Где используется магнитное действие тока
Перейти к содержимому

Где используется магнитное действие тока

Магнетизм и его практическое применение

Огромный круг явлений природы определяется магнитными силами. Современная наука достаточно глубоко проникла в сущность магнитных явлений и вскрыла их основные закономерности.

Научные и технические применения магнетизма в наши дни столь обширны и многообразны, что делают физику магнитных явлений одним из важных разделов естествознания.

Магнитные свойства обнаруживаются во всем окружающем мире, от мельчайших элементарных частиц до безграничных космических просторов, заполненных магнитными полями.

Магнетизм и его практическое применение

Что такое магнетизм

Магнетизм — особая форма материальных взаимодействий, возникающих между движущимися заряженными частицами. Если источником электрического поля являются электрические заряды, то источником магнитного поля является электрический ток.

Магнитные свойства присущи всем веществам, т. е. все они являются магнетиками. Все вещества реагируют на воздействие внешнего магнитного поля: одни создают диамагнитный эффект, другие — парамагнитный эффект.

В природе встречаются различные поля: гравитационное, магнитное, электрическое и др., обладающие характерными особенностями. Поля недоступны нашему восприятию, однако вид полей, получаемых с помощью спектров поля, исследование сил, действующих в поле, дают возможность представления поля в виде потока.

Магнитный поток в отличие от потоков других полей является всегда замкнутым. В качестве физической величины, характеризующей интенсивность магнитного потока, служит вектор магнитной индукции.

Единица магнитного потока в СИ — вебер (Вб). За единицу магнитной индукции принимают индукцию, при которой через площадь в 1 м 2 , расположенную перпендикулярно направлению магнитного потока, проходит поток в 1 Вб. Эта единица называется тесла (Тл).

Графически магнитный поток является скалярной интегральной величиной и изображается линиями, расположенными таким образом, чтобы во всех точках касательные к ним совпадали по направлению с векторами магнитной индукции.

Магнетизм

Магнитные материалы

Название магнит произошло от того места, где впервые были найдены железные руды, обладающие магнитными свойствами.

Магниты, являющиеся кусками руды магнитного железняка, называются естественными. Они способны притягивать к себе другие стальные предметы. При этом притянутые предметы приобретают способность сами намагничиваться. Такие магниты называются искусственными.

Отличительной особенностью магнита является то, что он притягивает к себе другие предметы неравномерно по всей поверхности. Наиболее сильно проявляется сила притяжения на концах магнита. Эти места называются полюсами магнита. Основным магнитным материалом является железо.

Наилучшими магнитными свойствами обладает железо без примесей. Хорошими магнитными свойствами обладает также электротехническая (легированная) сталь. Поэтому из нее изготавливаются магнитопроводы трансформаторов и других электрических аппаратов и машин.

По способу изготовления электротехническая сталь подразделяется на холоднокатаную и горячекатаную.

В качестве магнитных материалов применяются также специальные магнитные сплавы.

Магнитное поле электрического тока

При прохождении тока по проводнику в пространстве вокруг него возникает магнитное поле, обладающее энергией, которая воздействует на вещества. Для характеристики свойств магнитного поля его действия выражаются через так называемые магнитные линии. Направление их соответствует направлению вращения буравчика при его продвижении вдоль тока.

В отличие от электрических силовых линий, которые начинаются на одном электрическом заряде и заканчиваются на другом, магнитные линии являются замкнутым и. Фактически они распределены вдоль всего проводника. С увеличением тока происходит усиление магнитного поля. Чем ближе к проводнику, тем действие магнитного поля проявляется более сильно.

Если применить проводник в виде спирали виде спирали (соленоид, катушка), то при прохождении по нему тока магнитное поле будет значительно сильнее, чем в прямолинейном проводнике. При этом чем больше витков у этой катушки и чем больше ток, тем сильнее магнитное поле.

В катушке магнитные поля отдельных витков складываются, образуя общее магнитное поле. Для усиления его в катушку вводят железный сердечник, который, в результате воздействия магнитного поля катушки, сам намагничивается и значительно усиливает магнитный поток.

Катушка из изолированной проволоки, в которую вставлен сердечник, изготовленный из материала, хорошо проводящего магнитные линии, называется электромагнитом.

Большинство электромагнитов изготавливается с сердечниками, которые способны быстро намагнититься относительно небольшим током, но после прекращения протекания тока почти полностью размагничиваются. Электромагнит проявляет действие только при протекании по нему тока.

Электромагниты находят самое широкое практическое применение. Они используются для возбуждения магнитного потока в электрических машинах, в электромагнитных реле и т. д.

Подробно о том, как работают магниты и электромагниты смотрите здесь:

Исполнительные электромагниты

Виды магнетизма

В зависимости от значения и знака восприимчивости все вещества условно делят на диамагнетики, парамагнетики и ферромагнетики.

Диамагнетики имеют отрицательную магнитную восприимчивость, в большинстве случаев не зависящую от напряженности поля. Во внешнем магнитном поле диамагнетики намагничиваются в направлении, противоположном внешнему полю.

Диамагнетизм существует во всех веществах независимо от структуры их атомов и видов связи, т. е. в жидком, твердом и газообразном состояниях. Он проявляется в тех веществах, где имеет место полная компенсация как орбитальных, так и спиновых магнитных моментов.

Существует ряд диамагнетиков с аномальным поведением; их восприимчивость значительно больше указанной и зависит от температуры. К таким веществам относятся сурьма, висмут, галлий и таллий. В технике диамагнитный эффект ввиду его малости используется сравнительно редко.

Парамагнетики имеют положительную магнитную восприимчивость. К ним относятся большая часть газов, щелочные металлы, многие соли на основе железа, ферромагнетики при температуре выше точки Кюри.

Парамагнитный эффект возникает в веществах с наличием нескомпенсированных магнитных моментов. Результирующий магнитный момент парамагнетика равен нулю.

Под действием внешнего магнитного поля возникает результирующий магнитный момент, совпадающий с направлением поля. Для большинства парамагнетиков намагниченнсоть зависит от температуры, уменьшаясь с ее ростом (закон Кюри).

Разновидностью парамагнетизма является суперпарамагнетизм, обычно наблюдающийся в тонкодисперсных выделениях ферромагнитных частиц в какой-либо матрице, например в выделениях супермагнитных частиц в сплаве медь—железо (Cu+1%Fe). Кривые намагничивания суперпарамагнетиков существенно зависят от температуры.

Одним из признаков ферромагнетиков является высокое значение магнитной восприимчивости и ее сильная зависимость от напряженности магнитного поля.

Зависимость намагниченности от напряженности магнитного поля неоднозначна, и при всех температурах ниже точки Кюри наблюдается гистерезис.

Даже в отсутствие внешнего магнитного поля отдельные частицы ферромагнетика (домены) находятся в состоянии самопроизвольного намагничивания и имеют результирующий магнитный момент. При воздействии внешнего поля магнитные моменты доменов ориентируются в направлении этого поля и ферромагнитное вещество намагничивается.

Из чистых химических элементов ферромагнитными свойствами обладают элементы группы 3d — металлы (железо, кобальт, никель) и группы 4f — металлы (гадолиний, диспрозий, тербий, гольмий, эрбий, тулий). Практически необозримо число ферромагнитных материалов, причем это в основном металлы и их сплавы.

Существует группа материалов, называемая антиферромагнетиками. Антиферромагнитный эффект заключается в том, что в отсутствие внешнего магнитного поля магнитные моменты одинаковых соседних атомов направлены встречно, так что результирующий магнитный момент домена равен нулю.

Магнитное упорядочение сохраняется до температуры, называемой точкой Нееля. Выше этой температуры вещество переходит в парамагнитное состояние. При воздействии внешнего поля магнитные моменты атомов приобретают ориентировку в направлении этого поля и антиферромагнитное вещество намагничивается.

К антиферромагнетикам относятся чистые металлы: хром и марганец, редкоземельные металлы (церий, празеодим, самарий, неодим, европий).

Материалы с некомпенсированным антиферромагнетизмом называют ферримагнетиками. При температурах выше точки Кюри у ферромагнетиков и точки Нееля у антиферромагнетиков атомное магнитное упорядочение нарушается и вещество переходит в парамагнитное coстояние.

Ферримагнетики получили свое название от ферритов первой группы — некомпенсированных антиферромагнетиков. Сюда относятся соединения окиси железа Fe2O3 с окислами других металлов, например соединения с формулой МеОхFe2О3, где Me — металл (железо, никель, марганец, цинк, кобальт, медь, магний и др.).

Ферримагнетикам свойственна такая же, как и ферромагнетикам зависимость намагниченности от напряженности магнитного поля.

Подробно про диамагнетики:

Подробно про ферромагнетики:

Грузоподъемный электромагнит

Применение магнетизма

Универсальность магнетизма открыла широкие широкие возможности для его применения в науке и технике. Во-первых, это использование магнитных материалов для различных отраслей техники (энергетики, электроники, автоматики и т. д.). Во-вторых, используя информационный аспект магнетизма и измеряя магнитные характеристики, можно получить детальные сведения о физических свойствах веществ и их химическом составе.

Использование методов и средств магнитных измерений положено в основу широко применяемых в технике методов структурного анализа, магнитной дефектоскопии и дефектометрии — важнейших неразрушающих методов контроля качества промышленной продукции.

Непрерывно растет производство конструкционных и электротехнических сталей, низкокоэрцитивных сплавов со специальными свойствами (безгистерезисных, с прямоугольной петлей гестерезиса и др.), выоококоэрцитивных магнитных материалов.

Увеличивается применение миниатюрных магнитных сердечников и систем, энергоемких постоянных магнитов и магнитных пленок. Сейчас трудно найти отрасль техники, в которой не использовались бы магнитные системы, в том числе системы с постоянными магнитами.

В связи с этим контроль качества магнитных материалов и изделий из них, измерение параметров магнитных полей и исследование ферромагнитных материалов и магнитных систем в лабораторных условиях и производстве становятся важной задачей.

В последние годы достигнуты значительные результаты в создании автоматической магнитоизмерительной аппаратуры. Применение унифицированных блоков, узлов и микропроцессоров, серийно выпускаемых промышленностью, значительно ускоряет процесс создания магнито-измерительных систем и комплексов, обеспечивающих автоматическое управление процессом перемагничивания, измерение и обработку результатов с высокой точностью и производительностью.

Магнитная плита на станке

Неразрушающие методы контроля изделий из ферромагнитных материалов

Контроль качества изделий из ферромагнитных материалов неразрушающими методами в настоящее время охватывает многие отрасли промышленности. Широко применяется контроль рельсов на железных дорогах, контролируются сварные швы различных изделий, осуществляется проверка деталей машин и механизмов при их изготовлении.

При неразрушающем контроле изделий из ферромагнитных материалов используются магнитный и вихретоко-вый методы для оценки структурного состояния деталей при термообработке, для обнаружения дефектов в процессе эксплуатации и для определения характера развития трещин, возникающих в деталях под влиянием больших нагрузок.

При применении неразрушающего контроля обеспечивается необходимый запас прочности машин и механизмов и снижается их материалоемкость. Подробнее смотрите здесь: Магнитная дефетоскопия

Применение ферромагнитных материалов в электротехнических устройствах

Самым распространенным компонентом ферромагнитных материалов является железо. Поэтому естественно стремление его возможно шире использовать, но получить свободное от примесей железо практически невозможно.

Наибольшее распространение получило технически чистое железо (низкоуглеродистая электротехническая сталь). Его используют для изготовления сердечников электромагнитов постоянного и переменного тока, полюсных башмаков, магнитопроводов, реле и ряда других устройств, работающих в постоянных и низкочастотных магнитных полях.

Применение низкоуглеродистой стали для работы в переменных полях высокой частоты ограничено из-за низкого удельного сопротивления, обусловливающего большие потери на вихревые токи.

При изготовлении магнитопроводов асинхронных двигателей мощностью до 100 кВт основным требованием, предъявляемым к магнитным материалам, являются высокая проницаемость, малое значение коэрцитивной силы, возможно большее значение индукции насыщения.

Низкоуглеродистая сталь для этих целей выпускается горячекатаной и холоднокатаной. Механические напряжения, возникающие в результате обработки материала, в значительной степени ухудшают магнитные свойства. Внутренние напряжения, возникающие после обработки, снимают отжигом при 725—1000 °С.

При необходимости получения особо высоких магнитных свойств термообработку проводят в вакууме при высокой температуре. Для получения материалов с большим удельным электрическим сопротивлением и большой магнитной проницаемостью при индукции 1,2—1,7 Тл используют легирование железа кремнием (от 0,5 до 4%).

Такая электротехническая сталь нашла широкое применение при изготовлении магнитопроводов электрических машин, силовых трансформаторов и коммутирующей аппаратуры силовых электрических цепей.

В настоящее время холоднокатаные стали вытесняют стали, изготовленные горячей прокаткой. Это происходит из-за более высоких магнитных свойств первых.

Кроме того, более гладкая поверхность холоднокатаных сталей позволяет увеличить коэффициент заполнения объема изделий на 20—30% по сравнению с горячекатаными, а более высокая стоимость их компенсируется значительным уменьшением потерь и в конечном счете массы готовых изделий.

Шихтованный магнитопровод трансформатора

Иные требования предъявляются к материалам магнитных систем электротехнических устройств, работающих на повышенных частотах (до единиц мегагерц). Эти материалы должны обладать большим электрическим сопротивлением. Наибольшее распространение здесь нашли никель-цинковые, марганец-цинковые, ферриты и магнитодиэлектрики.

Обычно параметрами, определяющими выбор типа ферритов и магнитодиэлектриков для этих целей, являются начальная магнитная проницаемость, тангенс угла потерь, удельное электрическое сопротивление.

В настоящее время магнитодиэлектрики вытесняются ферритами, характеризующимися лучшими магнитными свойствами, но имеющими худшие показатели по стабильности и чувствительности к внешним воздействиям.

Повышение стабильности ферритов и снижение их чувствительности к внешним воздействиям (температура, время, подмагничивание) ведет к еще более широкому их применению.

Применение ферромагнитных материалов:

Магнитные материалы в электродвигателе

Ферромагнитные материалы специального назначения

В измерительной технике, электронике, технике связи часто требуются материалы с постоянной магнитной проницаемостью в заданных пределах изменения напряженности намагничивающегося поля (сердечники катушек постоянной индуктивности, дроссели фильтров, измерительные трансформаторы и т. д.). Здесь широко применяются перминвары, изопермы.

Для построения магнитных систем магнитоэлектрических приборов, микрофонов и т. п. широко используются пермендюр, имеющий индукцию насыщения 2,5 Тл. Этот материал используется также для магнитопроводов электромагнитов, силовых трансформаторов, сердечников роторов и статоров электрических машин.

Широкое использование получили магнитные материалы для экранирования устройств от внешних магнитных полей. Различают два вида экранирования: магнитостатическое и электромагнитное.

В первом случае экранируемый объект окружают кожухом из материала с высокой магнитной проницаемостью, через который проходят линии потока внешнего постоянного или медленно изменяющегося магнитного поля.

Электромагнитное экранирование основано на эффекте вытеснения линий потока внешнего переменного поля магнитным полем вихревых токов, индуцируемых в кожухе с высокой проводимостью. С увеличением частоты внешних возмущающих полей эффект магнитостатического экранирования уменьшается, а электромагнитного — возрастает.

Для электромагнитного экранирования применяют магнитные материалы с высокой проницаемостью, малой коэрцитивной силой и низким удельным электрическим сопротивлением, например пермаллой 79НМ. Иногда используют сплав 50Н или низкоуглеродистую сталь.

Подробно про электромагнитное экранирование смотрите здесь:

В области техники звуковых и ультразвуковых частот широко используются магнитострикционные материалы. К таким материалам предъявляются требования максимального коэффициента магнитострикции при возможно меньшей напряженности магнитного поля.

Наилучшими свойствами в этом смысле обладают сплавы на основе платины и кобальта, но их техническое применение ограничено высокой стоимостью. В настоящее время в основном в этой области применяются металлические материалы и реже ферриты.

Современные магнитные материалы:

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

В чем проявляется магнитное действие электрического тока? Объясняем

Люди на протяжении всей известной истории знали о распространённых электрических и магнитных явлениях, порой преподнося их как магию, божественные силы. Ещё древние греки и египтяне знали о взаимодействии железа с магнитами, электризации волос при расчесывании. Разберёмся, в чем проявляется магнитное действие электрического тока, когда его начали изучать, где используется.

В чем заключается магнитное действие тока

Молния – сильный электрический разряд, обладающий магнитными свойствами, что Христиану Эрстеду удалось обнаружить на практике в 1820 году. После он установил: магнитная стрелка, установленная параллельно проводнику, поворачивается перпендикулярно ему при замыкании цепи. Опыт показал наличие вращающих стрелку сил вокруг любого проводника, которые называются магнитными.

Молния – сильный электрический разряд, обладающий магнитными свойствами, что Христиану Эрстеду удалось обнаружить на практике в 1820 году. После он установил: магнитная стрелка, установленная параллельно проводнику, поворачивается перпендикулярно ему при замыкании цепи. Опыт показал наличие вращающих стрелку сил вокруг любого проводника, которые называются магнитными.

Магнитное поле обязательно сопровождает всякое электрическое явление. Оно возникает везде, где есть электрический ток независимо от материала и габаритов проводника. Определяется силой и направлением тока. В технике (механике) электричество нашло применение благодаря магнитному полю. Рассмотрим, где и как оно используется человеком.

Магнитное действие электрического тока: примеры

В технологических процессах и быту магнитные свойства тока применяются в десятках случаев:

  • Сепараторные цели – очистка веществ, например, пищи, от металлических вкраплений. Магниты удаляют из сыпучих материалов металлы: сталь, железо, чугун, их сплавы.
  • Устройства для разделения заряженных частичек.
  • Намагничивание жидкостей, водных растворов.
  • Краны для погрузки, разгрузки, сортировки металлов. Через сильный электромагнит по команде оператора пропускается электрический ток, который включает/отключает магнитное поле, притягивая или отпуская металлолом в нужные моменты.
  • Управление микроорганизмами посредством воздействия на них полевыми образованиями.
  • Электродвигатели – принцип работы основан на электромагнитной индукции – превращение электрической энергии в механическую.
  • Генератор – устройство для преобразования энергии из одного вида в другой.
  • Магнитные пластины, фиксирующие обрабатываемые на шлифовальных станках заготовки.
  • Транспорт – магнитные запоры, датчики.
  • Медицина: магнитно-резонансные томографы.
  • Исполнительные устройства: переключатели, выключатели, задвижки.
  • Компьютерная техника: жёсткие диски, динамики.

Магнитное поле Земли, о котором писал ещё Гилберт, чувствуют и используют животные. По нему ориентируются птицы при перелётах и прочие животные во время миграций.

Магнитное поле Земли, о котором писал ещё Гилберт, чувствуют и используют животные. По нему ориентируются птицы при перелётах и прочие животные во время миграций.

Приведите примеры магнитного действия тока, с которыми сталкивались сами.

Электромагниты и их применение в физике — устройство и принцип работы

Электрический школьный звонок, электродвигатель, подъемный кран на складе металлолома, обогатитель железной руды. Как связаны эти, на первый взгляд совсем разные, устройства? Знающий человек ответит, что в каждом используется электромагнит. Выясним, что такое электромагнит и как он работает.

От чего зависит магнитное действие катушки с током

Соберем электрическую цепь из источника тока, катушки, реостата и амперметра. Для оценки магнитного действия катушки с током воспользуемся железным цилиндром, который подвесим на динамометр, размещенный над катушкой (рис. 6.1). Если замкнуть цепь, цилиндр намагнитится в магнитном поле катушки и притянется к ней, дополнительно растянув пружину динамометра.

Электромагниты и их применение в физике - устройство и принцип работы

Рис. 6.1. Исследование магнитного действия катушки с током

Понятно, что цилиндр будет притягиваться к катушке тем сильнее, чем сильнее магнитное действие катушки.

Изменяя с помощью реостата силу тока в катушке, выясним, что при увеличении силы тока цилиндр катушки с током притягивается к катушке сильнее, о чем свидетельствует большее растяжение пружины динамометра. При увеличении силы тока в катушке ее магнитное действие усиливается.

Заменив катушку на другую, с большим числом витков, увидим, что при той же самой силе тока удлинение пружины динамометра увеличится. При увеличении числа витков в катушке ее магнитное действие усиливается.

Введем в катушку сердечник — толстый стержень из ферромагнитного материала. Включим ток — цилиндр устремится к катушке и «прилипнет» к сердечнику. Магнитное действие катушки значительно усиливается при введении в нее ферромагнитного сердечника.

Устройство электромагнитов и сфере их применения

Катушку с сердечником из ферромагнитного материала называют электромагнитом.

Рассмотрим устройство электромагнита (рис. 6.2). У любого электромагнита есть каркас (1), изготовленный из диэлектрика. На каркас плотно намотан изолированный провод — это обмотка электромагнита (2). Концы обмотки подведены к клеммам (3), с помощью которых электромагнит присоединяют к источнику тока. Внутри каркаса размещен сердечник (4) из магнитомягкой стали. Сердечник часто имеет подковообразную форму, что значительно усиливает магнитное действие электромагнита.

Электромагниты и их применение в физике - устройство и принцип работы

Рис. 6.2. Устройство электромагнита: 1 — каркас; 2 — обмотка; 3 — клеммы; 4 — сердечник

Трудно найти область техники, где бы не применялись электромагниты: во-первых, их магнитное действие легко регулировать — достаточно изменить силу тока в обмотке; во-вторых, электромагниты можно изготовить любых форм и размеров. Электромагниты есть во многих бытовых устройствах (рис.6.3), они входят в состав электродвигателей и электрических генераторов, электроизмерительных приборов и медицинской аппаратуры.

Электромагниты и их применение в физике - устройство и принцип работы

Рис. 6.3. Во многих бытовых приборах используют электромагниты

Гигантские электромагниты используются в ускорителях заряженных частиц (см. «Энциклопедическую страницу» на с. 52-53).

Рассмотрим применение электромагнитов в электромагнитных подъемных кранах и электромагнитном реле.

Принцип действия электромагнитного подъемного крана и электромагнитного реле

Соберем электрическую цепь из источника тока и электромагнита. Замкнув цепь, увидим, что железные опилки притянулись к сердечнику электромагнита и их можно перенести, например, на другой конец стола (рис. 6.4).

Электромагниты и их применение в физике - устройство и принцип работы

Рис. 6.4. После замыкания цепи железные опилки притягиваются к сердечнику (а); после размыкания цепи — отпадают от него (б)

Именно по такому принципу работают электромагнитные подъемные краны, переносящие тяжелые железные болванки, металлолом и т. п. (рис. 6.5). И не нужны никакие крюки! Включили ток — железные предметы притянулись к электромагниту, их перенесли в нужное место, выключили ток — железные предметы перестали притягиваться и остались там, куда их перенесли.

Электромагниты и их применение в физике - устройство и принцип работы

Рис. 6.5. Электромагнитный подъемный кран

На предприятиях часто используют потребители электроэнергии, сила тока в которых достигает сотен и тысяч ампер. Замыкающее устройство и потребитель соединены последовательно, поэтому через замыкающее устройство должен проходить ток большой силы. А это опасно для людей, работающих за пультом управления.

На помощь приходят электромагнитные релеустройства для управления электрической цепью (рис. 6.6). Обратите внимание: замыкающее устройство (1), установленное на пульте управления, и электромагнит (2) присоединены к источнику тока А с малым напряжением на выходе, а потребитель (на рис. 6.6 это электродвигатель) питается от мощного источника В.

Подводим итоги:

Магнитное действие катушки с током усиливается, если увеличить в ней число витков; увеличить силу тока; ввести в катушку сердечник из ферромагнитного материала.

Электромагниты и их применение в физике - устройство и принцип работы

Рис. 6.6. Принцип действия электромагнитного реле. Когда замыкают ключ (1) (нажимают кнопку), в обмотке электромагнита (2) идет слабый безопасный ток, а железный сердечник электромагнита (3) притягивает к себе якорь (4). Когда якорь опускается и замыкает контакты (5), замыкается цепь электродвигателя, потребляющего ток значительно большей силы

Катушку с введенным внутрь сердечником, изготовленным из магнитомягкой стали, называют электромагнитом. Электромагниты широко используют в технике: их можно изготовить любых форм и размеров, их магнитное действие легко регулировать, изменяя силу тока в обмотке.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Химическое и магнитное действие тока (в день науки)

Электролиты, содержащие ионы, под действием постоянного электрического тока подвергаются электролизу — это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Электролиз медного купороса

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом — отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности — это нанесение гальванических покрытий и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

http://electricalschool.info/uploads/posts/2017-04/1492612517_4.png

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Магнитное действие электрического тока

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.

Магнитное действие электрического тока

Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности — заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, — магнитное взаимодействие, а уж потом — механическое. Таким образом, магнитное взаимодействие токов первично.

ЭДС пропорциональна скорости изменения магнитного потока

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах ( например, в промышленных).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *