Что называется активным и индуктивным сопротивлениями
Перейти к содержимому

Что называется активным и индуктивным сопротивлениями

Что такое активное сопротивление

При прохождении тока в электрической цепи он подвергается противодействию ее отдельных частей, которое в электротехнике называется сопротивлением. Это приводит к потере части мощности. Чтобы правильно рассчитать параметры электрической цепи, нужно учитывать природу сопротивления и знать, в чем заключается действие различных его видов.

Учет активного сопротивления играет важную роль при передаче энергии на большие расстояния

Что такое сопротивление

Ток, протекая через провода и различные радиодетали, тратит свою энергию. Это явление количественно выражается величиной сопротивления. В электротехнике его разделяют на активное и реактивное сопротивление. В первом случае при прохождении тока часть его энергии превращается в тепловой вид, а иногда и в другие (например, проявляется в химических реакциях). Величина активного сопротивления зависит от частоты переменного электротока и возрастает с ее увеличением.

Виды сопротивлений и их формулы

Второй тип сопротивления имеет более сложную природу и возникает в момент включения или выключения потребителя электроэнергии в сеть переменного или постоянного тока. В цепи с реактивным сопротивлением энергия электрического тока частично превращается в другую форму, а затем переходит обратно, то есть, наблюдается периодический колебательный процесс. Полное сопротивление цепи включает в себя активный и реактивный типы, которые учитываются по особым правилам.

Виды сопротивления

В электротехнике рассматривается активное электрическое сопротивление, а также две разновидности реактивного: индуктивное и ёмкостное.

Детали с разным сопротивлением

Активное сопротивление

Можно представить себе электрическую цепь, в которой к клеммам батарейки через провод последовательно присоединены резистор и электрическая лампочка. Если замкнуть провода, лампочка загорится. Можно использовать вольтметр или мультиметр в соответствующем режиме работы, с помощью которых измеряется разность потенциалов между двумя точками цепи.

Измерив напряжение между клеммами и сравнив его с тем, которое имеется на проводах подсоединённых к лампочке, можно увидеть, что последнее меньше. Это связано с падением напряжения на впаянной в цепь радиодетали. Последняя оказывает противодействие электрическому току, затрудняя его прохождение.

Активным сопротивлением обладает каждая деталь, через которую проходит ток. У металлических проводов оно очень маленькое. Чтобы узнать величину сопротивления радиодетали, нужно изучить обозначение на ее корпусе. Если из рассматриваемой электроцепи убрать резистор, то сила тока, проходящего через лампочку, увеличится.

Формула для расчета активного сопротивления соответствует закону Ома:

  • R — величина активного сопротивления между двумя точками в цепи;
  • U — напряжение или разность потенциалов между ними;
  • I — сила тока на рассматриваемом участке цепи.

Для расчета активного сопротивления проводника формула будет другая:

Расчет активного сопротивления проводника

где K-коэффициент поверхностного эффекта, который равен 1,

  • l — длина проводника,
  • s — площадь поперечного сечения,
  • p — “ро” удельное сопротивление.

Сопротивление принято измерять в Омах. Оно существенно зависит от формы и размеров объекта, через который протекает ток: сечения, длины, материала, а также от температуры. Действие активного сопротивления уменьшает энергию электрического тока, превращая её в другие формы (преимущественно в тепловую).

Один из видов омметров

Реактивное сопротивление

Этот вид возникает тогда, когда переменный ток проходит сквозь элемент, который обладает индуктивностью или емкостью. Основной особенностью реактивного сопротивления является преобразование электрической энергии в другую форму в прямом и обратном направлениях. Часто это происходит циклически. Реактивное сопротивление проявляется только при изменениях силы тока и напряжения. Существует два его вида: индуктивное и емкостное.

Индуктивное сопротивление

При увеличении силы тока порождается магнитное поле, обладающее различными характеристиками. Наиболее важной из них является индуктивность. Магнитное поле, в свою очередь, воздействует на проводник, по которому протекает ток. Влияние является противоположным направлению изменения тока. То есть, если сила тока увеличилась, то магнитное поле будет уменьшать его, и наоборот, если снизилась, то поле усилит его. Когда ток не меняется, реактивное сопротивление катушки индуктивности будет равно нулю.

Индуктивное сопротивление зависит от частоты тока. Чем она выше, тем выше скорость изменения данного параметра. Это значит, что будет образовано более сильное магнитное поле. Возникающая при этом ЭДС препятствует изменению электрического тока.

Катушки индуктивности

Расчет реактивного индуктивного сопротивления осуществляется по такой формуле:

XL = L×w = L×2π×f, где буквами обозначаются:

  • L — индуктивность магнитного поля, которое порождается изменением силы тока;
  • W — круговая частота изменения, которая используется в описании синусоидального изменения силы тока;
  • Π — число «пи»;
  • f — частота тока в обычном смысле.

При синусоидальном изменении напряжения сила тока будет меняться, отставая от него по фазе. Поэтому реактивное сопротивление трансформатора существенно зависит от его индуктивности.

Мощные трансформаторы используются для преобразования электроэнергии

Емкостное сопротивление

Оно имеет иную природу, чем индуктивное. Это понятие удобно проиллюстрировать на примере электрической цепи, состоящей из источника питания, клеммы которого соединены с обкладками конденсатора. Сразу после подключения на них будет постепенно накапливаться заряд, создавая ток в цепи.

После достижения предельной величины, которая определяется ёмкостью детали, ток не будет проходить по цепи. Если после этого отключить провода от клемм, а затем последние соединить, то между ними начнётся перемещение зарядов до тех пор, пока разность потенциалов станет равной нулю.

Если к конденсатору подключить источник переменного тока, то будет происходить следующее. С увеличением разности потенциалов заряд на обкладках конденсатора будет расти. Когда напряжение перейдёт в фазу уменьшения, накопленный заряд начнёт стекать с них, образуя ток противоположного направления. Затем разность потенциалов станет отрицательной, но по абсолютной величине будет расти до максимального значения. При этом конденсатор начнет вновь заряжаться, но при этом знак поступающих зарядов будет не такой, который был раньше.

Виды конденсаторов

Когда напряжение начнёт увеличиваться (уменьшаясь по абсолютной величине), заряд с обкладок конденсатора будет стекать. Когда разность потенциалов у источника достигнет нуля и продолжит увеличиваться, начнётся новый цикл изменений.

На каждом этапе описанной ситуации ток с обкладок конденсатора будет иметь направление противоположное тому, которое порождается переменной разностью потенциалов источника питания.

Происходящее таким образом уменьшение силы тока представляет собой физический смысл ёмкостного сопротивления. Оно обозначается буквами ХС и рассчитывается по формуле:

XС = 1/(w×C) = 1/(2π×f×C), где

  • C — ёмкость используемого конденсатора;
  • w — круговая частота переменного тока;
  • π — число «пи»;
  • f — частота переменного тока.

В рассматриваемом случае изменения тока отстают от напряжения.

Полное сопротивление

При использовании нескольких разновидностей важно знать, как они сочетаются между собой. Активное сопротивление присутствует в любых схемах. Оно способствует превращению части электрической энергии в нагрев. Реактивное сопротивление возникает лишь в цепи переменного тока. Чтобы определить его величину, необходимо из индуктивного вычесть ёмкостное. Эта характеристика показывает энергию, которая пульсирует в цепи, переходя из одной формы в другую.

Расчет полной цепи

Полное сопротивление представляет собой сумму активного и реактивного сопротивления в цепи переменного тока, но такое сложение необходимо выполнять особым образом. Для этого нужно начертить прямоугольный треугольник, катеты в котором должны иметь длину, равную величине активного и реактивного сопротивлений соответственно.

Определение полного сопротивления

Длина гипотенузы будет численно выражать полное сопротивление электрической цепи. Для его определения используется правило, говорящее о том, что сумма квадратов катетов равна квадрату гипотенузы. Это правило называют теоремой Пифагора. Следовательно, формула, с помощью которой можно найти полное сопротивление, выглядит так:

  • Z — полное сопротивление;
  • R — величина активной составляющей;
  • XL и XC — значение индуктивного и емкостного параметра соответственно.

Следовательно, при расчёте полного сопротивления или импеданса нужно учитывать, что такое ёмкость и индуктивность и как они могут проявляться в электрических схемах. Эти величины называются еще паразитными, так как они могут отрицательно влиять на работу электроприбора. Их возникновение относят к непредсказуемым факторам. При этом емкостным или индуктивным сопротивлением, имеющим небольшое значение, при выполнении расчетов можно пренебречь.

Так выглядит мощная катушка индуктивности

Заключение

Как видим, при расчете электрической цепи необходимо учитывать и активное, и реактивное, и полное сопротивление. Они отличаются друг от друга не только названием. Физика этих сопротивлений также разная. Если под воздействием активного сопротивления электроэнергия превращается в другой вид и поступает в окружающую среду, то реактивное возвращает ее обратно в сеть. Без понятия о сопротивлении и знания формул расчета невозможно конструировать электросхемы.

Конденсатор в цепи переменного тока

При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.

Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.

Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.

Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.

I = q’ = UmC ω cos( ω t+ π /2).

Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной π /2. Получается, что колебания силы тока опережают по фазе колебания напряжения на π /2. Это представлено на рисунке.

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Введем следующее обозначение:

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

Xc — величина, называемая емкостным сопротивлением.

Катушка индуктивности в цепи переменного тока

Индуктивность в цепи переменного тока будет влиять на силу переменного тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно: ei = -u.

Сила тока будет изменяться по гармоническому закону: I = Im sin(ωt).

ЭДС самоиндукции будет равна: Ei = -Li’ = -L ω Im cos( ω t).

Следовательно, напряжение будет равно: U = L ω Im cos( ω t) = L ω Im sin( ω t+ π /2).

Im = Um /(ωL). Введем обозначение XL = ωL. Эта величина называется индуктивное сопротивление.

Активное и индуктивное сопротивление

Активное и индуктивное сопротивление

Различные факторы играют важную роль для вычисления потерь в линиях транспортировки электрической энергии. Для постоянного тока вполне хватает стандартных данных об омическом сопротивлении. А вот для цепей переменной разновидности необходимо учитывать активное и индуктивное сопротивление в сочетании с емкостной проводимостью токопроводников.

Можно воспользоваться для вычислений специальными таблицами. В них представлены с большой точностью различные варианты для выполнения расчетов в сетях переменного тока. Но, чтобы быстро разобраться в специфике представленных характеристик, желательно знать природу подобного явления и его основные характеристики.

Особенности активного сопротивления

aktivnoe-i-induktivnoe-soprotivleni1

В общем виде данный параметр выглядит, как противодействие определенного участка цепи проходящему по нему току. Полученная в результате такого процесса величина участвует в преобразовании энергии и ее переходе в какое-то другое состояние.

Важно! Это явление наблюдается исключительно в ситуациях с переменным током. Только он способен образовывать в кабелях оба вида противодействия.

Величина активного сопротивления обусловлена эффектом поверхностного типа. Наблюдается процесс своеобразного перемещения тока от центра к поверхности проводника. Сечение кабеля используется не полностью, а возникающее противодействие будет значительно превышать аналогичный омический показатель.

Обратим внимание на такой момент:

  1. Поверхностный эффект имеет незначительную величину в линиях из металлов, относящихся к категории цветных. Активное сопротивление приравнивают к омическому и считают его при условной температуре в +20°С, без учета фактических показателей окружающей среды. В справочниках имеются данные определения для использования в основном выражении R=r0l, с учетом того, что r0 – это номинальное значение искомой величины для 1 км провода, а l – его фактическая протяженность.
  2. А вот в стальных изделиях данный показатель намного выше. Обязательно потребуется брать во внимание, зависящее от сечения явление перемагничивания и влияние таких компонентов, как вихревые токи. На практике обычно при больших нагрузках пользуются справочными данными. При этом, само явление ослабевает в проводниках многопроволочного типа.

Индуктивное сопротивление

Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.

Само сопротивление обычно классифицируют следующим образом:

  • зависящее от параметров тока и материала — внутреннее;
  • обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.

Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.

Данный параметр обычно определяется следующим выражением:

в котором индуктивный показатель для 1 км провода – , а L – протяженность.

Х километрового участка рассчитывается по следующей формуле:

Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.

Принцип действия индуктивного сопротивления линий

aktivnoe-i-induktivnoe-soprotivleni2

Именно индуктивность признана главной характеристикой для катушек наряду с аналогичным показателем для их обмоток. R реактивного вида, проявляющееся под действием самоиндукционной ЭДС, растет в прямой пропорции с частотой тока.

Реактивная и активная составляющие обуславливают полное сопротивление, которое можно представить в виде суммы квадратов каждого показателя.

Оперативно справиться с поставленной задачей по расчету номинальных показателей помогут специальные таблицы. В них для самых распространенных проводников приведены все главные характеристики. Но на практике часто требуется узнать Х для участка с конкретной протяженностью. В этом случае главным инструментом является уже приводившееся выражение

Емкостная проводимость

Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.

aktivnoe-i-induktivnoe-soprotivleni6

Для его определения в трехфазной линии воздушных передач применяется выражение:

Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.

aktivnoe-i-induktivnoe-soprotivleni7

Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.

Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.

aktivnoe-i-induktivnoe-soprotivleni3

Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:

Данный показатель будет объективным только при полностью обесточенных приемниках электричества.

Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.

aktivnoe-i-induktivnoe-soprotivleni4

Для воздушной линии действительна такая формула:

aktivnoe-i-induktivnoe-soprotivleni5

Для кабельных магистралей:

Активное и индуктивное сопротивление

В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние. Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи. В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным.

Основные различия между активным и реактивным сопротивлением

Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.

Активное и реактивное сопротивление

Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.

Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

Онлайн журнал электрика

Активное и реактивное сопротивления

Сопротивление, оказываемое проходами и потребителями в цепях неизменного тока, именуется омическим сопротивлением.

Если какой-нибудь проводник включить в цепь переменного тока, то окажется, что его сопротивление будет несколько больше, чем в цепи неизменного тока. Это разъясняется явлением, получившим заглавие скин-эффекта (поверхностный эффект).

Суть его заключается в последующем. При прохождении переменного тока по проводнику снутри него существует переменное магнитное поле, пересекающее проводник. Магнитные силовые полосы этого поля индуктируют в проводнике ЭДС, но она будет не схожей в разных точках сечения проводника: к центру сечения на больше, а к периферии — меньше.

Это разъясняется тем, что точки, лежащие поближе к центру, пересекаются огромным числом силовых линий. Под действием этой ЭДС переменный ток будет распределяться не по всему сечению проводника умеренно, а поближе к его поверхности.

Это равносильно уменьшению полезного сечения проводника, а как следует, повышению его сопротивления переменному току. К примеру, медный провод длиной 1 км и поперечником 4 мм оказывает сопротивление: неизменному току — 1,86 ом, переменному частотой 800 гц — 1,87 ом, переменному току частотой 10000 гц — 2,90 ом.

Сопротивление, оказываемое проводником проходящему на нему переменному току, именуется активным сопротивлением.

Если какой-нибудь потребитель не содержит внутри себя индуктивности и емкости (лампочка накаливания, нагревательный прибор), то он будет являться для переменного тока также активным сопротивлением.

Активное сопротивление находится в зависимости от частоты переменного тока, возрастая с ее повышением.

Но многие потребители владеют индуктивными и емкостными качествами при прохождении через их переменного тока. К таким потребителям относятся трансформаторы, дроссели, электромагниты, конденсаторы, различного рода провода и многие другие.

При прохождении через их переменного тока нужно учесть не только лишь активное, да и реактивное сопротивление, обусловленное наличием, в потребителе индуктивных и емкостных параметров его.

Понятно, что если неизменный ток, проходящий по какой-нибудь обмотке, прерывать и замыкать, то сразу с конфигурацией тока будет изменяться и магнитный поток снутри обмотки, в итоге чего в ней возникнет ЭДС самоиндукции.

То же самое будет наблюдаться и в обмотке, включенной в цепь переменного тока, с той только различием, что тутток безпрерывно меняется как по величине, так и по направлению. Как следует, безпрерывно будет изменяться величина магнитного потока, пронизывающего обмотку, и в ней будет индуктироваться ЭДС самоиндукции.

Но направление ЭДС самоиндукции всегда таково, что противодействует изменению тока. Так, при возрастании тока в обмотке ЭДС самоиндукции будет стремиться задержать нарастание тока, а при убывании тока, напротив, будет стремиться поддержать исчезающий ток.

Отсюда следует, что ЭДС самоиндукции, возникающая в обмотке (проводнике), включенной в цепь переменного тока, будет всегда действовать против тока, задерживая его конфигурации. По другому говоря, ЭДС самоиндукции можно рассматривать как дополнительное сопротивление, оказывающее совместно с активным сопротивлением обмотки противодействие проходящему через обмотку переменному току.

Сопротивление, оказываемое переменному току ЭДС самоиндукции, носит заглавие индуктивного сопротивления.

Индуктивное сопротивление будет тем больше, чем больше индуктивность потребителя (цепи) и выше частота переменного тока. Это сопротивление выражается формулой xl = ωL, где xl — индуктивное сопротивление в омах; L — индуктивность в генри (гн); ω — угловая частота где f — частота тока).

Не считая индуктивного сопротивления существует емкостное сопротивление, обусловливаемое как наличием емкости в проводниках и обмотках, так и включением в отдельных случаях в цепь переменного тока конденсаторов. При увеличении емкости С потребителя (цепи) и угловой частоты тока емкостное сопротивление миниатюризируется.

Емкостное сопротивление равно xс = 1/ωС, где хс — емкостное сопротивление в омах, ω — угловая частота, С — емкость потребителя в фарадах.

Разглядим цепь, активное сопротивление частей которой r, индуктивность L и емкость С.

Рис. 1. Цепь переменного тока с резистором, катушкой индуктивности и конденсатором.

Полное сопротивление таковой цепи z = √r2+ (хl — xc)2) = √r2 + x2)

Графически это выражение можно изобразить в виде, так именуемого, треугольника сопротивлений.

Рис.2. Треугольник сопротивлений

Гипотенуза треугольника сопротивлений изображает полное сопротивление цепи, катеты — активное и реактивное сопротивления.

Если одно из сопротивлений цепи — (активное либо реактивное), к примеру, в 10 и поболее раз меньше другого, то наименьшим можно пренебречь, в чем просто убедиться конкретным расчетом.

Школя для электрика

Индуктивное сопротивление

Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное.

При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока. В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении. Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки.

Активное и реактивное сопротивление

Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением.

В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток.

Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток. При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь. От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора.

Реактивное индуктивное и емкостное

Выше рассказывалось о скин-эффекте, имеющем место в прямом проводнике. Если проводник смотан в катушку (обмотку), протекающий по нему переменный ток создает более сильное переменное магнитное поле, и наводимая им ЭДС самоиндукции не просто вытесняет ток во внешние слои проводника, а ощутимо ему противодействует. Такое противодействие катушки называют индуктивным сопротивлением.

Фото 7

Индуктивное сопротивление

Вычисляется индуктивное сопротивление по формуле XL = 2П * f * L, где

  • f — частота переменного тока, Гц;
  • L — индуктивность катушки, Гн.

Таким образом, чем выше f, тем больше XL. Этим свойством катушки пользуются при фильтрации высокочастотных помех (гармоник) в сети.

Свойства XL, отличающие его от R:

  • ток в цепи отстает по фазе от напряжения на 900;
  • превращение электроэнергии является обратимым: сначала она преобразуется в магнитное поле (1-я половина полупериода), затем накопленная в нем энергия снова становится электрической (вторая половина).

Обмотки применяются в электромоторах и трансформаторах, потому потребители с такими компонентами имеют значительное индуктивное сопротивление. На его преодоление тратится часть мощности электротока, именуемая реактивной Wр. В противоположность ей, другую часть, совершающую полезную работу, называют активной Wа.

Фото 8

Коэффициент мощности

При сложении обеих составляющих графическим путем, получается треугольник (прямоугольный), в котором полная мощность Wп является гипотенузой. Если угол между ней и вектором активной мощности Wа обозначить через ϕ, то: cosϕ = Wа / Wп.

Для каждого устройства с индуктивным сопротивлением cosϕ обозначается в характеристиках. Также приводится активная мощность, причем выходная, например, на валу электродвигателя. Таким образом, чтобы определить полную потребляемую мощность устройства, следует сделать действие: Wп = Wа / (cosϕ * КПД), где КПД — коэффициент полезного действия прибора.

Необходимость преодолевать реактивное сопротивление, создает значительную дополнительную нагрузку на энергогенерирующее оборудование электростанций. Чтобы разгрузить его, в электросетях применяют установки компенсации реактивной мощности. Они представляют собой конденсаторные батареи.

Емкостным сопротивлением обладают конденсаторы. В цепи постоянного тока этот элемент ток не пропускает, но переменный течет через него относительно свободно, поскольку емкость имеет свойство накапливать в себе заряд.

В 1-й четверти периода она заряжается, во второй — разряжается, в 3-й и 4-й — действия повторяются, но уже с обратной полярностью. При этом он работает подобно индукционной катушке: в 1-й половине полупериода накапливает часть энергии электрогенератора, во 2-й — возвращает ее в цепь.

То есть конденсатор тоже противостоит преобразованию переменного тока — в этом состоит суть емкостного сопротивления. Вычисляют емкостное сопротивление по формуле: Xc = 1 / (2П * f * C), где С — емкость конденсатора, Ф (фарад).

За счет разрядки элемента, ток в цепи опережает напряжение по фазе на 900. На преодоление емкостного сопротивления также расходуется часть полной мощности — реактивная. Установки для ее компенсации содержат индукционные катушки.

Емкостное сопротивление

В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

Активное и реактивное сопротивление

Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды. Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами. Чем выше емкость устройства, тем больше времени требуется на зарядку.

В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 90.

Какие отличия

Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.


Индуктивная величина и ее формулы

Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть.

Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.

Вам это будет интересно Какое бывает поражение человека электрическим током


Комплексная сопротивляемость отдельного элетроэлемента сети R

В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.


Активная сопротивляемость в цепи переменного синусоидального тока

Полное сопротивление

Как реактивное сопротивление X > так и обычное сопротивление R > компоненты импеданса Z > .

  • Z — импеданс, измеряемый в омах;
  • R — сопротивление, измеряемый в омах. Это также реальная часть импеданса: R = ℜ ( Z ) >>
  • X — реактанс, измеряемый в омах. Это также мнимая часть импеданса: X = ℑ ( Z ) >>
  • j — мнимая единица, чтобы отличать от тока, который обозначается обычно i .

Когда и конденсатор и индуктор соединены последовательно в цепь, их вклады к полному импедансу цепи противоположны. Ёмкостное сопротивление X C >> , и индуктивное сопротивление X L >> ,

вносят свой вклад в общее реактивное сопротивление X > в виде суммы

  • X L >> — индуктивное сопротивление, измеряемое в омах;
  • X C >> — ёмкостное сопротивление, измеряемое в омах;
  • ω — угловая частота, 2 π умноженная на частоту в Гц.
  • если X > 0 , то реактанс имеет вид индуктивности;
  • если X = 0 , импеданс чисто реальный;
  • если X < 0 , то реактанс имеет вид ёмкости.

Замечание, в случае определения X L >> и X C >> как положительный величин, то формула меняет знак на отрицательный:[5]

но конечное значение одинаково.

Фазовые отношения

Фаза напряжения на чисто реактивном устройстве (конденсатор с бесконечным сопротивлением или индуктивности с нулевым сопротивлением) отстаёт

от тока на π / 2 > радиан для ёмкостного сопротивления и
опережает
ток на π / 2 > радиан для индуктивного сопротивления. Без знания сопротивления и реактивного сопротивления невозможно определить соотношение между напряжением и током.
Z

C = 1 ω C e j ( − π 2 ) = j ( − 1 ω C ) = j X C Z

L = ω L e j π 2 = j ω L = j X L >_&=e^)>=j\left(>>\right)=jX_\\>_&=\omega Le^>=j\omega L=jX_\quad \end>>
Для реактивной компоненты синусоидальное напряжение на компоненте находится в квадратуре (разность фаз π / 2 > ) с синусоидальным током через компонент. Компонент попеременно поглощает энергию из контура и затем возвращает энергию в контур, таким образом, чистое реактивное сопротивление не рассеивает мощность.

Добавить комментарий

Ваш адрес email не будет опубликован.