Где используется действие магнитного поля на проводник с током
Перейти к содержимому

Где используется действие магнитного поля на проводник с током

Где используется действие магнитного поля на проводник с током

Рамка с током в магнитном поле

Электрический ток всегда замкнут, поэтому прямолинейный проводник можно рассматривать как часть электрической цепи.

Как же ведёт себя в магнитном поле замкнутый контур?

Если вместо гибкого проводника между полюсами магнита поместить проволоку, изогнутую в виде жёсткой рамки, то в начальный момент такая рамка установится параллельно линии, соединяющей полюса магнита. В этот момент вектор магнитной индукции параллелен двум сторонам рамки и расположен в её плоскости. После включения тока рамка начнёт поворачиваться и установится таким образом, что линии магнитного поля будут пронизывать её плоскость.

Вращение рамки объясняется действием на неё сил Ампера.

Каждую из сторон рамки по отдельности можно рассматривать как проводник с током. Согласно закону Ампера на них действует сила Ампера. Её направление определяется с помощью правила левой руки.

Очевидно, что силы, действующие на противоположные стороны прямоугольной рамки, будут равны по величине и противоположны по направлению из-за разного направления токов в них.

На стороны рамки, расположенные параллельно линиям магнитной индукции, силы не действуют, так как угол αмежду вектором магнитной индукции и направлением тока равен 0, следовательно, sinαтакже равен нулю.

Угол между вектором индукции и направлением тока в вертикальных сторонах рамки равен 90о. Следовательно, sinα = 1, а модуль силы, действующей на каждую из них, равен

F = I·B·a, где а – длина стороны рамки.

Силы создают вращающий момент, скалярная величина которого равна

M = I·S·B

Под действием этого момента рамка начинает поворачиваться. В любой промежуточный момент M = I·S·B·sinβ,гдеβ – угол между вектором магнитной индукции и нормалью (перпендикуляром) к плоскости рамки. При повороте этот угол меняется, уменьшается величина силы, и постепенно рамка занимает положение перпендикулярно вектору магнитной индукции. В этом случае вращающий момент становится равным нулю. (М = 0).

На принципе поворота рамки с током в магнитном поле основана работа простейшего электродвигателя. Если отключить ток в тот момент, когда рамка ещё не достигла устойчивого положения, она повернётся по инерции и остановится. При включении тока она снова начнёт вращаться. Включая и выключая ток в нужный момент, можно добиться непрерывного вращения рамки. На этом принципе основана работа простейшего электродвигателя постоянного тока.

Чтобы рамка вращалась непрерывно, необходимо, чтобы ток поступал каждые пол-оборота. В двигателе эту функцию выполняет устройство, которое называют коллектором. Он состоит из двух металлических полуколец. К ним припаяны концы рамки. Когда подключается ток, рамка совершает пол-оборота. Вместе с ней поворачиваются и полукольца коллектора. В результате контакты рамки переключаются, ток в ней меняет своё направление, и рамка продолжает вращаться безостановочно.

Двигатели постоянного тока используются в тяговых электроприводах электровозов, трамваев, тепловозов, теплоходов. Электрический стартер автомобиля – это тоже двигатель постоянного тока. Микродвигатели приводят в действие детские игрушки, электроинструменты, компьютерные устройства, швейные машинки, пылесосы, бормашины и др.

  • Вперёд >

Взаимодействие проводников с током

Выделим основные открытия Ампера в области электромагнетизма:

1. Взаимодействия проводников с током

Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены и отталкиваются, если токи в них противонаправлены.

Закон Ампера гласит:

Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

F – сила взаимодействия двух параллельных проводников,

I1, I2 – величины токов в проводниках,

∆ℓ − длина проводников,

r – расстояние между проводниками.

Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесённого через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а, именно, количество заряда, переносимое через поперечное сечение проводника. На основании этого определения не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путём: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока – 1 А (1 ампер).

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой 2∙10-7 Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

Сила Ампера

Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.

Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(

\vec B\) , определяется законом Ампера:

\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)

где α – угол между направлениями тока и вектора индукции.

Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):

если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.

Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(

\vec B_<\perp>\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены II2) по формуле:

Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,

Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник. Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.

Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,

если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.

Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.

Электромагниты

В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит – устройство, мощность которого можно регулировать (рис. 5).

Рис. 5. Электромагнит

Магнитное взаимодействие

Французский физик Андре-Мари Ампер в 1820 г. обнаружил, что два проводника, по которым пропущен электрический ток, расположенные параллельно друг другу, притягиваются, если направления токов совпадают, и отталкиваются, если токи направлены в разные стороны. Ампер назвал этот эффект электродинамическим взаимодействием.

Рис. 1. Опыт Ампера по взаимодействию токов в параллельных проводниках.

Для объяснения этого явления Ампер ввел понятие магнитного поля, которое возникает вокруг любого движущегося электрического заряда. Магнитное поле непрерывно в пространстве и проявляет себя, оказывая силовое воздействие на другие движущиеся электрические заряды.

Предшественники Ампера пытались построить теорию магнитного поля по аналогии с электрическим полем с помощью магнитных зарядов с разными знаками (северным N и южным S). Однако, эксперименты показали, что отдельных магнитных зарядов в природе не существует. Магнитное поле возникает только в результате движения электрических зарядов.

Где используется действие магнитного поля на проводник с током

Код баннера:

Исследовательские работы и проекты

Применение магнитного поля в науке, технике и медицине

В исследовательском проекте по физике на тему «Применение магнитного поля в науке, технике и медицине» учащийся дает определение понятия «магнитное поле», изучает способы его образования и узнает о практическом применении магнитного поля в науке. В работе рассматривается понятие «Сила Ампера» и роль магнитного поля в создании техники.

Подробнее о работе:

Автор в своем индивидуальном исследовательском проекте по физике о возможностях магнитного поля привел основные сведения, связанные с открытием данного явления и его использованием. Школьник рассказала о таких методах использования магнитного поля в медицине, как постоянная магнитотерапия, импульсная магнитотерапия, низкочастотная магнитотерапия и магнитно-резонансная томография.

Оглавление

Введение
1. Историческая справка.
2. Понятие о магнитном поле.
3. Применение магнитного поля.
4. Сила Ампера.
4.1. Амперметр.
4.2. Электродвигатель.
4.3. Электромагнит.
4.4. Маглев.
4.5. Телеграф.
4.6. Пушка Гаусса.
4.7. Динамик.
4.8. Сила Лоренца.
4.9. Кинескоп
4.10. Масс-спектограф.
4.11. Циклотрон.
4.12. Синхрофазотрон.
4.13. Магнетрон.
4.14. Магнитное поле в медицине.
4.15. Постоянная магнитотерапия.
4.16. Импульсная магнитотерапия.
4.17. Низкочастотная магнитотерапия.
4.18. Магнитно-резонансная томография.
Заключение
Источники информации.

Введение

Открытие магнитного поля – одно из самых важных научных открытий в истории человечества. Без него было бы трудно представить нашу современную жизнь: не было бы изобретено множество приборов, не были бы получены важнейшие технологии.

Данная исследовательская работа (проект) посвящается изучению применения магнитного поля в различных сферах деятельности человека.

Цель: узнать о практическом применении магнитного поля в науке, технике, медицине.

  • Провести анализ литературы по данной теме;
  • Изучить возникновение и действие магнитного поля;
  • Выяснить, какие силы действуют в магнитном поле;
  • Систематизировать материал, полученный из различных источников о применении магнитного поля в практической жизни.

Историческая справка

И ещё 2600 лет до н.э. китайский император Хванг Ти вёл своё войско в густом тумане с помощью магнитной фигурки, что, поворачиваясь вокруг своей оси, всегда смотрела на юг. Это, как можно догадаться, и был своего рода прототип первого компаса. Уже со второго века н.э. в Китае изготавливались постоянные магниты, надолго сохраняющие магнитные свойства. А в 13 веке о магнитах и компасе узнали в Европе.

магнитное поле 1

Первое научное изучение свойств магнита было предпринято в 13 веке французским ученым Петром Перегрином. В 1269 году вышло его сочинение «Книга о магните», где он писал о многих фактах магнетизма: о том, что у магнита есть два полюса, которые ученый впоследствии назвал северным и южным, и о том, что невозможно отделить полюса друг от друга разламыванием. Перегрин писал и о двух видах взаимодействия полюсов — притяжении и отталкивании.

магнитное поле 2

А в 1600 году вышло сочинение английского придворного врача и физика Уильяма Гильберта «О магните». К уже известным фактам Гильберт прибавил такие важные наблюдения, как: усиление действия магнитных полюсов железной арматурой, потерю магнетизма при нагревании и другие.

магнитное поле 3

Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.

В 1820 г. датский физик Ханс Кристиан Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле.

Его опыт имел большое значения для развития учения об электромагнитных явлениях.

магнитное поле 4

А узнав о работе Эрстеда, французский физик Андре Мари Ампер исследовал взаимодействие параллельных проводников с током. Он установил, что при наличии в проводниках разнонаправленных токов – проводники отталкиваются друг от друга. А если токи имеют одинаковое направление, то проводники будут притягиваться.

магнитное поле 5

Это были два самых известных опыта в истории изучения магнитного поля, которые подтолкнули других учёных делать всё новые и новые исследования в этой области.

Понятие о магнитном поле

магнитное поле 6

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

магнитное поле 7

Свойства магнитного поля:

  • магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами;
  • магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током;
  • магнитное поле является вихревым, т.е. его силовые линии (линии магнитной индукции) замкнутые.

Теперь скажу о двух силах, действующих в магнитном поле:

1. Сила Ампера

Силой Ампера называется сила, которая действует на проводник с током, находящийся в магнитном поле.

Существует и специальный закон об этой силе, называемый законом Ампера: на проводник c током силой ​I​ и длиной ​l​, помещенный в магнитное поле с индукцией ​B⃗ ​, действует сила, модуль которой равен (произведению силы тока на вектор магнитной индукции и на синус альфа):

где ​α​ – угол между проводником с током и вектором магнитной индукции ​B⃗ ​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​B⊥​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

магнитное поле 9

2. Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

F = q* B * V * siin a,

где ​q​ – заряд частицы, ​v​ – скорость частицы, ​B​ – модуль вектора магнитной индукции, ​α​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​B⊥​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

магнитное поле 11

Силы Ампера и Лоренца широко применяются в науке и технике. Сейчас мы это рассмотрим.

Применение магнитного поля. Сила Ампера

Амперметр

Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля.

Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

M – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре.

магнитное поле 15

Электродвигатель

После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

магнитное поле 16

Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока, то при замыкании цепи рамка с током начнет вращение.

Электромагнит

магнитное поле 18

магнитное поле 19

Маглев, или поезд на магнитной подушке, — это состав, который удерживается над дорожным полотном и движется силой электромагнитного поля. В основу маглева положено базовое свойство магнитов: одинаковые полюса отталкиваются, а разные – притягиваются.

магнитное поле 20

Движение поезда осуществляется линейным двигателем – поочерёдно включаются обмотки статора, создавая бегущее магнитное поле. Статор поезда втягивается в это поле и движет весь состав. При этом с частотой 4000 раз в секунду происходит смена полюсов на магнитах путем попеременной подачи тока. Изменение силы и частоты тока позволяет регулировать скорость состава.

магнитное поле 21

Маглев — самый быстрый наземный общественный транспорт. Рекорд скорости был установлен японским поездом Синкансэн L0 в апреле 2015 года — он разогнался до 603 км/ч.

магнитное поле 22

Телеграф

Именно Амперу пришла идея о том, что, скомбинировав проводники и магнитные стрелки, можно создать устройство, которое предает информацию на расстояние.

магнитное поле 23

Идея телеграфа возникла в первые же месяцы после открытия электромагнетизма.

Однако широкое распространение электромагнитный телеграф приобрел после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется: азбука Морзе.

С передающего телеграфного аппарата с помощью «ключа Морзе», который замыкает электрическую цепь, в линии связи формируются короткие или длинные электрические сигналы, соответствующие точкам или тире азбуки Морзе. На приемном телеграфном аппарате (пишущий прибор) на время прохождения сигнала (электрического тока) электромагнит притягивает якорь, с которым жестко связано пишущее металлическое колесико или писец, которые оставляют чернильный след на бумажной ленте (рис. 7).

магнитное поле 24

Пушка Гаусса

Математик Гаусс, познакомившись с исследованиями Ампера, предложил создать оригинальную пушку, работающую на принципе действия магнитного поля на железный шарик или стержень – снаряд: в цилиндрической обмотке (соленоиде) при протекании через нее электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида снаряд, который от этого начинает разгоняться. Если в тот момент, когда снаряд окажется в середине обмотки ток в последней отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки.

Динамик

Так же сила Ампера применяется и в динамиках, чей принцип действия основан на действии магнитного поля постоянного магнита на переменный ток в подвижной катушке: катушка, по которой течет измененный ток звуковой частоты, колеблется в магнитном поле магнита. Вместе с катушкой колеблется диффузор, излучающий звук.

магнитное поле 26

магнитное поле 27

Сила Лоренца

Действие магнитного поля на движущийся заряд широко используют в технике. Достаточно упомянуть телевизионные трубки (= кинескопы), в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками. Иначе телевизионную трубку можно называть электронно-лучевой трубкой.

магнитное поле 28

Масс-спектрограф

Другое применение действие магнитного поля нашло в приборах, позволяющих разделять заряженные частицы по их удельным зарядам, т.е. по отношению заряда частицы к её массе, и по полученным результатам точно определять массы частиц. Такие приборы получили название масс-спектрографов. На рисунке изображена принципиальная схема простейшего масс-спектрографа.

Вакуумная камера прибора помещена в магнитное поле (вектор индукции В перпендикулярен рисунку). Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории r. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко вычислить его массу. Изучить

химический состав грунта, взятого на Луне, например, поможет тот же масс-спектр.

магнитное поле 29

магнитное поле 30

Циклотрон — ускоритель заряженных частиц

На рисунке 25 показано движение заряженных частиц в вакуумной камере циклотрона.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц.

Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

магнитное поле 31

магнитное поле 33

Синхрофазотрон

В 1957 году Советский Союз осуществил революционный научный прорыв сразу в двух направлениях: в октябре был запущен первый искусственный спутник Земли, а за несколько месяцев до этого, в марте, в Дубне начал работать легендарный синхрофазотрон — гигантская установка для исследования микромира. Эти два события потрясли весь мир, и слова «спутник» и «синхрофазотрон» прочно вошли в нашу жизнь.

Синхрофазотрон — это циклический резонансный ускоритель заряженных частиц. Циклический – значит, что частицы циркулируют по замкнутой траектории, которая формируется магнитными полями. Резонансный — что на кольце расположен высокочастотый электромагнитный резонатор, в котором внешним генератором раскачана волна электрического поля; сгусток частиц пролетает этот резонатор на каждом обороте синхронно с колебанием поля, и это электрическое поле его резонансным образом легонько ускоряет (как мама легонько толкает качели, добиваясь большой скорости). Таким образом удаётся электрическим полем с амплитудой в десятки киловольт ускорить частицы до десятков гига(электрон)вольт.

магнитное поле 34

магнитное поле 35

Магнетрон

Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем.

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %), то есть, способны преобразовывать до 80% подводимой к ним электроэнергии в СВЧ-поле.

Магнетроны бывают как не перестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

магнитное поле 37

Магнитное поле в медицине

Магнитное поле широко применяется в медицине. Существует и специальный термин – магнитотерапия.

Магнитотерапия – это метод физиотерапии, в основе которого лежит действие на организм магнитными полями различных параметров.

С лечебно-профилактическими целями используются:

  • постоянное магнитное поле (постоянная магнитотерапия);
  • импульсное магнитное поле (импульсная магнитотерапия);
  • переменное магнитное поле (низкочастотная магнитотерапия).

При постоянной магнитотерапии на организм с лечебно-профилактическими целями воздействуют постоянным магнитным полем. Для получения постоянного магнитного поля (ПМП) используют постоянные магниты из различных материалов и различных конструкций, а также электромагниты с ферромагнитными сердечниками или без них, в обмотках которых течет постоянный электрический ток. Индукция постоянных магнитных полей чаще составляет 30-60 мТл.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Магнитное поле в медицине

Магнитное поле широко применяется в медицине. Существует и специальный термин – магнитотерапия.

Магнитотерапия – это метод физиотерапии, в основе которого лежит действие на организм магнитными полями различных параметров.

С лечебно-профилактическими целями используются:

  • постоянное магнитное поле (постоянная магнитотерапия);
  • импульсное магнитное поле (импульсная магнитотерапия);
  • переменное магнитное поле (низкочастотная магнитотерапия).

При постоянной магнитотерапии на организм с лечебно-профилактическими целями воздействуют постоянным магнитным полем. Для получения постоянного магнитного поля (ПМП) используют постоянные магниты из различных материалов и различных конструкций, а также электромагниты с ферромагнитными сердечниками или без них, в обмотках которых течет постоянный электрический ток. Индукция постоянных магнитных полей чаще составляет 30-60 мТл.

магнитное поле 39

Импульсная магнитотерапия

Этот вид терапии основан на применении с лечебно-профилактическими и реабилитационными целями импульсных магнитных полей низкой частоты.

Действующим фактором в данном методе являются вихревые электрические поля (токи), индуцируемые в тканях мощным импульсным

магнитным полем. Индукционные электрические токи способны вызывать возбуждение волокон периферических нервов. Вследствие чего блокируется афферентная импульсация из болевого очага. За счет возбуждения толстых миелинизированных волокон наблюдается и сокращение иннервируемых ими мышц. Кроме того, это поле за счет наведения импульсных токов вызывает ритмическое сокращение миофибрилл скелетной мускулатуры, гладких мышц сосудов и внутренних органов.

магнитное поле 40

Низкочастотная магнитотерапия

Минимальные эффекты наблюдаются при плотности тока 1-10 мА/м. Такие токи наводятся в тканях при воздействии переменным МП с индукцией 0,5-5 мТл при частоте 50 Гц или 10-100 мТл при частоте 2,5 Гц. Более существенные сдвиги наблюдаются при плотности наведенного тока 10-100 мА/м, который наводится при действии на ткани переменного МП с индукцией 5-50 мТл при частоте 50 Гц или 100-1000 мТл при частоте 2,5 Гц.

магнитное поле 41

Магнитно-резонансная томография

Стоит упомянуть и о таком применении магнитного поля в медицине, как магнитно-резонансная томография. Она используется для исследования внутренних органов и тканей человека с целью диагностировать различные заболевания. Принцип её действия основан на использовании феномена кратковременного резонирования протонов в электромагнитном поле для визуализации тканей в зависимости от наличия в них воды.

магнитное поле 42

Заключение

Итак, мы можем прийти к выводу, что развитие современной цивилизации трудно представить без широкого использования магнитных материалов и магнитного поля. Значительный эффект использования магнитных полей и материалов достигнут в науке: это использование методов ядерного магнитного резонанса, использование магнитного поля для ускорения элементарных частиц и проч.

Эффективно применяется магнитное поле в медицине — для терапии, диагностики, оздоровления и т.д. А применение в различных технических устройствах и бытовых приборах можно перечислять бесконечно. И это лишь неполный перечень применений магнитного поля. А впереди еще более потрясающие открытия магнитных свойств, новых магнитных материалов и уникальных применений магнитного поля в науке, в промышленности, на транспорте, в медицине и т.д.

В каких приборах используется действие магнитного поля на проводник с током?

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Где используется действие магнитного поля на проводник с током

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Сила Ампера зависит от длины проводника с током, силы тока в проводнике, модуля магнитной индукции и расположения проводника относительно линий магнитной индукции: FA = BIlsinа .

Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.

Действие магнитного поля

Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника l и силе тока I в проводнике. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции В. Соответственно, F = BIl . В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записывается в том случае, если линии магнитной индукции перпендикулярны проводнику с током. Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции [В] = 1Н / 1А • 1м = 1 Тл . За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1Н при силе тока в проводнике 1 А.

Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.

Электрический двигатель

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Действие магнитного поля на проводник с током

Действие магнитного поля на проводник с током

Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *