Ликбез: Как устроена мельница
Вы никогда не думали как из зерна получается мука? Мне вот всегда было интересно как работали древние мельницы. В Суздале нам подробно все разъяснили.
Понятно, что ветер вращает эти лопасти. Каркас у них деревянный, а обтянуты они были материей, парусиной.
А знаете для чего вот эти палки сзаду мельницы? Думаете, чтобы она не попадала? 😉
А вот и фигушки. С их помощью всю мельницу ПОВОРАЧИВАЛИ, чтобы ловчей поймать ветер, ну не прикол? :-))
Механику работы мельницы нам объяснили на вот этой модели, которая находилась внутри мельницы настоящей и, в отличие от последней, была в рабочем состоянии ;-))
Ну, в общем ветер вращает лопасти, лопасти вращают вот это горизонтальное полено:
Горизонтальное полено, с помощью древних шестерёнок вращает уже полено вертикальное:
Вертикальное полено, в свою очередь, с помощью таких же шестеренок вращает эдакие каменные блины – жернова, вон там внизу, видите?:
А сверху в дырки жерновов сыпалось зерно из вот этих ящичков, похожих на перевёрнутые пирамидки. Готовая мука через дырки в деревяхе передней стенки валилась в специальный ящик, обзываемый «сусеком».
Помните сказку про колобка? 😉 «Бабка по амбару помела, по сусекам поскребла…» Я в детстве все время недоумевала, что за сусеки такие в которых можно муки намести на целый колобок? В нашей-то квартире мука по ящикам просто так не валялась. ;-)) Ну и вот, не прошло и сорока лет, как загадка была разгадана! 8-)))
Мельница — ветряная и водяная
Самые древние приспособления для перемалывания зерна в муку и обдирания его в крупу сохранялись как семейные мельницы до начала ХХ в. и представляли собой ручные жернова из двух круглых в сечении камней из твердого кварцевого песчаника диаметром 40—60 см. Древнейшим типом мельниц считаются сооружения, где жернова вращались с помощью домашних животных. Последняя мельница такого типа прекратила свое существование в России в середине ХIХ в.
Энергию падающей на колесо с лопастями воды россияне научились использовать в начале второго тысячелетия. Водяные мельницы всегда были окружены ореолом таинственности, овеяны поэтическими легендами, сказаниями и суевериями. Мельницы-колесухи с омутом и водоворотом сами по себе небезопасные конструкции, что отражено в русской пословице: «Со всякой новой мельницы водяной подать возьмет».
Письменные и графические источники свидетельствуют о широком распространении в средней полосе и на Севере ветряных мельниц. Нередко крупные села были окружены кольцом в 20—30 мельниц, стоявших на высоких, открытых ветрам местах. Ветряные мельницы за сутки размалывали на жерновах от 100 до 400 пудов зерна. В них имелись также ступы (крупорушки) для получения крупы. Для того чтобы мельницы работали, их крылья надо было поворачивать под менявший направление ветер — это обусловило сочетание в каждой мельнице неподвижной и подвижной частей.
Русскими плотниками создано много разнообразных и остроумных вариантов мельниц. Уже в наше время зафиксировано более двадцати разновидностей их конструктивных решений.
Из них можно выделить два принципиальных типа мельниц: «столбовки»
Мельницы столбовки:
а — на столбах; б — на клети; в — на раме.
и «шатровки ».
Первые были распространены на Севере, вторые — в средней полосе и Поволжье. Оба названия отражают также принцип их устройства.
В первом типе мельничный амбар вращался на врытом в землю столбе. Опорой служили либо дополнительные столбы, либо пирамидальная бревенчатая клеть, рубленная «в реж», либо рама.
Принцип мельниц-шатровок был иной
Мельницы шатровки:
а — на усечённом восьмирике; б — на прямом восьмерике; в — восьмерик на амбаре.
— нижняя их часть в виде усеченного восьмигранного сруба была неподвижной, а меньшая по размеру верхняя часть вращалась под ветер. И этот тип в разных районах имел немало вариантов, в том числе мельницы-башни — четвериковые, шестериковые и восьмериковые.
Все типы и варианты мельниц поражают точным конструктивным расчетом и логикой врубок, выдерживавших ветры большой силы. Народные зодчие уделяли также внимание внешнему облику этих единственных вертикальных хозяйственных сооружений, силуэт которых играл немалую роль в ансамбле селений. Это выражалось и в совершенстве пропорций, и в изяществе плотницких работ, и в резьбе на столбах и балконах.
Водяные мельницы
Схема ветряной мельницы
Мельница на ослиной тяге
Мельничный постав
Самая существенная часть мукомольной мельницы —мельничный постав или снасть — состоит из двух жерновов: верхнего, или бегуна, А и — нижнего, или нижняка, В.
Жернова представляют каменные круги значительной толщины, имеющие в средине сквозное отверстие, называемое очком, а на мелющей поверхности т. н. насечку (см. ниже). Нижний жернов лежит неподвижно; его очко плотно закрыто деревянною втулкою, кружловиною g, сквозь отверстие в центре которой проходитъ веретено С; на вершине последнего насажен бегун посредством железного стержня CC, укрепленного концами в горизонтальном положении в очке бегуна и называемаго параплицею, или порхлицею.
В средине параплицы (и, следовательно, в центре жернова) с нижней ее стороны проделано пирамидальное или коническое углубление, в которое и входитъ соответственно заостренный верхний конец веретена С.
При таком соединении бегуна с веретеном, первый вращается при вращении последнего и, в случае надобности, легко снимается с веретена. Нижний конец веретена вставлен шипом в подшипник, укрепленный на балке D. Последнюю можно поднимать и опускать и таким образом увеличивать и уменьшать раcстояние между жерновами. Веретено С вращается помощью т. н. цевочной шестерни Е; это — два диска, надетые на веретено в небольшом расстоянии друг от друга и скрепленные между собою, по окружности, вертикальными палочками.
Цевочная шестерня вращается помощью лобового колеса F, имеющего на правой стороне своего обода зубья, захватывающие за палочки цевочной шестерни и таким образом вращающие ее вместе с веретеном.
На ось Z надето крыло, которое и приводится в движение ветром; или, в водяной мельнице, — водяное колесо, приводимое в движение водою. Зерно вводится через ковш а и очко бегуна в промежуток между жерновами. Ковш состоит из воронки а и корытца b, подвешенного под очком бегуна.
Размол зерна происходит в промежутке между верхнею поверхностью нижняка и нижнею бегуна. Оба жернова одеты кожухомъ N, который препятствует разбрасыванию зерен. По мере размола, зерна подвигаются действием центробежной силы и напором вновь прибывающихъ зерен) от центра нижняка к окружности, падают с нижняка и идут по наклонному желобу, в пеклевальный рукав R — для просеивания. Рукав Е сделан из шерстяной или шелковой ситяной ткани и помещен в закрытом ящике Q, из которого выставляется его нижележащий конец.
Сначала просеивается тонкая мука и падает в задней части ящика; более грубая высевается в конце рукава; отруби задерживаются на ситке S, а самая грубая мука собирается в ящик T.
Жернова
Поверхность жёрнова разделена глубокими желобами, называемыми бороздами, на отдельные плоские участки, называемые мелющими поверхностями. От борозд, расширяясь, отходят более мелкие желобки, называемые оперением. Борозды и плоские поверхности распределяются в виде повторяющегося рисунка, называемого гармошкой.
У типичного мукомольного жёрнова имеется шесть, восемь или десять таких гармошек. Система желобов и желобков, во-первых, образует режущую кромку, а во-вторых, обеспечивает постепенное ссыпание готовой муки из-под жерновов. При постоянном использовании жернова? требуют своевременного подтачивания, то есть подравнивание краев всех желобов для поддерживания остроты режущей кромки.
Жернова используются парно. Нижний жёрнов устанавливается стационарно. Верхний жёрнов, он же бегун, — подвижный, и именно он производит непосредственное перемалывание. Подвижный жернов приводится в движение крестообразным металлическим «штифтом», установленным на головке главного стержня или ведущего вала, вращающегося под действием основного механизма мельницы (использующего энергию ветра или воды). Рельефный рисунок повторяется на каждом из двух жерновов, таким образом обеспечивая эффект «ножниц» при размалывании зерен.
Жернова должны быть одинаково сбалансированными. Правильное взаимное расположение камней критически важно для обеспечения помола муки высокого качества.
Лучшим материалом для жерновов служит особенная каменная порода — вязкий, твердый и неспособный полироваться песчаник, называемый жерновым камнем. Так как каменные породы, в которых все эти свойства развиты достаточно и при том равномерно, встречаются редко, то хорошие жернова весьма дороги.
На трущихся поверхностяхъ жернов делают насечку, т. е. пробивают ряд углубленных бороздок, и промежутки между этими бороздками приводят в грубо-шероховатое состояние. Зерно попадает во время размола между бороздками верхнего и нижнего жернов и разрывается и разрезывается острыми режущими краями бороздок насечки на более или менее крупные частицы, которые размалываются окончательно по выходе из бороздок.
Бороздки насечки служат также какъ бы путями, по которым размалываемое зерно подвигается от очка к окружности и сходить с жернова. Так как жернова, даже из лучшего материала, стираются, то насечка должна быть возобновляема время от времени.
Описание конструкций и принципа действия мельниц
Столбовками мельницы названы за то, что их амбар покоится на столбе, вкопанном в землю и обложенном снаружи срубом-ряжем. В нем заделаны балки, удерживающие столб от смещения по вертикали. Конечно, амбар покоится не только на столбе, но на срубе-ряже (от слова режь, бревна, врубленные не плотно, а с прозорами). Поверх такого ряжа делается ровное круглое кольцо из пластин или досок. На него и опирается нижняя рама собственно мельницы.
Ряжи у столбовок могут быть разной формы и высоты, но не выше 4 метров. Они с земли могут подниматься сразу в виде четырехгранной пирамиды или сначала вертикально, а с какой-то высоты переходить в усеченную пирамиду. Встречались, правда очень редко, мельницы на невысокой раме.
Основание шатровок тоже может быть по форме и конструкциям различным. Например, пирамида может начаться с уровня земли, а конструкция быть не срубной, а каркасной. Пирамида может опираться на срубный четверик, а к нему могут быть пристроены подсобные помещения, тамбур, помещение для мельника и т.д.
Главное в мельницах их механизмы.
В шатровках внутреннее пространство разделено перекрытиями на несколько ярусов. Сообщение с ними идет по крутым лестницам чердачного типа через люки, оставленные в перекрытиях. Части механизма могут располагаться на всех ярусах. А их может быть от четырех до пяти. Стержнем шатровки служит могучий вертикальный вал, пронизывающий мельницу насквозь до «шапки». Он опирается через металлический подпятник, закрепленный в балке, которая лежит на брусчатой раме. Балка с помощью клиньев может перемещаться в разные стороны. Это позволяет придать валу строго вертикальное положение. Тоже самое можно проделать и при помощи верхнего бруса, где штырь вала заделан в металлическую петлю.
В нижнем ярусе на вал надета большая шестерня с кулачками-зубьями, закрепленными по наружному контуру круглой основы шестерни. При работе движение большой шестерни, умноженное в несколько раз, передается на малую шестерню или цевку другого вертикального, уже металлического обычно вала. Этот вал прошивает неподвижный нижний жернов и упирается в металлическую планку, на которой через вал подвешен верхний подвижный (вращающийся) жернов. Оба жернова одеты деревянным кожухом с боков и сверху. Жернова устанавливаются на втором ярусе мельницы. Балка в первом ярусе, на которую опирается малый вертикальный вал с малой шестерней, подвешена на металлическом нарезном штыре и с помощью нарезной же шайбы с рукоятками может быть слегка поднята или опущена. С нею поднимается или опускается верхний жернов. Так регулируется тонкость помола зерна.
От кожуха жерновов вниз наклонно пропущен глухой дощатый желоб с доской задвижкой на конце и двумя металлическими крючками, на которые подвешивается мешок, наполняемый мукой.
Рядом с блоком жерновов устанавливается кран-укосина с металлическими дугами-захватами. С его помощью жернова могут сниматься со своих мест для отковки.
Над кожухом жерновов с третьего яруса спускается жестко закрепленный к перекрытию подающий зерно бункер. Он имеет задвижку, с помощью которой можно перекрыть подачу зерна. Он имеет форму опрокинутой усеченной пирамиды. Снизу к нему подвешен качающийся лоток. Он для пружинистости имеет можжевеловую планку и штырь, опущенный в отверстие верхнего жернова. В отверстии эксцентрично устанавливается металлическое кольцо. Кольцо может быть и с двумя-тремя косыми перьями. Тогда устанавливается симметрично. Штырь с кольцом называются обечайкой. Пробегая по внутренней поверхности кольца, штырь все время меняет положение и раскачивает косо подвешенный лоток. Это движение ссыпает зерно в зевло жернова. Оттуда оно попадает в зазор между камнями, размалывается в муку, та поступает в кожух, из него в закрытый лоток и мешок.
Зерно засыпается в бункер, врезанный в пол третьего яруса. Мешки с зерном подаются сюда с помощью во’рота и веревки с крюком. Ворот может подключаться и отключаться от шкива, насаженного на вертикальный вал. Делается это снизу с помощью веревки и рычага. В досках перекрытия прорезан люк, перекрытый наклонно поставленными двухпольными створками. Мешки, проходя через люк, открывают створки, которые потом произвольно захлопываются. Мельник отключает ворот, и мешок оказывается на крышках люка. Операция повторяется.
В последнем ярусе, находящемся в «шапке», на вертикальном валу установлена и закреплена другая, малая шестерня со скошенными кулачками-зубьями. Она заставляет вращаться вертикальный вал и запускает весь механизм. Но ее заставляет работать большая шестерня на «горизонтальном» валу. Слово в кавычки заключено потому, что фактически вал лежит с некоторым уклоном внутреннего конца вниз. Штырем этого конца он заключен в металлическом башмаке деревянной рамы, основы шапки. Приподнятый конец вала, выходящий наружу, спокойно лежит на камне-«подшипнике», слегка скругленном сверху. На валу в этом месте врезаны металлические пластины, предохраняющие вал от быстрого стирания.
В наружную головку вала врезаются два взаимно перпендикулярных бруса-кронштейна, к которым крепятся хомутами и болтами другие балки — основа решетчатых крыльев. Крылья могут принимать ветер и вращать вал лишь тогда, когда на них будет расправлена парусина, обычно свернутая в жгуты в покойное, не рабочее время. Поверхность крыльев будет зависеть от силы и скорости ветра.
Шестерня «горизонтального» вала снабжена зубьями, врезанными в боковую сторону круга. Сверху ее обнимает тормозная деревянная колодка, которая с помощью рычага может быть освобождена или сильно затянута. Резкое торможение при сильном и порывистом ветре вызовет высокую температуру при трении дерева о дерево, и даже тление. Этого лучше избегать.
До работы крылья мельницы следует повернуть навстречу ветру. Для этого имеется рычаг с подкосами — «водило».
Вокруг мельницы вкапывали небольшие столбики количеством не менее 8 штук. К ним «водило» и крепилось цепью или толстой веревкой. Силою 4-5 человек, даже если верхнее кольцо шатра и части рамы хорошо смазаны солидолом или чем-то подобным (ранее смазывали свиным салом), провернуть «шапку» мельницы очень трудно, почти невозможно. «Лошадиная сила» тут тоже не годится. Поэтому пользовались небольшим переносным воротом, который попеременно одевали на столбики его трапециевидной рамой, служившей основанием всей конструкции.
Блок жерновов с кожухом со всеми частями и деталями, расположенными выше и ниже его, назывался одним словом — постав. Обычно небольшой и средней величины ветряки делались «об одном поставе». Большие ветряки могли строиться с двумя поставами. Были ветряные мельницы и с «толчеями», на которых отжималось льняное или конопляное семя для получения соответственного масла. Отходы — жмых, — тоже использовали в домашнем хозяйстве. «Пильные» ветряки как будто не встречались.
Принцип работы ветрогенератора
В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.
Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.
Принцип работы
Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.
Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов
Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.
Принципиальная схема ветрогенератора
Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:
- для автономной работы;
- параллельно с резервным аккумулятором;
- вместе с солнечными батареями;
- параллельно с дизельным или бензиновым генератором.
Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.
Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.
Система торможения вращения лопастей
Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.
Конструкция ветрогенератора и узлов
При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.
Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер
Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:
- установка экологически чистая;
- отсутствует потребность её заправки топливом;
- не накапливаются какие-либо отходы;
- устройство работает очень тихо;
- имеет большой срок эксплуатации.
Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.
Увеличение мощности установки
Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.
Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.
Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.
Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.
Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.
Схема увеличения мощности и емкости ветрогенератора
Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.
Выбор ветрогенератора
Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.
Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)
Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.
Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.
Подсчитывается активная и резистивная мощность всех потребителей энергии.
Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.
Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.
При наличии скважины вы будете полностью энергонезависимые от внешних сетей.
Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.
Ветрогенераторы российского производства
В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.
Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.
Как устроены мощные промышленные ветрогенераторы
Далее конструкцию следует объединить с генератором — источником переменного тока. Вы можете пойти по простому пути и выбрать генератор, к примеру, китайского производства. С доставкой такое удовольствие обойдется около 300-400 у.е.
Как вариант, можно применять автомобильный генератор переменного тока. Из него получится установка, способная вырабатывать от 0,3 до 1-2 кВт. Вариант хорош тем, что выпрямитель уже встроен. Такая установка способна держать выходное напряжение 11,6-14,7 В при достаточно широком диапазоне скоростей. И для этого не нужен внешний электронный стабилизатор.
Можно собрать генератор и своими руками. Самый простой способ — с неодимовыми магнитами. Для этого вам предстоит изучить внимательно массу блогов и форумов. Ведь нельзя просто так взять и изготовить генератор. Вы должны быть уверены, что создаете безопасное устройство, которое перед допуском к работе предстоит испытать.
Помните, что более мощный генератор требует и большего напряжения. Самая большая сложность в том, что для высокой мощности вам понадобится увеличить диаметр всей установки. Так, например, при расчете мощности в 2,6 кВт (для электрического чайника, пылесоса, обогревателя) потребуется диаметр не менее 6 м. Только представьте, сколько проблем и задач появится при установке такой махины.
Ее нужно надежно закрепить, чтобы она не каталась по соседским огородам в случае сильного ветра и не представляла угрозу жизни и имуществу окружающих.
Какое место выбрать для установки ветрогенератора?
максимально открытыхневысокие деревья.
Немаловажный фактор в выборе места для установки такого устройства — наличие соседей рядом. Дело в том, что ветрогенераторы — устройства отнюдь не бесшумные. Кроме того, об их лопасти, как уже говорилось выше, иногда разбиваются птицы. Не каждый сосед готов терпеть такие неудобства. В связи с этим ветряки лучше устанавливать на расстоянии не менее 250 метров от ближайших жилых домов.
В целом, ветряк — наиболее экологически чистый источник энергии, в отличие, например, от дизельной станции. По сравнению с солнечными батареями, также не выделяющими отходов в окружающую среду, он более доступен по цене. Кроме того, ветер дует и днем, и ночью.
Однако, цена ветрогенератора все же велика, поэтому установка его должна быть целесообразной. Если приобрести такую установку из соображений только охраны окружающей среды или в надежде сэкономить сумасшедшие деньги, ничего, кроме разочарования вам это устройство не принесет. Однако, ветрогенератор станет для вас лучшим выходом из положения, если:
- ветер в местности, где вы планируете установить ветряк, дует много дней в году со скоростью не менее 4 м/с;
- ваш дом не подключен к электросети или расходы на электроэнергию очень высоки;
- на вашем участке достаточно места, чтобы установить такое громоздкое устройство;
- факт установки ветрогенератора согласован с соседями;
- вы обладаете достаточным количеством средств на приобретение и обслуживание ветроэнергетического устройства.
Пользоваться ли электроэнергией от обычной сети, приобретать автономный источник или попытаться его изготовить самостоятельно — выбор остается за вами. Если вы делаете выбор в пользу ветрогенератора, помните, что это решение должно быть продиктовано необходимостью, а не быть просто модной тенденцией. Только тщательно продумав все до мелочей, взвесив все «за» и «против», можно приобрести наиболее выгодный источник альтернативной энергии.
Ветряки с горизонтальной осью
Ветряная мельница, а также получившие большое распространение ветрогенераторы с тремя лопастями, относятся к классу ветряков с горизонтальной осью. В этих ветряках ветровое колесо (устройство, предназначенное для преобразования кинетической энергии поступательного движения ветра в механическую энергию вращения) имеет ось, располагающуюся в горизонтальной плоскости. Преимуществом таких ветряков является возможность их запуска без какого-либо дополнительного воздействия, только от дуновения ветра. Недостатком является необходимость ориентировать ветряк по направлению воздушного потока. Эта проблема в индивидуальных генераторах решается за счет свободного вращения основания ветряка в горизонтальной плоскостью и добавления «хвоста» к устройству. В результате ветряк сам ориентируется в нужном направлении.
Пример ветряка с горизонтальной осью
Ветряки с горизонтальной осью весьма громоздки, к тому же, вращающиеся лопасти способны создать помехи средствам связи и приему аналогового телевидения. Внешний вид подобных ветряков, что называется, «на любителя». Мало того, известны случаи фобий у людей по отношению к таким ветрякам. Тем не менее, именно ветряки с горизонтальной осью получили наибольшее распространение в силу высокой эффективности и простоты конструкции. К тому же, малые ветрогенераторы с горизонтальной стоят недорого. Стоимость ветрогенератора такого типа приблизительно равна численному значению мощности, выраженной в кВт, умноженной на 1200 долл. США. Это в 3-5 раз дешевле, чем стоимость солнечных батарей в пересчете на единицу мощности.
Мощность идеального ветрогенератора с горизонтальной осью в установившемся режиме вычисляется по формуле:
P=0,5QSоV3СpNgNb , где Q — плотность воздуха, равная 1,23 кг/м3, Sо — площадь, ометаемая лопастями ветряка, V — скорость ветра, м/с Сp — коэффициент использования энергии ветра (зависит от конструкции ветряка, у идеального ветряка он равен 0,593, в реальности не превышает 0,45), Ng — КПД электрогенератора, Nb — КПД мультипликатора — механизма, передающего вращение от ветрового колеса с лопастями к электрогенератору с определенным коэффициентом.
Важным моментом является то, что в установившемся режиме мощность ветряка не зависит ни от ширины лопастей, ни от их количества. Тем не менее, от ширины лопастей и их количества зависит пуск ветряка. Чем эти показатели больше, тем меньшее дуновение ветра необходимо, чтобы ветряк начал вертеться. В реальности, количество и ширина лопастей определяются компромиссом между необходимостью уменьшить нагрузку на ось ветряка и необходимостью обеспечить запуск ветрогенератора от небольших порывов ветра.
Площадь ометания пропорциональна квадрату от размаха лопастей, иначе именуемого диаметром ветрового колеса. Поэтому зависимость мощности от диаметра ветрового колеса также носит квадратичный характер. В индивидуальных ветрогенераторах с горизонтальной осью размах лопастей обычно лежит в пределах от 1,2 до 7 м, что ограничивает генерируемую мощность. Максимальное значение мощности современных малых ветрогенераторов составляет 15 кВт. Следует отметить, что формула дает мощность, вырабатываемую ветрогенератором в заданный момент времени. Для вычисления средней мощности, вырабатываемой ветрогенератором, требуется знать статистику распределения скоростей ветра по времени суток для тех или иных времен года.
Принцип действия ветрогенератора:
- Ветер вращает колесо с лопастями, которое передает крутящий момент на вал генератора через редуктор.
- Инвертор выполняет задачу преобразования полученного постоянного электрического тока в переменный.
- Аккумулятор предусмотрен для подачи в сеть напряжения при отсутствии ветра.
Мощность ВЭУ находится в прямой зависимости от диаметра ветроколеса, высоты мачты и силы ветра. В настоящее время производятся ветрогенераторы, диаметр лопастей которых от 0,75 до 60 м и более. Самая маленькая из всех современных ВЭУ – G-60. Диаметр ротора, имеющего пять лопастей, всего 0,75 м, при скорости ветра 3-10 м/с она может вырабатывать мощность 60 Вт, вес ее составляет 9 кг. Такая установка с успехом применяется для освещения, зарядки батарей и работы средств связи.
Как работает ветряная электростанция?
Принцип работы ветряной электростанции основан преобразовании энергии ветра во вращательное движение турбины. Это происходит при помощи лопастей (ротора). Ветер следует контуру лопасти, приводя их во вращение.
Современные ветровые электрические станции имеют три лопасти. Их длина может достигать 56 метров. Скорость вращения в пределах 12-24 оборотов в минуту. Для увеличения скорости вращения используют редукторы. Мощность современных ветрогенераторов может достигать 750кВт.
Конструкция ветроэлектростанции может работать при скорости ветра 4 метра в секунду. При достижении скорости ветра 25 метров в секунду ветровые электростанции принцип работы, которых основан на использовании энергии ветра автоматически выключаются. Бесконтрольное вращение лопастей при сильном ветре является одной из причин аварий и разрушения ветряка.
Трансформатор преобразовывает напряжение до величин необходимых для транспортировки электроэнергии к потребителю по проводам линии электропередачи. Обычно трансформаторы устанавливают у основания мачты
Мачта является важным элементом конструкции ветряной электростанции. От ее высоты зависит выработка генератора. Высота мачты современных ветряков колеблется в пределах 70-120 метров. Некоторые конструкции предусматривают наличие вертолетных площадок.
Устройство
- ветротурбины, установленной на мачте с растяжками и раскручиваемой ротором либо лопастями;
- электрогенератора;
полученная электроэнергия поступает в:
- Контроллер заряда аккумуляторов
аккумуляторам (обычно необслуживаемые на 24 В)
- Фундамент
- Силовой шкаф, включающий силовые контакторы и цепи управления
- Башня
- Лестница
- Поворотный механизм
- Гондола
- Электрический генератор
- Система слежения за направлением и скоростью ветра (анемометр)
- Тормозная система
- Трансмиссия
- Лопасти
- Система изменения угла атаки лопасти
- Обтекатель
- Система пожаротушения
- Телекоммуникационная система для передачи данных о работе ветрогенератора
- Система молниезащиты
- Привод питча
- Небольшой электродвигатель постоянного тока (3-12 В) (используемый как генератор)
- Кремниевый выпрямительный диод
- Электролитический конденсатор (1000 мкФ 6 В)
Нужно худеть
Пока размах ветрового колеса невелик, а мощность генератора измеряется в десятках или сотнях кВт, никаких особенных технологий не требуется, однако современная ветроэнергетика ориентируется на поистине гигантские сооружения: на 100−120-метровых башнях устанавливаются имеющие вес в десятки тонн гондолы, а размах лопастей ветрового колеса достигает 130 м. Чем выше башня и чем больше диаметр ротора, тем значительней используемый ветропотенциал. Однако при увеличении линейного размера ветроэнергетической установки (ВЭУ) ее мощность растет в квадратной пропорции, а вес — в кубической. Именно поэтому, как и в авиации, борьба с избыточным весом всей конструкции — один из важнейших приоритетов. Другая серьезная задача — обеспечение устойчивости всей конструкции. ВЭУ представляет собой могучую «голову» на тонкой ножке и подвергается сильнейшему ветровому давлению, раскачивается, вибрирует, и, чтобы ветряк не разрушился и не опрокинулся, требуются сложные расчеты и нестандартные технические решения.
Ветроэнергетический хайтек начинается прямо с роторов — внутри окружности самых больших из них спокойно умещается футбольное поле.
Технологии
Патент недели: электричество из термоядерного синтеза
Башня, гигантские лопасти, генератор и даже ступица ветроколеса — все в современных мегаваттных ветрогенераторах производит впечатление нечеловеческих масштабов. Размеры — дань эффективности.
Чем совершенней аэродинамический профиль лопастей ветрового колеса, тем выше его КПД. При этом лопасти должны быть прочными и упругими, иначе высотные ветры сломают их как спички. Лопасти также должны иметь минимальный вес, так как повышение массы увеличивает нагрузки на конструкцию в целом и, соответственно, ее цену. В производстве лопастей для ротора, как и в авиапроме, ставка делается на неметаллические композитные материалы при ключевой роли стеклопластика, который как раз и совмещает в себе все требуемые свойства. Внутри лопасти помещается более жесткий каркас с прямоугольным сечением, а внешняя оболочка обеспечивает необходимый профиль крыла, разработанный специально для работы в воздушных потоках с невысокими скоростями. Но оптимальный вес вкупе с аэродинамическими качествами — это еще не все. Ветровое колесо должно обладать длительным рабочим ресурсом. Служить ВЭУ предстоит два десятилетия, и чем меньше на это время придется регламентных и ремонтных работ, тем дешевле обойдется эксплуатация.
Типы ветрогенераторов
Существуют классификации ветрогенераторов по количеству лопастей, по материалам, из которых они выполнены, по оси вращения и по шагу винта.
Существуют два основных типа ветротурбин:
- с вертикальной осью вращения («карусельные» — роторные (в том числе «ротор Савониуса», точнее «ротор Братьев Ворониных» В начале октября 1924 года русские изобретатели братья Я. А. и А. А. Воронины получили советский патент на поперечную роторную турбину, в следующем году финский промышленник Сигурд Савониус организовал массовое производство подобных турбин. За ним и осталась «слава» изобретателя этой новинки), «лопастные» ортогональные — ротор Дарье);
- с горизонтальной осью круглого вращения (крыльчатые). Они бывают быстроходными с малым числом лопастей и тихоходными многолопастными, с КПД до 40%.
Также существуют барабанные и роторные ветротурбины.
Ветрогенераторы, как правило, используют три лопасти для достижения компромисса между величиной крутящего момента (возрастает с ростом числа лопастей) и скоростью вращения (понижается с ростом числа лопастей).
Преимущества и недостатки разных типов ВЭУ
Теоретически доказано, что коэффициент использования энергии ветра идеального ветроколеса (КИЭВ) горизонтальных, пропеллерных и вертикально-осевых установок равен, 0.593. Это объясняется тем, что роторы ВЭУ обоих типов используют один и тот же эффект подъемной силы, возникающий при обтекании ветровым потоком профилированной лопасти, К настоящему времени достигнутый на горизонтальных пропеллерных ВЭУ коэффициент использования энергии ветра составляет 0.4. На данный момент этот коэффициент у ветрогенераторов (ветроустановок) ГРЦ-Вертикаль составляет 0.38. Проведенные экспериментальные исследования российских вертикально-осевых установок показали, что достижение значения 0.4-0.45 — вполне реальная задача. Таким образом, можно отметить, что коэффициенты использования энергии ветра горизонтально-осевых пропеллерных и вертикально-осевых ВЭУ близки.
Процесс изготовления
Для лопастей можно выбрать тонкий металлический лист дюраля. Достаточно толщины в 0,5 мм. Чем легче конструкция вашего устройства, тем проще ему будет вращаться. На многочисленных форумах по созданию таких устройств, где своими навыками и знаниями делятся опытные мастера, можно почитать подробнее, чем плох, например, оцинкованный лист. Коротко: он слишком тяжелый.
Такой роторный генератор предусматривает использование сплошных кругов по торцам. Для этого возьмите фанеру толщиной не менее 10 мм. Средний вес такого круга — около 3,5 кг. Нужно три штуки. На вырезанных заготовках обозначьте профиль крыла. Его нужно углубить на 3 мм. Для создания паза или канавки, в который будет вставляться крыло, используйте фрезу.
Чтобы эксплуатация была надежной, предварительно обработайте эти аэродинамические шайбы олифой или другим влагозащитным средством. Лопасти размещаются на 90 градусов по отношению друг к другу. Используемые листы дюраля можно закрепить посредством алюминиевых или стальных уголков на небольшие болты.
Каждую часть (половину), из которых вы собираете ветрогенератор, следует прикрепить к фанерным блокам. Используйте по две шпильки с гайками d6 мм. По оси собранная конструкция будет пронизана осевая шпилька d16 мм. Ее нужно присоединить к каждому кругу из фанеры с обеих сторон при помощи пары гаек. Это и есть центральная ось, которая отвечает за вращение конструкции.
Для скрепления элементов применяются гайки с гровер-шайбами. Диаметр нашего ветряка — 0,75 м, высота — 1,6 м. Вес конструкции около 16 кг. Стоимость — в районе 4 тыс. рублей.
Применение малой ветроэнергетики
В настоящее время индивидуальные ветрогенераторы широко используются в нашей стране для выработки электричества в сельской местности. Мотивы к переходу на альтернативные источники энергоснабжения могут быть разными — от снижения текущих расходов на электроэнергию до стремления избежать огромных затрат на подключение нового здания. Причем ветрогенераторы заводят не только жители небогатых сел, вынужденные экономить на электроэнергии, но и обитатели шикарных коттеджных поселков, которым монопольные поставщики электроэнергии выставляют огромные счета. Наконец, есть места, где электричества нет, а прокладывать линии электропередач экономически невыгодно.
На некоторых фермах ветрогенераторы используются для снижения затрат, а, значит, снижения себестоимости продукции. Необходимость бесперебойного электроснабжения диктует использование в таких местах гибридных систем, объединяющих ветряк, бензогенератор и, если позволяют средства, солнечные батареи.
Осветительная установка с гибридным питанием
Гибридные системы, состоящие из ветрогенератора с диаметром ветряного колеса около 1,5 м и солнечных батарей площадью 1-2 кв. м, можно использовать для питания светодиодных светильников. Это позволяет освещать сложные участки дороги и пешеходные переходы там, куда невыгодно или просто невозможно подвести электропитание. В условиях средней полосы России такая установка способна обеспечить бесперебойную круглогодичную работу светильника с потребляемой мощностью 20-30 Вт в темное время суток.
Мультипликатор
Самое быстрое ветроколесо способно дать скорость вращения не более 400 об/мин. В то же время, наибольший КПД электрического генератора, как правило, достигается при частоте вращения около 1000 об/мин. Поэтому на ветроэлектростанциях, обслуживающих нескольких потребителей, используют так называемые мультипликаторы — механизмы, передающие вращение от ветроколеса к электрическому генератору с повышающим коэффициентом.В индивидуальных ветрогенераторах мультипликаторы зачастую не используются. При этом мирятся со снижением КПД электрического генератора во имя удешевления конструкции.
Проблемы эксплуатации промышленных ветрогенераторов
11 × E-126 бельгийской ВЭС Estinnes в июле 2010, за месяц до завершения строительства станции
11 × E-126 (11 × 7,5 МВт) бельгийской ВЭС Estinnes 10 октября 2010 года.
Промышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветровой фермы может занимать год и более.[где?] Кроме того, для обоснования строительства ветроустановки или ветропарка необходимо проведение длительных (не менее года) исследований ветра в районе строительства. Эти мероприятия значительно увеличивают срок реализации ветроэнергетических проектов.
Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.
В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:
- Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.
- Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.
- Отключение/поломка тормозной системы. При этом лопасть набирает слишком большую скорость и, как следствие, ломается.
- Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов, входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.
- Нестабильность работы генератора. Из-за того, что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.
- Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветровых электростанций и большой высоты, на которой происходит пожар. На современных ветрогенераторах устанавливаются системы пожаротушения.
- Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.
- Шум и вибрация.
Перспективные разработки
Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.
Компания Magenn разработала специальный аппарат с установленным на нём ветрогенератором, который сам поднимается на высоту 120—300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.
Компания Windrotor предлагает конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.[источник не указан 2052 дня]
В мае 2009 года в Германии компанией Advanced Tower Systems (ATS) был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне. Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %.
В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт.
Евросоюз создал исследовательский проект UpWind для разработки офшорного ветрогенератора мощностью 20 МВт.
В 2013 году японская компания Mitsui Ocean Development & Engineering Company разработала гибридную установку: на единой плавающей в воде оси установлена ветровая турбина и турбина, работающая от приливной энергии.
Защита от разрушения ветроколеса
При большой скорости ветра может произойти превышение скорости вращения ветроколеса сверх допустимой нормы, что приводит к его разрушению. Чтобы этого не происходило, генератор всегда должен находиться под нагрузкой. Если аккумулятор полностью заряжен и нет нагрузки, то к генератору подключается балластный резистор.
При штормовом ветре у генераторов с диаметром ветроколеса до 2 м просто останавливают лопасти во избежание их поломки. При большем размере лопастей ветроколесо поворачивается в горизонтальную плоскость. На крупных ветроэлектростанциях лопасти складываются.
И мозги пригодятся
Создатели ВЭУ непрерывно борются за повышение энергетической и экономической эффективности установок, повышая КПД компонентов (ветроколеса, мультипликатора, генератора и преобразователя), улучшая надежность конструкций и снижая их массу и цену. Борьба идет за несколько процентов (1−3) и даже за их доли. Сильнейший фактор в борьбе за энергетическую эффективность ВЭУ — система управления (СУ) и программное обеспечение (ПО). Современная СУ, снабженная ПО, максимально учитывающим особенности ветров и характеристики потребителей энергии, может дать повышение энергоотдачи на 10 и более процентов.
Свои высокотехнологические особенности имеют, разумеется, и генератор, и система электрических тормозов, и конструкция обтекателя гондолы. Так может ли подобная наукоемкая продукция производиться в России?
Значительную роль в современных ветроустановках играет система управления углом атаки (pitch control), позволяющая варьировать подъемную силу на лопасти и избегать нерасчетных нагрузок при сильных порывах ветра.
Роторы
Все роторы отличаются друг от друга размерами рабочей области, прочностью и границами силы ветра, в пределах которой они могут работать.
Деревянный ротор ветрогенератора
Деревянный ротор в работе.
Ингредиенты | Процесс | Результат |
---|---|---|
Древесина, Доски | Деревянная лопастьротора | |
Деревяннаялопасть ротора,Железный слиток | Деревянный роторветрогенератора |
Рабочая область деревянного ротора 5×5. Минимальный поток воздуха 10MCW, максимальный 60MCW. Деревянный ротор выдерживает 3 часа реального времени (Примерно 10 игровых суток).
Железный ротор ветрогенератора
Железный ротор в работе.
Ингредиенты | Процесс | Результат |
---|---|---|
Железная пластина,Железный слиток | Железная лопастьротора | |
Железнаялопасть ротора,Железный вал | Железный роторветрогенератора |
Рабочая область железного ротора 7×7. Минимальный поток воздуха 14MCW, максимальный 75MCW. Железный ротор выдерживает 24 часа реального времени (75 игровых суток).
Стальной ротор ветрогенератора
Стальной ротор в работе.
Ингредиенты | Процесс | Результат |
---|---|---|
Пластина иззакалённого железа,Слиток закалённогожелеза | Стальная лопастьротора | |
Стальнаялопасть ротора,Железный вал | Стальной роторветрогенератора |
Рабочая область стального ротора 9×9. Минимальный поток воздуха 17MCW, максимальный 90MCW. Стальной ротор выдерживает 72 часа реального времени (225 игровых суток).
Углеволоконный ротор ветрогенератора
Углеволоконный ротор в работе.
Ингредиенты | Процесс | Результат |
---|---|---|
Углепластик,Углеткань | Углеволоконная лопастьротора | |
Углеволоконнаялопасть ротора,Вал из закалённогожелеза | Углеволоконный роторветрогенератора |
Рабочая область углеволоконного ротора 11×11. Минимальный поток воздуха 20MCW, максимальный 110MCW. Углеволоконный ротор выдерживает 168 часов реального времени (525 игровых суток).
Гибридная генерация
Крупные ветроэлектростанции размещаются там, где ветер дует постоянно, например, в прибрежных зонах. В отличие от них, индивидуальные ветрогенераторы размещают вблизи потребителя. И здесь может возникнуть ситуация, когда на протяжении нескольких дней нет ветра с достаточной для нормальной работы генератора скоростью. Поэтому для обеспечения надежной бесперебойной поставки электроэнергии используются так называемые гибридные системы, объединяющие несколько источников энергии. Как правило, это комбинация из ветряка и солнечных батарей. Когда ветра нет, обычно нет и облаков на небе, и можно использовать энергию солнца.
Контроллер для гибридного электропитания от ветрякаи солнечной батареи китайской компании Sunteams
Энергия от солнечных батарей и обоих источников накапливается в одном аккумуляторе (или батарее аккумуляторов) и отдается потребителю по мере необходимости. Для управления процессами зарядки применяется специальный двухканальный контроллер. Большинство современных моделей контроллеров для солнечных батарей являются двухканальными и предусматривают возможность использования в гибридных системах.
Мировые производители ветрогенераторов
- Suzlon Energy занимает лидирующее место среди производителей ветрогенераторов не только в странах Азии, но и во всем мире. В штате компании находятся на службе тринадцать тысяч специалистов, которые трудятся на десяти заводах в Индии, Бельгии, США и Китае. Первая ветряная установка была выпущена в 1996 году, а уже в 2000 была спроектирована первая электростанция. Рост объемов производства, согласно требованиям рынка, значительно начал увеличиваться в 2006 году. В настоящее время индийская компания занимает шестое место по производительности рассматриваемой продукции.
- Германский производитель ENERCON GmbH с 2007 года занимает лидирующее место в мировых странах и в Германии, где расположено более пятидесяти процентов рынка. Первая продукция сошла с конвейера в далеком 1986 году. В настоящее время заводы расположены в Индии, Швеции и Португалии.
- Sinovel относится к первому предприятию Китая, которое начало разрабатывать, проектировать, изготавливать и продавать береговые и морские ветроэлектростанции. Sinovel производит турбины для ветрогенераторов мощностью от 1.5 до 6.0 МегаВатт. Продукция поделена на четыре линейки: SL1500, SL3000, SL5000, SL6000.
- Заводы производителя ветрогенераторов Vestas Wind Systems расположены в Дании, в Германии, в Индии, в Румынии, в Великобритании, в Испании, в Швеции, в Норвегии, в Австралии, в США и в Китае. Фирма производит ветровые турбины с диаметром ротора от сорока семи до ста шестидесяти четырех метров, мощностью от 660 КВатт до 7 МегаВатт.
Накопление энергии
Мощность, которую дает ветрогенератор, крайне нестабильна, так как скорость ветра постоянно меняется. Поэтому обязательно использование аккумулятора, в котором накапливается и постепенно отдается в нагрузку.
Для накопления энергии обычно используются гелевые аккумуляторы (от слова «гель» — по принципу действия они аналогичны кислотным, но электролит находится в виде желе) напряжением 12 В. Иногда аккумуляторы соединяют последовательно в батареи напряжением до 120 В. Ветряк подключается к аккумулятору через специальный контроллер, управляющий процессом зарядки. Напряжение 220 В с частотой 50 Гц, подаваемое потребителю, вырабатывается при помощи инвертора.
Генераторы с геликоидным ротором
Еще такие ветрогенераторы называются генераторами Горлова. В принципе, это еще один вариант на тему ортогонального роторного ветряка, причем, вариант довольно удачный. Внешнее и техническое отличие генератора с геликоидным ротором от классического ортогонального ветрогенератора, в том, что его лопасти закручены дугообразно, отсюда и его название — геликоидный.
Изобретатель это сделал для того, чтобы аппарат легко улавливал даже слабый поток воздуха. За счет лопастной дуги ротор вращается без рывков. В целом такой режим работы уменьшает динамику нагрузки на опору ветряка и подвижные узлы. Поэтому срок службы ветрогенератора Горлова выше, чем у других вертикально-роторных аналогов.
Заключение
Повышение цен на электроэнергию, освоение новых неэлектрифицированных территорий, строительство на них домов, баз отдыха, ферм сельско-хозяйственного назначения, приводит к постоянному увеличению спроса на оборудование, предназначенного для нетрадиционных способов генерации электроэнергии при помощи ветра и солнца.
К подорожанию электроэнергии, производимой ветрогенератором, может привести приобретение аккумуляторов для обеспечения бесперебойной работы установки недлительное время. При длительной работе, стоимость электроэнергии увеличивается на цену дизель – генератора.
Ветрогенератор для частного дома
Ветряная мельница – практически бесплатный источник энергии, вдобавок экологичный, что делает его весьма популярным. Поскольку производительность турбин зависит от природных факторов, их КПД не превышает 60%, но это не мешает использовать метод для обеспечения электроэнергией частные дома и небольшие хозяйства.
История ветряных мельниц
Впервые ветряные мельницы упоминаются в писаниях Х века нашей эры в Персии. Это самые ранние сведения. Там механизм использовался для перекачивания воды из ручьев, а также для переработки зерна в муку.
Благодаря Крестовым походам идея ветряных мельниц попала в Европу. Правда, персы строили горизонтальные конструкции, а европейцы создали вертикальные. Произошло это в начале 12-го века в Йоркшире, Англия. Владельцами мельниц были богатые феодалы, а уровень жизни населения определялся количеством ветряков в его владениях.
Что собой представляет современный ветрогенератор
Отличие современного ветрогенератора от мельницы заключается в выдаваемом продукте (механическая сила и электроэнергия), а также в конструкции.
Интенсивность работы зависит от силы ветра, поэтому одной турбины на участке может не хватить для обеспечения дома бесперебойным электричеством.
Ветровой парк обычно состоит из нескольких турбин. Их можно использовать:
- параллельно с солнечными батареями;
- для автономной работы;
- наряду с дизельными или бензиновыми генераторами;
- другими видами аккумуляторов.
При скорости ветра 45 км/час турбина вырабатывает около 400 Вт электроэнергии.
Устройство и принцип работы
Высота ветрогенератора около 80 метров. Конструкция имеет 3 лопасти. Они достаточно узкие в отличие от мельницы, где крыльев больше и они шире. Это оптимальные характеристики для качества работы. Далее в дело включается ветер, который раскручивает лопасти, после чего энергия передается на систему шестерен, усиливающих вращение и увеличивающих количество энергии.
Внутри преобразователя механической энергии в электрическую находится батарея, в которой данная энергия накапливается и расходуется по мере необходимости. Аккумуляторной батареей управляет специальный механизм, который замедляет или ускоряет вращение лопастей. При полной разрядке устройство подает сигнал, чтобы ветряк начинал крутиться.
Типы ветряков
Существует два типа ветрогенераторов – вертикальный и горизонтальный (пропеллерный). Каждый из видов имеет свои плюсы и минусы, в том числе экономические.
Горизонтальный
Горизонтальное расположение оси позволяет использовать энергию ветра при любой его направленности, чего нельзя сказать о вертикальном ветряке, который необходимо направлять по ветру. С другой стороны, при слабом ветре КПД будет ниже, особенно при низком расположении лопастей.
К преимуществам можно также отнести возможность установки на любой поверхности – крыше, вагончике, специальной платформе. Конструкция не занимает много места, в том числе в высоту. Ее стоимость ниже, чем вертикальных ветряков.
Горизонтальный ветрогенератор для частного дома работает эффективнее и с большим постоянством, чем вертикальный. Реже случаются падения и завалы, так как механизм можно устанавливать на небольшой высоте – до 1,5 м.
Вертикальный
Вертикальные ветряные электростанции встречаются чаще, так как считаются более продуктивными. Если расположить лопасти на большой высоте, где ветер сильнее, за единицу времени вертикальный ветряк сможет производить больше энергии, чем горизонтальный. Данный тип предпочтительнее для строительства ветряного парка.
Есть и минусы, например, требуется больше расходных материалов, поэтому конструкция стоит дороже. Установка сложная, требует привлечения специальной техники.
Для стабильности получения энергии в домашних хозяйствах рекомендуется ставить как вертикальные, так и горизонтальные ветрогенераторы.
Установка ветрогенератора
Установка ветрогенератора проводится квалифицированными специалистами с учетом нескольких факторов:
- выбор места установки;
- плотность грунта;
- особенности рельефа местности.
Выбор места
Чтобы выходная мощность была высокой, для ветра не должно быть препятствий. Поэтому ветряк ставят там, где нет поблизости высоких зданий, гор. При удвоении скорости и силы ветра выходная мощность увеличивается в 8 раз. Однако чем выше конструкция, тем сложнее ее установить и тем дороже она стоит.
Чтобы работе ветрогенератора ничего не мешало, его лопасти должны находиться выше любого препятствия на 4 – 6 метров в радиусе 200 метров.
Например, если высота мачты 5 м, производительность турбины будет 1,4 кВтч/сутки. При увеличении высоты вдвое, производительность также увеличится до 2,45 кВтч/сутки. При высоте в 20 м – до 3,12 кВтч/сутки. Чем выше установка, тем сложнее ее монтировать и тем дороже она обходится.
Следует рассчитать местоположение аккумуляторной станции, чтобы снизить потери при транспортировке электроэнергии на расстояние. Она должна располагаться поблизости. Учитывается стоимость кабеля: чем дальше передается энергия, тем его толщина больше.
Подходящие варианты расположения ветряка:
- вершина горы;
- берег водоема;
- большое поле или равнина.
Нельзя устанавливать мачту на здание, так как она издает звуки и вибрации, которые передаются на дом.