Применение электромагнитных полей и излучений
Основными источниками электромагнитных полей радиочастот являются радиотехнические объекты, телевизионные и радиолокационные станции, термические цехи и участки (в зонах, примыкающих к предприятиям). Электромагнитные поля промышленной частоты чаще всего связаны с высоковольтными линиями электропередач, источниками магнитных полей, применяемыми на промышленных предприятиях.
Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100—150 м. При этом внутри зданий, расположенных в этих зонах, плотность потока энергии, как правило, превышает допустимые значения.
Значительную опасность представляют магнитные поля, возникающие в зонах, прилегающих к электрифицированным железным дорогам. Магнитные поля высокой интенсивности обнаруживаются даже в зданиях, расположенных в непосредственной близости от этих зон.
В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70%) создают паласы, накидки, занавески и т.д. Микроволновые печи в промышленном исполнении не представляют опасности, однако неисправность их защитных экранов может существенно повысить утечки электромагнитного излучения. Экраны телевизоров и дисплеев как источники электромагнитного излучения в быту не опасны даже при длительном воздействии на человека, если расстояние от экрана превышают 30 см.
Электростатическое поле полностью характеризуется напряженностью электрического поля Е (В/м).
Постоянное магнитное поле характеризуется напряженностью магнитного поля Н (А/м), при этом в воздухе 1 А/м ≈1,25 мкТл (Тл — тесла — единица магнитной индукции).
Электромагнитное поле характеризуется непрерывным распределением в пространстве, способностью распространяться со скоростью света, воздействовать на заряженные частицы и токи. Оно является совокупностью двух взаимосвязанных переменных полей — электрического и магнитного, которые характеризуются соответствующими векторами напряженности Е (В/м) и Н (А/м).
В зависимости от взаимного расположения источника электромагнитного излучения и места пребывания человека необходимо различать ближнюю зону (зону индукции), промежуточную зону и дальнюю зону (волновую зону) или зону излучения. При излучении от источников (рис. 5.11) ближняя зона простирается на расстояние λ /2π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний λ · 2π, т.е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.
В зоне индукции, в которой еще не сформировалась бегущая электромагнитная волна, электрическое и магнитное поля следует считать независимыми друг от друга, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным. Для промежуточной зоны характерно наличие как поля индукции, так и распространяющейся электромагнитной волны. Для волновой зоны (зоны излучения) характерно наличие сформированного ЭМП, распространяющегося в виде бегущей электромагнитной волны. В этой зоне электрическая и магнитная составляющие изменяются синфазно и между их средними значениями за период существует постоянное соотношение Е= р в H, где рв — волновое сопротивление, Ом (рв = здесь — электрическая постоянная; — магнитная проницаемость среды).
Колебания векторов Е и Н происходят во взаимно перпендикулярных плоскостях. В волновой зоне воздействие ЭМП на человека определяется плотностью потока энергии, переносимой электромагнитной волной. При распространении электромагнитной волны в проводящей среде векторы ЕиНсвязаны соотношением:
где — круговая частота электромагнитных колебаний, Гц; v — удельная электропроводность вещества экрана; z — глубина проникновения электромагнитного поля в экран; — коэффициент затухания.
При распространении ЭМП в вакууме или в воздухе, где рв = 377 Ом, Е=377 Я, электромагнитное поле несет энергию, определяемую плотностью потока энергии I= ЕН (Вт/м 2 ), которая показывает, какое количество энергии протекает за 1 с сквозь площадку в 1 м 2 , расположенную перпендикулярно движению волны.
При излучении сферических волн плотность потока энергии в волновой зоне может быть выражена через мощность Рист подводимую к излучателю,
откуда напряженность электрического поля (В/м) равна
где R — расстояние до источника излучения.
Воздействие электромагнитных полей на человека зависит от напряженностей электрического и магнитного полей, потока энергии, частоты колебаний, наличия сопутствующих факторов, режима облучения, размера облучаемой поверхности тела и индивидуальных особенностей организма. Установлено также, что относительная биологическая активность импульсных излучений выше непрерывных. Опасность воздействия усугубляется тем, что оно не обнаруживается органами чувств человека.
Воздействие ЭСП на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на электрический ток (резкое отстранение от заряженного тела) возможна механическая травма при ударе о рядом расположенные элементы конструкций, падении с высоты и т.д. Исследование биологических эффектов показало, что наиболее чувствительны к электростатическому полю центральная нервная система, сердечнососудистая система, анализаторы. Люди, работающие в зоне воздействия ЭСП, жалуются на раздражительность, головную боль, нарушение сна и др.
Воздействие МП может быть постоянным от искусственных магнитных материалов и импульсными. Действие магнитных полей может быть непрерывным и прерывистым. Степень воздействия МП на работающих зависит от максимальной напряженности его в пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения по отношению к МП и режима труда. При действии переменного магнитного поля наблюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия. При постоянной работе в условиях хронического воздействия МП, превышающих предельно допустимые уровни, наблюдаются нарушения функций ЦНС, сердечнососудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Длительное действие приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной областях, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца.
При постоянном воздействии ЭМП промышленной частоты наблюдаются нарушения ритма и замедление частоты сердечных сокращений. У работающих в зоне ЭМП промышленной частоты могут происходить функциональные нарушения ЦНС и сердечнососудистой системы, а также изменения в составе крови.
При воздействие ЭМП радиочастотного диапазона атомы и молекулы, из которых состоит тело человека, поляризуются. Полярные молекулы (например, воды) ориентируются по направлению распространения электромагнитного поля; в электролитах, которыми являются жидкие составляющие тканей, крови и т.п., после воздействия внешнего поля появляются ионные токи. Переменное электрическое поле вызывает нагрев тканей человека как за счет переменной поляризации диэлектрика (сухожилия, хрящи и т.д.), так и за счет появления токов проводимости. Тепловой эффект является следствием поглощения энергии электромагнитного поля. Чем больше напряженность поля и время его воздействия, тем сильнее проявляются указанные эффекты. Избыточная теплота отводится до известного предела путем увеличения нагрузки на механизм терморегуляции. Однако, начиная с величины I= 10 мВт/см 2 , называемой тепловым порогом, организм не справляется с отводом образующейся теплоты, и температура тела повышается, что приносит вред здоровью.
Наиболее интенсивно электромагнитные поля воздействуют на органы с большим содержанием воды. При одинаковых значениях напряженности поля коэффициент поглощения в тканях с высоким содержанием воды примерно в 60 раз выше, чем в тканях с низким ее содержанием. С увеличением длины волны глубина проникновения электромагнитных волн возрастает; различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.
Перегрев особенно вреден для тканей со слаборазвитой сосудистой системой или с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), которое обнаруживается не сразу, а через несколько дней или недель после облучения. Развитие катаракты является одним из немногих специфических поражений, вызываемых электромагнитными излучениями радиочастот в диапазоне 300 МГц — 300 ГГц при плотности потока энергии свыше 10 мВт/см 2 . Помимо катаракты при воздействии ЭМП возможны ожоги роговицы.
При длительном действии ЭМП различных диапазонов длин волн умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств в ЦНС с нерезко выраженными сдвигами эндокринно-обменных процессов и изменениями состава крови. В связи с этим могут появиться головные боли, повыситься или понизиться давление, снизиться частота пульса, измениться проводимость в сердечной мышце, произойти нервно-психические расстройства, быстро развиться утомление. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМП происходит стойкое снижение работоспособности. В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового (СВЧ) поля. Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечнососудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления.
5.1.7. Лазерное излучение
В последние десятилетия в промышленности, медицине, при научных исследованиях, в системах мониторинга состояния окружающей среды нашли применение лазеры. Их излучение может оказывать опасное воздействие на организм человека и в первую очередь на орган зрения. Лазерное излучение генерируют в инфракрасной, световой и ультрафиолетовой областях неионизирующего ЭМИ.
Лазеры, генерирующие непрерывное излучение, позволяют создавать интенсивность порядка 10 10 Вт/см 2 , что достаточно для плавления и испарения любого материала. При генерации коротких импульсов интенсивность излучения достигает величин порядка 10 15 Вт/см 2 и больше. Для сравнения отметим, что значение интенсивности солнечного света вблизи земной поверхности составляет всего 0,1—0,2 Вт/см 2 .
В настоящее время в промышленности используется ограниченное число типов лазеров. Это в основном лазеры, генерирующие излучение в видимом диапазоне спектра (λ = 0,44÷0,59; λ = 0,63; λ =0,69 мкм), ближнем ИК-диапа-зоне спектра (λ = 1,06 мкм) и дальнем ИК-диапазоне спектра ( λ = 10,6 мкм).
Область применения лазеров в зависимости от требуемой плотности потока излучения показаны на рис. 5.12.
При оценке неблагоприятного влияния лазеров все опасности разделяют на первичные и вторичные. К первичным относят факторы, источником образования которых является непосредственно сама лазерная установка. Вторичные факторы возникают в результате взаимодействия лазерного излучения с мишенью.
К первичным факторам относятся: лазерное излучение, повышенное электрическое напряжение, световое излучение импульсных ламп накачки или газового разряда, электромагнитное излучение, акустические шумы и вибрация от работы вспомогательного оборудования, загрязнение воздуха газами, выделяющимися из узлов установки, рентгеновское излучение электроионизационных лазеров или электровакуумных приборов, работающих при напряжении свыше 15 кВ.
Вторичные факторы включают отраженное лазерное излучение, аэродисперсные системы и акустические шумы, образующиеся при взаимодействии лазерного излучения с мишенью, излучение плазменного факела.
Лазерное излучение может представлять опасность для человека, вызывая в его организме патологические изменения, функциональные расстройства органа зрения, центральной нервной и вегетативной систем, а также влиять на такие внутренние органы, как печень, спинной мозг и др. Наибольшую опасность лазерное излучение представляет для органа зрения. Основным патофизиологическим эффектом облучения тканей лазерным излучением является поверхностный ожог, степень которого связана с пространственно-энергетическими и временными характеристиками излучения.
При создании условий для безопасной эксплуатации лазеров, прежде всего, необходимо с помощью расчета определить лазеро-опасную зону и сформулировать основные принципы защиты от излучения, а также общие требования к организации рабочих мест, методам контроля и дозиметрической аппаратуре.
Лазероопасная зона — пространство, в пределах которого уровни лазерного излучения могут превышать предельно допустимые значения.
Схема расчета облученности роговицы представлена па рис. 5.13.
При прямом облучении для наблюдателя, находящегося непосредственно в конусе узконаправленного лазерного луча (рис. 5.13, а), облученность роговицы глаза вычисляется по формуле:
где — энергетический поток (мощность) лазерного излучения; — коэффициент ослабления излучения на пути от лазера до роговицы глаза; d0 — диаметр выходного зрачка лазера; — угол расходимости луча, рад; R — расстояние от лазера до глаза.
При воздействии на роговицу глаза излучения лазера, отраженного от поверхности (рис. 5.13, б), расположенной на расстоянии R1 от выходного отверстия лазера, расчет ведут с учетом отражения. Облученность роговицы глаза наблюдателя Ер, находящегося на расстоянии R от поверхности q, значительно превышающем линейные размеры источника, равна произведению энергетической яркости источника на величину телесного угла θ, под которым он виден из точки наблюдения:
где — коэффициент ослабления излучения на пути от площади поверхности Sq до наблюдателя.
Поверхность q как источник излучения удобно характеризовать энергетической яркостью Lе и площадью пятна отражения S q .
При диффузном отражении энергетическая яркость источника связана с энергетическим потоком лазерного излучения соотношением:
где р — коэффициент отражения.
Из анализа приведенных выше соотношений следует, что облученность глаза лазерным источником прямо пропорциональна мощности лазера и обратно пропорциональна квадрату расстояния до облучаемой поверхности.
Облученность кожных покровов численно равна облученности роговицы глаза. При вычислении уровней облученности органа зрения и кожных покровов в производственных условиях, где расстояния не превышают десятков метров, значения коэффициентов kl и kcp можно принять равными единице. Приведенные формулы позволяют связать лучевые нагрузки на различные биологические ткани с энергетической характеристикой источника излучения.
Воздействия лазерного излучения на глаза. Сравнительно легкая уязвимость роговицы и хрусталика глаза при воздействии электромагнитных излучений самых различных длин волн, а также способность оптической системы глаза увеличивать плотность энергии излучения видимого и ближнего инфракрасного диапазона на глазном дне на несколько порядков по отношению к роговице выделяет его в наиболее уязвимый орган. Степень повреждения глаза главным образом зависит от таких физических параметров, как время облучения, плотность потока энергии, длина волны и вид излучения (импульсное или непрерывное), а также индивидуальных особенностей глаза.
Воздействие ультрафиолетового излучения на орган зрения в основном приводит к поражению роговицы. Поверхностные ожоги роговицы лазерным излучением с длиной волны в пределах ультрафиолетовой области спектра устраняются в процессе самозаживления.
Для лазерного излучения с длиной волны 0,4—1,4 мкм критическим элементом органа зрения является сетчатка. Она обладает высокой чувствительностью к электромагнитным волнам видимой области спектра и характеризуется большим коэффициентом поглощения электромагнитных волн видимой, инфракрасной и ближней ультрафиолетовой областей.
Повреждение глаза может изменяться от слабых ожогов сетчатки, сопровождающихся незначительными или полностью отсутствующими изменениями зрительной функции, до серьезных повреждений, приводящих к ухудшению зрения и даже к полной его потере.
Излучения с длинами волн более 1,4 мкм практически полностью поглощаются в стекловидном теле и водянистой влаге передней камеры глаза. При умеренных повреждениях эти среды глаза способны самовосстанавливаться.
Лазерное излучение средней инфракрасной области спектра может вызвать тяжелое тепловое повреждение роговицы.
Из сказанного следует, что лазерное излучение оказывает повреждающее действие на все структуры органа зрения. Основным механизмом повреждений является тепловое. Импульсное лазерное излучение представляет большую опасность, чем непрерывное.
Воздействие лазерного излучения на кожу. Повреждения кожи, вызванные лазерным излучением, могут быть различными: от легкого покраснения до поверхностного обугливания и образования глубоких дефектов кожи. Эффект воздействия на кожные покровы определяется параметрами излучения лазера и степенью пигментации кожи.
Пороговые уровни энергии излучения, при которых возникают видимые изменения в коже, колеблются в сравнительно широких пределах (от 15 до 50 Дж/см).
Биологические эффекты, возникающие при облучении кожи лазерным излучением, с учетом их зависимости от длины волны приведены в табл. 5.9.
Биологические эффекты, возникающие при облучении кожи лазерным излучением
Ультрафиолетовая область | Видимая область | Инфракрасная область |
Различные фотохимические реакции, эритема, разрыв химических связей у большинства молекул, входящих в состав живой ткани, различные перерождения, стимулирование появления новообразований, образование свободных радикалов, действие на внутренние органы | В основном термическое действие | Выраженные деструктивные изменения термического характера (ожоги различной степени), поражение внутренних органов |
Действие лазерного излучения на внутренние органы. Лазерное излучение (особенно дальней инфракрасной области спектра) способно проникать через ткани тела и взаимодействовать с биологическими структурами на значительной глубине, поражая внутренние органы.
Наибольшую опасность для внутренних органов представляет сфокусированное лазерное излучение. Степень повреждения внутренних органов в значительной мере определяется интенсивностью потока излучения и цветом окраски органа. Так, печень является одним из наиболее уязвимых внутренних органов. Тяжесть повреждения внутренних органов также зависит от длины волны падающего излучения. Наибольшую опасность представляют излучения с длинами волн, близкими к спектру поглощения химических связей органических молекул, входящих в состав биологических тканей.
Кроме лазерного излучения, персонал, занимающийся эксплуатацией лазерной техники, может подвергнуться воздействию интенсивного светового и ультрафиолетового излучения, источником которого являются лампы вспышки, газоразрядные трубки и плазменный факел. Излучение незащищенных ламп накачки весьма вредно для глаз. Воздействие излучения ламп накачки возможно при их разъэкранировании, главным образом, при наладке и в случае самопроизвольного разряда. При эксплуатации лазерных установок также следует учитывать и другие опасные факторы, к которым относятся повышенное напряжение в электрической цепи, акустический шум, вибрации и вредные вещества. При эксплуатации лазеров необходимо учитывать также возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы. В табл. 5.10 приведены основные опасные факторы, возникающие при эксплуатации лазерных установок.
Таблица 5.10
Опасности, возникающие при эксплуатации лазерных установок, и источники их возникновения
Опасности | Источник возникновения опасности |
Лазерное излечение: — прямое (зеркальноотражен-ное); — диффузно отраженное | Резонатор лазера, зеркала, оптическая система, мишень при воздействии лазерного излучения |
Напряжение в электрической цепи | Цепи управления и источники электропитания лазера |
Вредные вещества | Мишень при воздействии лазерного излучения, системы охлаждения |
УФ-излучение и инфракрасная радиация | Мишень при воздействии лазерного излучения и газоразрядные трубки |
Шум и вибрация | Мишень при воздействии лазерного излучения, вспомогательное оборудование |
Зоны опасного влияния современных лазерных установок обычно ограничены размерами производственного помещения.
5.1.8. Ионизирующие излучения
Радиация имеет естественное и техногенное происхождение. Чтобы оценить уровень опасности, которую может представлять радиация, рассмотрим свойства ионизирующих излучений и механизмы взаимодействия их с веществом.
Самопроизвольное превращение неустойчивых атомных ядер в ядра другого типа, сопровождающееся испусканием частиц или гамма-квантов, называется радиоактивностью. Известны четыре типа радиоактивности: альфа-распад; бета-распад; спонтанное деление ядер; протонная радиоактивность.
Испускаемые в процессе ядерных превращений альфа и бета-частицы, нейтроны и другие элементарные частицы, а также гамма-излучение, представляют собой ионизирующие излучения, которые в процессе взаимодействия со средой производят ионизацию и возбуждение ее атомов и молекул. При этом примерно половина переданной ионизирующим излучением веществу энергии расходуется на ионизацию и половина на возбуждение. На каждый акт ионизации и возбуждения в воздухе в среднем расходуется 34—35 эВ энергии. Один электронвольт (эВ) — единица энергии, используемая в атомной физике, равная кинетической энергии электрона, приобретаемой им при прохождении разности потенциалов, равной 1В:
1 эВ = 1,6 • 10ˉ 19 Дж = 1,6 • 10ˉ 12 эрг.
Заряженные частицы по мере прохождения через вещество теряют свою энергию малыми порциями, растрачивая ее на ионизацию и возбуждение атомов и молекул среды. Оба эти процесса всегда сопутствуют друг другу. Чем больше масса и заряд частицы, тем более интенсивно происходит передача энергии среде, т.е. тем больше число пар ионов образуется на единице пути, и, следовательно, меньше ее пробег в веществе (рис. 5.14). Длина пробега в воздухе альфа-частиц, испускаемых радионуклидами, энергия которых лежит в пределе 4—9 МэВ, составляет 3—9 см.
Рис. 5.14. Три вида ионизирующих излучений и их проникающая способность
Что же касается бета-частиц (электронов и позитронов), заряд которых в два раза, а масса более чем в 7000 раз меньше, чем у альфа-частицы, то их пробег в воздухе примерно в 1000 раз больше. В мягкой биологической ткани пробеги альфа-частиц составляют несколько десятков микрометров, а бета-частиц 0,02 и 1,9 см соответственно для углерода-14 и калия-42.
Несколько по иному происходит взаимодействие с веществом гамма-излучения (поток фотонов) и нейтронов, которые не обладают зарядами и поэтому непосредственно ионизации не производят. В процессе прохождения через вещество фотон взаимодействует в основном с электронами атомов и молекул среды. При этом в каждом акте взаимодействия фотон придает электрону часть или всю свою энергию. В результате образуются так называемые вторичные электроны, которые в последующих процессах взаимодействия производят ионизацию и возбуждение. Таким образом, в случае гамма-излучения ионизация происходит не в первичных актах взаимодействия, как у альфа и бета-частиц, а как результат передачи энергии вторичным частицам (электронам), которые растрачивают ее затем на ионизацию и возбуждение.
Для оценки радиационной обстановки, формируемой рентгеновским или гамма-излучением, используется внесистемная единица рентген. Рентген (Р) — это единица экспозиционной дозы рентгеновского или гамма-излучения, которая определяет ионизирующую способность в воздухе. При дозе 1 Р в 1 см 3 воздуха образуется 2,082 • 10 пар ионов или в 1 г воздуха — 1,61·10² пар ионов; 1 Р = 2,58·10ˉ 4 Кл/кг.
На практике радиационная обстановка обычно измеряется в единицах мощности экспозиционной дозы — миллирентгенах в час (мР/ч) или микрорентгенах в секунду (мкР/с).
В качестве характеристик меры воздействия ионизирующего излучения на вещество используется величина поглощенной дозы D. Она характеризует поглощенную энергию ионизирующего излучения в единице массы вещества:
где dE — средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме; dm — масса вещества в этом объеме.
Согласно Международной системе единиц (СИ) единицей поглощенной дозы является грей (Гр); 1 Гр соответствует поглощению 1 Дж энергии ионизирующего излучения в массе вещества 1 кг, т.е. 1 Гр = 1 Дж/кг.
Иногда используется внесистемная единица поглощенной дозы — рад; 1 Гр = 100 рад или 1 рад = 0, 01 Гр.
Поглощенная доза является основной величиной, характеризующей не само излучение, а его воздействие на вещество. Однако поглощенная доза не может служить мерой, характеризующей уровень биологического действия ионизирующего излучения на живой организм. Этот уровень зависит не только от величины поглощенной энергии, но и целого ряда других параметров, обусловленных характером и условиями облучения (равномерность распределения поглощенной дозы в организме и т.д.).
Для оценки радиационной опасности, когда реализуются малые дозы излучения, введена эквивалентная доза как мера выраженности эффекта облучения, равная произведению поглощенной в органе или ткани дозы на соответствующий взвешивающий коэффициент для данного вида излучения WR:
Где — средняя поглощенная доза в органе или ткани.
Согласно Международной системе единиц (СИ) единицей эквивалентной дозы является зиверт (Зв); 1 Зв равен эквивалентной дозе, при которой произведение поглощенной дозы в биологической ткани на взвешивающий коэффициент равно 1 Дж/кг. Внесистемная единица эквивалентной дозы — бэр (биологический эквивалент рада); 1 бэр = 0,01 Зв или 1 Зв = 100 бэр.
Взвешивающие коэффициенты учитывают относительную эффективность различных видов излучения в индуцировании биологических эффектов. В настоящее время приняты следующие усредненные взвешивающие коэффициенты WR:
Примечание. Все значения WR относятся к излучению, падающему на тело, а в случае внутреннего облучения — к излучению, испускаемому при ядерном превращении.
Это значит, что биологическая эффективность быстрых нейтронов в 10 раз и альфа-излучения в 20 раз больше, чем бета-частиц и гамма-излучения. Следовательно, радиационный эффект (возможный ущерб здоровью), соответствующий эквивалентной дозе, равной 1 Зв, будет реализован при поглощенной дозе, равной 1 Гр для бета-частиц и гамма-излучения (WR= 1); 0,1 Гр — для быстрых нейтронов (WR= 10); 0,05 Гр — для альфа-частиц (WR = 20).
Эквивалентная доза — основная дозиметрическая величина в области радиационной безопасности, введенная для оценки возможного ущерба здоровью человека от хронического воздействия ионизирующего излучения произвольного состава. Эквивалентная доза может быть использована и при кратковременном воздействии, когда ее значение не превышает 0,5 Зв (50 бэр).
При воздействии разных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для R видов излучения:
В ряде случаев облучению подвергается не все тело, а один или несколько органов. Такая ситуация чаще всего реализуется при внутреннем облучении, т.е. при поступлении радионуклидов в организм с вдыхаемым воздухом или пищевыми продуктами. Радионуклид, как и неактивный нуклид данного химического элемента, накапливается в том или ином органе. В частности, радионуклиды йода поступают преимущественно в щитовидную железу, радия и стронция — в костную ткань, полония — в печень, селезенку, почки и т.д.
Поскольку органы и ткани человека обладают различной радиочувствительностью, то для оценки риска возникновения отдаленных последствий при облучении всего организма или отдельных органов используется понятие эффективной эквивалентной дозы Е. Единица этой дозы — зиверт (Зв). Она так же, как и эквивалентная доза, применима только для хронического облучения в малых дозах и является мерой оценки ущерба здоровью при отдаленных последствиях.
Где — эквивалентная доза в органе или ткани Т; WT — взвешивающий коэффициент для органа или ткани Т, который характеризует относительный риск на единицу дозы по выходу отдаленных последствий при облучении данного органа по отношению к облучению всего тела.
Из представленных данных (рис. 5.15) следует, что при облучении, например, только щитовидной железы (WT= 0,05) эффект по отдаленным последствиям будет составлять всего 5% того эффекта, который может быть реализован при облучении всего тела.
При экспозиционной дозе в 1 Р в месте измерения эквивалентную дозу с достаточной степенью точности можно принять равной 0,013 Зв. Например, если измеренная мощность дозы на местности равна 10 мР/ч, а человек в течение 1 ч находится в месте измерения, то уровень облучения составит примерно 0,1 мЗв.
Кроме рассмотренных выше доз ионизирующего облучения, рассматривается эффективная эквивалентная годовая доза, равная сумме эффективной эквивалентной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной эквивалентной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год. Эффективная эквивалентная годовая доза также измеряется в зивертах.
Рассмотренные выше понятия описывают только индивидуально получаемые дозы. В случае облучения больших групп людей дают оценку суммарного ожидаемого эффекта. При облучении малыми дозами, незначительно превышающими естественный радиационный фон, можно ожидать лишь отдаленных последствий генетической или соматической природы. Соматические эффекты проявляются непосредственно у облученных лиц, генетические — в последующих поколениях. Мерой коллективного риска возникновения эффектов облучения служит эффективная эквивалентная коллективная доза, которая определяется как сумма индивидуальных эффективных доз. Единицей эффективной эквивалентной коллективной дозы является человеко-зиверт (чел.-Зв).
Многие радионуклиды распадаются очень медленно и останутся радиоактивными и в отдаленном будущем, т.е. их воздействию подвергнутся современные и последующие поколения. Коллективную эффективную эквивалентную дозу, которую получат многие поколения от какого-либо радиоактивного источника за все время его дальнейшего существования, называют ожидаемой (полной) коллективной эффективной эквивалентной дозой.
Различные дозы, используемые для оценки последствий воздействия излучения на людей, приведены на рис. 5.16.
В табл. 5.11 приведены основные дозиметрические величины, используемые в радиационной безопасности, и единицы их измерения.
Где применяют электромагниты. Электромагниты и их применение
Существуют четыре фундаментальные силы физики, и одна из них называется электромагнетизм. Обычные магниты имеют ограниченное применение. Электромагнит — это устройство, которое создает магнитное поле во время прохождения электрического тока. Поскольку электричество может быть включено и выключено, то же самое касается и электромагнита. Он даже может быть ослаблен или усилен путем уменьшения или увеличения тока. Электромагниты находят свое применение в различных повседневных электроприборах, в разных областях промышленности, от обычных переключателей до двигательных установок космических аппаратов.
Что такое электромагнит?
Электромагнит можно рассматривать как временный магнит, который функционирует с потоком электричества, и его полярность может быть легко изменена путем изменения направления тока. Также сила электромагнита может быть изменена путем изменения величины тока, протекающего через него.
Сфера применения электромагнетизма необычайно широка. Например, магнитные выключатели являются предпочтительными в использовании тем, что они менее восприимчивы к изменениям температуры и способны поддерживать номинальный ток без ложного срабатывания.
Промышленность
Наверное, все хоть раз, но видели разновидности такого устройства, как электромагнит подъемный. Это толстый «блин» различного диаметра, который обладает огромной силой притяжения и используется для переноски груза, металлолома и вообще любого иного металла. Удобство его заключается в том, что достаточно отключить питание — и весь груз сразу же отцепляется, и наоборот. Это значительно упрощает процесс погрузки и разгрузки.
Сила электромагнита, кстати, рассчитывается по следующей формуле: F=40550∙B^2∙S. Рассмотрим ее более подробно. В данном случае F – это сила в килограммах (также может измеряться в ньютонах), B – значение индукции, а S – площадь рабочей поверхности устройства.
Электромагниты и их применение
Вот некоторые из примеров, где они используются:
- Моторы и генераторы. Благодаря электромагнитам стало возможным производство электродвигателей и генераторов, которые работают по принципу электромагнитной индукции. Это явление было открыто ученым Майклом Фарадеем. Он доказал, что электрический ток создает магнитноее поле. Генератор использует внешнюю силу ветра, движущейся воды или пара, вращает вал, который заставляет двигаться набор магнитов вокруг спирального провода, чтобы создать электрический ток. Таким образом, электромагниты преобразуют в электрическую другие виды энергии.
- Практика промышленного использования. Только материалы, сделанные из железа, никеля, кобальта или их сплавов, а также некоторые природные минералы реагируют на магнитное поле. Где используют электромагниты? Одной из сфер практического применения является сортировка металлов. Поскольку упомянутые элементы используются в производстве, с помощью электромагнита эффективно сортируют железосодержащие сплавы.
- Где применяют электромагниты? С их помощью можно также поднимать и перемещать массивные объекты, например, автомобили перед утилизацией. Они также используются в транспортировке. Поезда в Азии и Европе используют электромагниты для перевозки автомобилей. Это помогает им двигаться на феноменальных скоростях.
Определение
Электромагнит – это специальное устройство, работа которого создает магнитное поле при подаче на него электрического тока. Чаще всего электромагниты состоят из первичной обмотки и сердечника, который обладает ферромагнитными свойствами.
Обмотка изготавливается обычно из медного или алюминиевого провода различной толщины, обязательно покрытого изоляцией. Но существуют и электромагниты из сверхпроводящих материалов. Сами же магнитопроводы делают из стали, железоникелевых сплавов или чугуна. А для того чтобы минимизировать потери на вихревые токи, магнитопроводы конструктивно выполняются из целого набора тонких листов. Теперь мы знаем, что такое электромагнит. Рассмотрим более подробно историю создания этого полезного устройства.
Электромагниты в повседневной жизни
Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.
Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.
Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.
Общая характеристика
Электромагнит – это простая катушка провода, которая подключена к источнику, передающему постоянный ток.
Подключившись к источнику постоянного тока (а также напряжения), катушка и провод начинают получать энергетические ресурсы и создают магнитное поле, которое является подобным полю, что образуется в постоянных полосовых магнитах. Плотность, которой обладает магнитный поток, всегда является пропорциональной величине электрического тока, протекающего сквозь толщу катушки. Полярность электромагнита определяют по направлению тока. Механизм образования включает в себя (самый простой вариант) наматывание провода вокруг сердечника, выполненного из металла, через который потом пропускают электричество из определенного источника. Если внутренняя полость катушка заполнена воздухом, то ее называют соленоидом.
Электромагнит – это устройств, посредством которого можно создавать электромагнитное поле. Главной характеристикой является его способность контролировать силу данного поля, полярность и ее форму. При этом силу магнитного поля контролируют посредством величины использованного электрического тока, который протекает сквозь катушку. Полярность можно задавать, определив в каком направлении нужно двигать протекающий ток. Форма магнитного поля зависит от формы металлической сердцевины, служащей «стержнем» для обмотки проводом. Не забывайте, что полюса электромагнита определяются аналогично тому, как это делают в соленоидах, по физическому правилу правой руки. П.П.Р. также называют правилом буравчика, являющегося мнемоническим средством, посредством которого определяют направление векторных произведений и правого базиса.
Увеличивать силу электромагнита, а точнее его поля, можно при помощи:
- применения сердечников из «мягкого» железа;
- применения больших чисел витков;
- применения электрического тока в больших размерах.
Электромагнитные силы
Силу электромагнитного поля можно регулировать путем изменения электрического тока, проходящего через провода, обернутые вокруг магнита. Если изменить направление электрического тока, полярность магнитного поля также меняется на противоположную. Этот эффект используется для создания полей в магнитной ленте или жестком диске компьютера для хранения информации, а также в громкоговорителях акустических колонок в радио, телевизоре и стереосистемах.
Способы эксплуатации
Наиболее широкой и важной областью применения электромагнитов является сфера конструирования и эксплуатации электрических машин и аппаратов, входящих в систему автоматики в промышленности. Другой важной областью является аппаратура регулировки и защиты электротехнических объектов/установок.
Также электромагниты применяются при изготовлении разнообразных механизмов, в роли привода по которому осуществляется необходимое поступательное перемещение (поворот) рабочего органа определенной машины или для создания удерживающих сил. Примером последних функций может служить электромагнит в составе грузоподъемного механизма/машины.
Существуют электромагниты муфт, необходимых для начала действия торможения или установления сцепления (в машинах), электромагниты, применяемых в пускателях, устройствах контактора и выключателя, а также их используют при создании электроизмерительных приборов и т. д.
Электромагниты – это устройства, которые являются перспективными при конструировании тяговых приводов в скоростных транспортных средствах, где с их помощью создают магнитную подушку. В настоящее время и медицина не обходится без использования электромагнитов. При проведении химических, биологических и физических экспериментов их нередко применяют.
Благодаря широте эксплуатации и конструктивном исполнении, а также масштабе и затратам энергии, электромагниты являются доступными как в быту, так и в любых других сферах деятельности человека. Вес электромагнитов может варьироваться от нескольких грамм до сотни тон, а потребляемое электричество расходуется – от доли Вт до многих десятков МВт.
Магнетизм и электричество
Словарные определения электричества и магнетизма отличаются, хотя они являются проявлениями одной и той же силы. Когда электрические заряды движутся, они создают магнитное поле. Его изменение, в свою очередь, приводит к возникновению электрического тока.
Изобретатели используют электромагнитные силы для создания электродвигателей, генераторов, аппаратов МРТ, левитирующих игрушек, бытовой электроники и множества других бесценных устройств, без которых невозможно представить повседневную жизнь современного человека. Электромагниты неразрывно связаны с электричеством, они просто не смогут работать без внешнего источника питания.
История
Создателем электромагнита считается Уильям Стерджен. Именно он в 1825 году сделал первый подобный магнит. Конструктивно устройство представляло собой цилиндрический кусок железа, вокруг которого был намотан толстый заизолированный медный провод. В момент, когда по нему пускали электрический ток, стержень из металла приобретал свойства магнита. А когда течение тока прерывалось, весь магнетизм устройство сразу же теряло. Именно такое качество – включение и отключение при необходимости – и позволяет применять электромагниты в ряде технологических и промышленных сфер.
Мы рассмотрели вопрос о том, что такое электромагнит. Теперь же разберем основные его виды. Разделяются они в зависимости от способа создания магнитного поля. Но функция их остается одной и той же.
Применение грузоподъемных и крупномасштабных электромагнитов
Электродвигатели и генераторы жизненно важны в современном мире. Мотор принимает электрическую энергию и использует магнит, чтобы превратить электрическую энергию в кинетическую. Генератор, наоборот, преобразует движение, используя магниты, чтобы вырабатывать электричество. При перемещении габаритных металлических объектов используются грузоподъемные электромагниты. Они также необходимы при сортировке металлолома, для отделения чугуна и других черных металлов от цветных.
Настоящее чудо техники — японский левитирующий поезд, способный развивать скорость до 320 километров в час. В нем используются электромагниты, помогающие парить в воздухе и невероятно быстро передвигаться. Военно-морские силы США проводят высокотехнологичные эксперименты с футуристической электромагнитной рельсовой пушкой. Она может направлять свои снаряды на значительные расстояния с огромной скоростью. Снаряды обладают огромной кинетической энергией, поэтому могут поражать цели без использования взрывчатых веществ.
Как устроены плоскошлифовальные станки
Подавляющее большинство деталей, изготовленных из металла, подвергается такой технологической операции, как шлифовка. Для ее выполнения с высокой эффективностью и точностью и применяются станки плоскошлифовальной группы.
Довольно сложный в изготовлении ленточный станок с отличным функционалом
На плоскошлифовальных станках серийных моделей можно обрабатывать как плоские, так и профильные детали. Точность обработки поверхности, которой удается добиться при использовании таких устройств, составляет 0,16 микрон. Конечно, достичь такого результата при обработке на станках, изготовленных своими руками, практически невозможно. Однако даже той точности, которую позволяют получать самодельные станки, вполне достаточно для многих металлических изделий.
Несущим конструктивным элементом станков данной группы (как и любого другого оборудования) является станина. От ее габаритов напрямую зависит, какого размера детали можно обрабатывать на станке
Наиболее распространенным материалом изготовления станин плоскошлифовального оборудования является чугун, так как данный металл за счет своих характеристик отлично гасит вибрации, что особенно важно для устройств подобного назначения
Рабочий стол и органы управления шлифовального станка 3Г71М
Конструктивным элементом плоскошлифовальных станков, на котором фиксируется обрабатываемая заготовка, является рабочий стол, имеющий круглую или прямоугольную форму. Его размеры в зависимости от конкретной модели плоскошлифовального оборудования могут серьезно варьироваться. Обрабатываемые детали на таком рабочем столе могут фиксироваться за счет его намагниченной поверхности либо при помощи специальных зажимных элементов. В процессе обработки рабочий стол совершает возвратно-поступательные и круговые движения.
В плоскошлифовальных станках, выпускаемых серийно, рабочие столы приводятся в движение при помощи гидравлической системы. В оборудовании, собранном своими руками, для этого используют механические передачи.
Шлифовка стальной заготовки, фиксируемой на рабочей поверхности станка с помощью магнитного поля
Важными элементами конструкции плоскошлифовального оборудования, за счет которых обеспечиваются точность и плавность перемещения рабочего стола, являются направляющие. Кроме высокой точности изготовления, направляющие должны обладать исключительной прочностью, так как в процессе практически постоянных перемещений рабочего стола они подвергаются активному износу.
Для достижения высокой точности обработки направляющие должны обеспечить точное, плавное (без рывков) перемещение рабочего стола с минимальным трением соприкасающихся элементов. Именно поэтому для изготовления данных конструктивных элементов используется высокопрочная сталь, которую после изготовления из нее направляющих подвергают закалке.
Вариант изготовления направляющих с использованием уголков и подшипников
Рабочий инструмент плоскошлифовального станка, в качестве которого может использоваться шлифовальный круг или абразивная лента, устанавливается на шпинделе бабки. Вращение рабочему инструменту, за которое отвечает главный электрический двигатель, может передаваться посредством редуктора или ременной передачи.
Для плоскошлифовальных станков, которые делаются своими руками, можно выбрать более простой вариант: подобрать диаметр шлифовального круга таким образом, чтобы его можно было закрепить непосредственно на валу электродвигателя. Это исключит необходимость использования редукторной или ременной передачи.
Где можно применять электромагниты в медицине?
Магнитно-резонансные томографы (МРТ) также работают с помощью электромагнитов. Это специализированный медицинский метод для обследования внутренних органов человека, которые недоступны для непосредственного обследования. Наряду с основным используются дополнительные градиентные магниты.
Где применяют электромагниты? Они присутствуют во всех видах электрических устройств, включая жесткие диски, колонки, двигатели, генераторы. Электромагниты используются повсеместно и, несмотря на свою незаметность, занимают важное место в жизни современного человека.
Другие виды классификации
Существуют и другие способы классификации электромагнитов. Например, их могут различать по полю электромагнита и его статуса: переменное и/или постоянное.
Также бывают классификации, основанные на методах, по которым происходит включение обмотки (последовательное и параллельное включение), на работоспособности и ее характеристике (способные работать в течение длительного времени, прерывистые и кратковременные) и отличные по скорости выполнения задачи (замедленные и быстродействующие).
Техника
Также подобные магниты применяются в различной технике и электронике, и в бытовой сфере, к примеру, в качестве замков. Такие замки удобны тем, что очень быстры и просты в работе, но при этом достаточно в экстренной ситуации обесточить здание — и все они откроются, что очень удобно при пожаре.
Ну и, само собой, работа всех реле устроена на принципах электромагнетизма.
Как видим, это очень важное устройство, которое нашло применение в разных сферах науки и техники.
Расчёты
Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.
Для постоянного тока
Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.
Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.
Дополнительная информация. В основном в интернете ищут расчёты электромагнитов на 12 вольт, сделанных своими руками. В зависимости от потребностей, можно пойти разными путями расчётов. В основном выбирают «рецепты» по определению сечения и длины провода обмотки с питанием от стандартной батарейки формата «А» или «АА».
Для переменного тока
Основой для ЭМ переменного тока является расчёт обмотки. Как и в предыдущем случае, руководствуются исходными требованиями величины МДС. Несмотря на большое количество рекомендуемых формул расчёта, чаще всего «способности» устройства определяют опытным подбором параметров деталей его конструкции. Методики расчёта ЭМ переменного тока всегда можно найти во всемирной информационной паутине (интернете).
Примеры использования ЭМ
В качестве примеров применения электромагнитов можно привести следующие приборы:
- телевизоры;
- трансформаторы;
- пусковые устройства автомобилей.
Телевизоры
Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.
В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.
Трансформаторы
Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.
Пусковое устройство автомобиля
Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.
При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.
Стартер с тяговым реле
Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.
Вращательный соленоид
Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).
Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.
Электромагниты и их применение
Электромагнит создает магнитное поле с помощью обмотки, обтекаемой электрическим током. Для того чтобы усилить это поле и направить магнитный поток по определенному пути, в большинстве электромагнитов имеется магнитопровод, выполняемый из магнитномягкой стали.
Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах — электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи — телефония, телеграфия и радио немыслимы без их применения.
Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах.
Вес электромагнитов колеблется от долей грамма до сотен тонн, а потребляемая при их работе электрическая мощность — от милливатт до десятков тысяч киловатт.
Особой областью применения электромагнитов являются электромагнитные механизмы. В них электромагниты используются в качестве привода для осуществления необходимого поступательного перемещения рабочего органа или поворота его в пределах ограниченного угла, или для создания удерживающей силы.
Примером подобных электромагнитов являются тяговые электромагниты, предназначенные для совершения определенной работы при перемещении тех или иных рабочих органов; электромагнитные замки; электромагнитные муфты сцепления и торможения и тормозные электромагниты; электромагниты, приводящие в действие контактные устройства в реле, контакторах, пускателях, автоматических выключателях; подъемные электромагниты, электромагниты вибраторов и т. п.
В ряде устройств наряду с электромагнитами или взамен их используются постоянные магниты (например, магнитные плиты металлорежущих станков, тормозные устройства, магнитные замки и т. п.).
Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе.
В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы: электромагниты постоянного тока нейтральные, электромагниты постоянного тока поляризованные и электромагниты переменного тока.
В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю.
Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков:(поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов. Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т. е. от направления тока в рабочей обмотке.
Электромагниты переменного тока
В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока.
Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).
Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы.
В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками.
Обмотки последовательного включения , работающие при заданном токе, выполняются с малым числом витков большого сечения. Ток, проходящий по такой обмотке, практически не зависит от ее параметров, а определяется характеристиками потребителей, включенных .последовательно с обмоткой.
Обмотки параллельного включения , работающие при заданном напряжении, имеют, как правило, весьма большое число витков и выполняются из провода малого сечения.
По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах.
По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия.
Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.
Вместе с тем при всем разнообразии встречающихся на практике электромагнитов они состоят из основных частей одинакового назначения. К ним относятся катушка с расположенной на ней намагничивающей обмоткой (может быть несколько катушек и несколько обмоток), неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (ярмо и сердечник) и подвижная часть магнитопровода (якорь). В некоторых случаях неподвижная часть магнитопровода состоит из нескольких деталей (основания, корпуса, фланцев и т. д.). а)
Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.
Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилия в направлении возможного перемещения якоря, являются-паразитными.
Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.
В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты с внешним притягивающимся якорем, электромагниты со втягивающимся якорем и электромагниты с внешним поперечно движущимся якорем.
Характерной особенностью электромагнитов с внешним притягивающимся якорем является внешнее расположение якоря относительно обмотки. На него действует главным образом рабочий поток, проходящий от якоря к торцу шляпки сердечника. Характер перемещения якоря может быть вращательным (например, клапанный электромагнит) или поступательным. Потоки рассеяния (замыкающиеся помимо рабочего зазора) у таких электромагнитов практически не создают тягового усилия, и поэтому их стремятся уменьшить. Электромагниты этой группы способны развивать достаточно большое усилие, но обычно применяются при сравнительно небольших рабочих ходах якоря.
Особенностью электромагнитов со втягивающимся якорем являются частичное расположение якоря в своем начальном положении внутри катушки и дальнейшее перемещение его в катушку в процессе работы. Потоки рассеяния у таких электромагнитов, особенно при больших воздушных зазорах, создают определенное тяговое усилие, в результате чего они являются полезными, особенно при сравнительно больших ходах якоря. Такие электромагниты могут выполняться со стопом или без него, причем форма поверхностей, образующих рабочий зазор, может быть различной в зависимости от того, какую тяговую характеристику нужно получить.
Наибольшее распространение получили электромагниты с плоскими и усеченно коническими полюсами, а также электромагниты без стопа. В качестве направляющей для якоря чаще всего применяется трубка из немагнитного материала, создающая паразитный зазор между якорем и верхней, неподвижной, частью магнитопровода.
Электромагниты со втягивающимся якорем могут развивать усилия и иметь ход якоря, изменяющиеся в очень большом диапазоне, что обусловливает их широкое распространение.
В электромагнитах с внешним поперечно движущимся якорем якорь перемещается поперек магнитных силовых линий, поворачиваясь на некоторый ограниченный угол. Такие электромагниты обычно развивают сравнительно небольшие усилия, но они позволяют путем соответствующего согласования форм полюсов и якоря получать изменения тяговой характеристики и высокий коэффициент возврата.
В каждой из трех перечисленных групп электромагнитов в свою очередь имеется ряд конструктивных разновидностей, связанных как с характером протекающего по обмотке тока, так и с необходимостью обеспечения заданных характеристик и параметров электромагнитов.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Электромагнитное поле: примеры и применение
Изучите воздействие и применение электромагнитного поля: циклотрон, магнетрон и масс-спектрометр. Узнайте, как использовать магнитное и электрическое поля.
Электромагнитные поля находят практическое применение в циклотронах, магнетронах и масс-спектрометрах.
Задача обучения
- Рассмотреть использование масс-спектрометров, перемещение заряженных частиц в циклотроне и методы создания микроволн.
Основные пункты
- Циклотрон – разновидность ускорителя частичек, где элементы с зарядами ускоряются от центра наружу по спиральным дорожкам. Траектория поддерживается магнитным полем.
- Равнорезонаторный магнетрон – мощная вакуумная трубка, генерирующая микроволны, которая основывается на контакте электронов и магнитного поля.
- Масс-спектрометры занимаются вычислением соотношения массы и заряда частиц при помощи электромагнитных полей.
Термины
- Магнетрон – камера специальной формы, где формируется микроволновое излучение.
- Масс-спектрометр – прибор для нахождения массового состава вещества.
- Циклотрон – ускоритель, где заряженные частички генерируются в центральном источнике и ускоряются наружу по спиральным путям.
Обзор
Частички с зарядом в магнитном поле последуют по круговому/спиральному пути, основываясь на выравнивании векторов магнитного поля и скорости. В итоге, это можно использовать в практических целях. Многие приборы в своей основе применяют принцип перемещения заряженных частиц в электромагнитных полях.
Циклотроны и синхротроны
Циклотрон представляет собою тип ускорителя, где частички с зарядами ускоряются от центра наружу по спиральным дорожкам. Статическое магнитное поле сохраняет спиральную траекторию, а ускорения задаются стремительно меняющимся электрическим полем.
Частичка ускоряется в циклотроне и выбрасывается сквозь пучок
Для ускорения пучков заряженных частиц циклотроны применяют высокочастотное переменное напряжение, используемое между двумя D-образными электродами. Дополнительное статическое магнитное поле выступает перпендикулярным по отношению к плоскости электрода, из-за чего частицы постоянно сталкиваются. Поэтому частота напряжения обязана сходиться с частотой циклотронного резонанса частицы:
Частота определяется равенством центростремительной и магнитной силы Лоренца. Введенные ближе к центру частички увеличивают свою кинетическую энергию, поэтому перемещаются по спиральному пути. Радиус будет также расти, пока они не попадут в цель вакуумной камеры или не вылетят из прибора. Подобные ускоренные частички можно использовать для лечения некоторых видов рака.
Синхротрон – улучшенная версия циклотрона, где направляющее магнитное поле основывается на времени и синхронизуется с пучком частичек и ростом кинетической энергии. Это одна из первых концепций ускорителя, с чьей помощью можно создавать крупномасштабные объекты.
Равнорезонаторный магнетрон
Это мощная вакуумная трубка, генерирующая микроволны, основываясь на контакте электронов и магнитного поля. Все они представлены горячим катодом в высоким отрицательным потенциалом, которые формируется из-за высоковольтного источника постоянного тока. Катод вставлен в центр изолированной круглой камеры. Постоянный магнит организовывает магнитное поле. По окружности расставлены цилиндрические полости, открытые вдоль длины и объединяющие пространство общей полости. Когда электроны проходят мимо, то создают резонансное высокочастотное радиополе, что приводит к группировке электронов.
Резонансная частота определяется размерами полостей. Магнетрон – автоматические колебательный прибор, которому из внешних элементов нужен лишь источник питания. Используется в радаре, нагревании (микроволновая печь) и освещении.
Масс-спектрометры
Аналитический метод измерения отношения массы и заряда частички. С его помощью можно вычислить элементарный состав молекулы.
В массовом анализе отделяются ионы. Динамика заряженных частиц в электрическом и магнитном вакуумных полях определяется следующими двумя законами:
Если сравнять их:
Есть много разновидностей масс-анализаторов, применяющих статическое, динамическое, магнитное или электрическое поля. Но все они функционируют на указанных уравнениях.
На нижнем рисунке отображен один из типов масс-спектрометра. Соотношение массы и заряда влияет на отклонение частиц. Если мы сталкиваемся с изотопным диоксидом углерода, то каждая молекула сходится по заряду, но отличается по массе. Прибор разделит частицы и позволит детектору вычислить это соотношение. Заряд нам неизвестен, поэтому абсолютная масса выводится тривиально. Для относительного количества понадобится подсчитать число частичек в каждой заданной массе.