Отсюда получаем выражение для скорости:

Первая космическая скорость — это максимальная скорость кругового движения спутника, отвечающая высоте . Для первой космической скорости имеем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *