Irfp250 чем заменить
Перейти к содержимому

Irfp250 чем заменить

IRFP250 аналог IRFP250NPBF и BUZ341

The IRFP250NPBF from International Rectifier is 200V single N channel HEXFET power MOSFET in TO-247AC package. This MOSFET features extremely low on resistance per silicon area, dynamic dv/dt rating, ease of Paralleling, rugged, fast switching, simple drive requirements and fully avalanche rated as a result, power MOSFET are well know to provide extremely efficiency and reliability which can be used in wide variety of applications. . Drain to source voltage (Vds) of 200V . Gate to source voltage of ±20V . On resistance Rds(on) of 75mohm at Vgs 10V . Power dissipation Pd of 214W at 25°C . Continuous drain current Id of 30A at Vgs 10V and 25°C . Operating junction temperature range from -55°C to 175°C

BUZ341 Обзор

SIPMOS® Power Transistor • N channel • Enhancement mode • Avalanche-rated

Полевые транзисторы IRFP250, обзор и немного о применении.

Для одного из моих будущих устройств понадобились мощные полевые транзисторы.
Конечно можно было купить их в оффлайне, но стоят они у нас почти в три раза дороже чем в Китае.
Так как иногда может попасться подделка, а я мог их взять на обзор, то решил попробовать и заодно проверить.
Разборки не будет, но будет сборка 🙂

Для начала хочу сказать, что у меня сегодня небольшой юбилей, это мой сотый обзор, даже сам удивился. Для такого круглого числа мне не хотелось делать обзор какой то банальной и известной вещи, а хотелось сделать обзор того, что мне нравится делать, паять, собирать и т.п. 🙂

Начну обзор пожалуй с того, с чего я начинаю большую часть своих обзоров, с упаковки.
И так же как всегда я спячу ее под спойлер.

Помимо полиэтиленового пакета транзисторы были упакованы в мягкую ленту (не помню как она правильно называется).

Но что меня удивило, каждый транзистор был упакован в собственный пакетик.
Я заказал лот из десяти штук так как по моему ТЗ надо было 8 штук, в наличии были все 10.

Основные технические характеристики из даташита
Напряжение Сток-Исток — 200 Вольт
Сопротивление открытого канала — 0.085 Ома
Максимальный длительный ток — 30 Ампер

О внешнем виде не могу сказать ничего особенного. Как по мне транзисторы как транзисторы.
Хотя с учетом того, что мне они довольно сильно примелькались и я не заметил у тих ничего выделяющегося, то скорее всего все нормально 🙂
Кстати пришли транзисторы IRFP250, а не IRFP250N. На странице магазина в заголовке указаны два типа. Они немного отличаются, транзисторы с буквой N умеют немного лучшие характеристики, например сопротивление открытого канала 75мОм против 85мОм у транзистора без буквы. Но так как для моей задачи это не имело абсолютно никакого значения то я особо и не расстроился. просто надо это иметь в виду.

Естественно я их протестировал. Для этого я сделал такой мини стенд, состоящий из двух регулируемых блоков питания, двух мультиметров и радиатора, на который я установил испытуемый транзистор. Один БП работал в качестве источника тока, второй источника напряжения для затвора транзистора.

Испытывал я при трех напряжениях на затворе, 15, 10 и 5 Вольт.
Но так как 15 и 10 практически не отличались, то на фото попали только значения при 15 и 5 Вольт.
Простой расчет показывает, что сопротивление канала при 15 Вольт составляет 65мОм, а при 5 Вольт соответственно 105мОм, что на мой взгляд вполне вписывается в заявленные характеристики, и даже лучше 🙂 Эксперимент проводился при комнатной температуре.

Так как обзор транзисторов, да и вообще радиоэлементов неинтересен без примера их применения, то естественно я опишу и это.

Не так давно я публиковал пару обзоров, где описывал усилитель сигнала с датчика тока и маленький блок питания.
Этот обзор является логическим продолжением мой эпопеи по конструированию самодельной электронной нагрузки. Я уже описывал такое устройство, но данный вариант планировался еще до него и планировался мощнее, с электронным управлением и прочими фишками. Но сами «мозги» я опишу скорее всего уже в следующем месяце, а вот про силовую часть расскажу сегодня.

Мощность силового модуля я запланировал на уровне 200-300 Ватт, максимальное напряжение до 60 Вольт, ток до 15 Ампер.
В устройстве используется нестандартное напряжение питания управляющей электроники в 8 Вольт. Так же напряжение сигнала управление в 0-250мВ. Это не моя прихоть, это то, что может давать блок управления, потому модуль я подстраивал под него.

Изначально конструкция подразумевала один канал с максимальным током в 5 Ампер и шунтом с сопротивлением 50мОм. Но в описании устройства была возможность навесить еще пару таких же каналов и перекалибровать устройство под ток 15 Ампер.
Я решил пойти немного по другому пути. Для начала я задумал не три, а восемь каналов.
При этом я исходил из модульной конструкции, это упрощает построение и расчет.
Задумывалось 8 каналов, при этом получалось по 2 канала на плату, по 2 платы на радиатор и 2 радиатора на устройство.

Сначала приведу схему силовой части.
Номиналы многих деталей можно менять в широких пределах, так же можно применять разные полевые транзисторы.
У меня получалось что надо получить напряжение с шунта одного канала до 250мВ в полном диапазоне регулировки тока.
Значит выходило 15/8=1.875 Ампера на канал. Соответственно номинал шунта для получения 250мВ составляет 0.25/1.875=0.133(3) Ома. Лучше когда номинал шунта чуть чуть меньше, но не больше, иначе не хватит напряжения регулировки (макс 250мВ).
Я решил не заморачиваться с шунтами и просто купил сотню точных резисторов номиналом 1.33 Ома 1%. При монтаже я использовал 10 штук параллельно, 2х5шт.

По схеме страссировал печатную плату, правда потом выяснилось что площадки для подключения силовых проводов немного мелковаты, лучше их увеличить.
При трассировке я старался делать силовую часть максимально симметричной в месте подключения земляного проводника и измерительного шунта.

После изготовил печатные платы, я сразу сделал 4 штуки на одной заготовке, описание процесса здесь.

Список примененных компонентов.
Резисторы:
1.33 Ома 1% — 80шт (1206)
22 Ома — 8шт (1206)
560 Ом — 4шт (0805)
6.2 КОм — 8шт (1206)
22 КОм — 8 шт (1206)
3 МОм — 8шт (0805)

Конденсатор 220мкФ х 16Вольт 105 градусов. Samwha RD.
Операционный усилитель LM358 — 4шт (SO-8)
Регулируемый стабилитрон TL431 — 4шт (SOT23)
Полевые транзисторы — IRFP250 — 8шт

Платы спаяны. Как я писал, резисторы шунта смонтированы в два слоя по 5 штук в слое.

С обратной стороны присутствует только электролитический конденсатор. Так как платы устанавливаются вблизи элементов с большим выделением тепла, то лучше применять конденсаторы рассчитанные на работу при температуре до 105 градусов.

Так как транзисторы при работе активно выделяют тепло (сама суть электронной нагрузки это переводить все в тепло), то я приготовил пару радиаторов. Эти радиаторы у меня уже мелькали в некоторых обзорах, например в этом, теперь придется искать им замену.
С радиаторов были удалены транзисторы и почти раритетные микросхемы стабилизаторов.
После этого радиаторы были очищены при помощи ватки и спирта 🙂
В конце я немного укоротил их, это был один из самых сложных этапов. Радиаторы имели в высоту 88мм, а корпус имел высоту 84мм. Чтобы удобно было использовать вентиляторы размером 80мм я отрезал по 3мм с каждой стороны. Вот самое сложное и было отрезать эти 3мм в длину и постараться сделать это ровно 🙂
Длина радиаторов 100мм, высота ребра 25мм, тело 4.5мм, радиаторы черненые и имеют 9 ребер.

Разметил крепежные отверстия под вентиляторы, думаю из этого фото уже понятная планируемая конструкция силового модуля.

Разметил и нарезал кучу резьб. Я не стал разбираться где будет верх, где низ, а просто нарезал все симметрично, чтобы потом при сборке не задумываться об этом. Т.е. модуль можно ставить хоть вверх ногами, закрепиться получится в любом случае и крепежные отверстия будут на тех же местах. Для сверления и нарезания резьбы я давно пользуюсь небольшим шуруповертом, очень удобно.

Платы подготовлены к установке. На фото понятен принцип установки. Я долго думал, ставить платы параллельно или перпендикулярно к радиатору, но решил остановиться на параллельном варианте установки как на более компактном.

Радиаторы и все что будет устанавливаться на них, ну или почти все. планируются еще элементы термоконтроля и т.п…
Кстати насчет термоконтроля. Так как устройство выделяет много тепла, то в целях безопасности я установил на каждый радиатор по биметаллическому размыкателю. Температура уставки 90 градусов, ток контактов 10 Ампер, но так как один размыкатель обслуживает только половину общего тока, то думаю что при 7.5 Ампера они будут работать нормально.
Выводы у терморазмыкателей разные, к одному можно припаяться нормально, ко второму нет, для меня это было новостью. Но так получилось, что я случайно разместил их одинаково, потому одноименные контакты припаяны, для вторых я использовал клеммы, к которым уже припаивал провод. Будьте внимательны.

Первая примерка. Еще без термопасты, просто посмотреть как оно получается вместе.
При креплении транзисторов я использовал родные отверстия оставшиеся от предыдущих элементов. у меня получилось так, что каждый транзистор стоит примерно в центре своей четверти радиатора, при повторении лучше стремиться именно к такому расположению транзисторов.

Для соединения я взял кучку разных проводов. попались даже какие то аудиофилские, вроде как посеребренные, но при этом мне было удобно то, что они свиты из очень большой кучи тоненьких жилок и соответственно очень мягкие и имеют при этом сечение в 2.5мм.
Этот кабель я использовал для соединения земляной цепи.

При соединении я использовал принцип «звезда», т.е. все земляные провода сводятся в одну точку, расположенную так, чтобы сопротивление до каждой из плат было идентичным, это позволит равномерно распределить ток между модулями.

Модуль почти собран. Для разводки проводов я использовал отверстия оставшиеся от старых элементов.

В качестве нагнетающего вентилятора использован вентилятор фирмы Sunon EE80251S1-A99, вентилятор подбирался исходя из небольшой цены и большой производительности.

Вытяжной вентилятор фирмы Thermaltake, S0801512M, был в наличии и используется потому, что требовалась небольшая толщина. Корпус очень маленький, потому с местом проблемы.
В работе планирую использовать питание до 15 Вольт, но проверял и при 20, работали нормально.

Соединение земляных проводников располагается между радиаторами. Это далеко не самое лучшее решение, как и размещение каких либо проводов там вообще. Но вариантов у меня не было, в обход пускать провода было слишком далеко. Снизу или сверху нереально вообще. Буду рад предложениям по улучшению конструкции.
Верхняя и нижняя щель между радиаторами будет конечно закрыта, опять же, еще не решил чем, думаю пока просто заклеить парой слове скотча.

Силовой модуль собран, спаян, осталось только проверить 🙂

На всякий случай (вдруг кто то решится повторить) более детальное фото.

Ну и как же без проверки 🙂
В эксперименте я настроил нагрузку на ток в 5 Ампер и подал 40 Вольт (на самом деле 41).
Рассеиваемая мощность составила 204 Ватта. Больше давать пока не стал так как в эксперименте работал всего один вентилятор (тот что виден на фото, кажется что он стоит), который был включен от 8 Вольт и не были закрыты щели между радиаторами.
Управляющее напряжение я подавал с переменного резистора.
Получилось по 25 Ватт на каждый из транзисторов. Кстати, пускай вас не вводит в заблуждение указанная в даташите максимальная рассеиваемая мощность транзисторов. В линейном режиме лучше стараться не превышать 25-30% от заявленной так как может начаться выход из строя ячеек кристалла транзистора (полевые транзисторы как бы набраны из большого количества мелких).

Я считаю что данный этап проекта закончился успешно, планирую в ближайшем времени продолжить или вернее полностью закончить данное устройство. Описание этого процесса будет в одном из обзоров следующего месяца.

Резюме.
Плюсы
Транзисторы полностью работоспособны.
Сопротивление открытого канала даже меньше чем в даташите
Заявленная в магазине цене довольно неплохая.

Минусы
Пока не обнаружены

Я не смог полноценно проверить максимальное напряжение, производитель заявляет 200 Вольт, я смог набрать дома только 160, пробоя не было, так что думаю в этом плане так же все нормально.
По хорошему неплохо было бы раскрыть и посмотреть размеры кристалла, но как то совсем жалко ломать рабочие компоненты.

Надеюсь что обзор был интересен, как всегда жду комментариев, предложений и советов 🙂
И да, как всегда, материалы для скачивания.

Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Схемы самодельного зарядного устройства с регулировкой тока и напряжения

Практически каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядки аккумуляторной батареи стационарным зарядным устройством (СЗУ). Причин тут множество – частые пуски, короткие поездки, длительные стоянки. Но для того чтобы батарея служила долго, она должна не только быть постоянно заряженной, но и правильно заряжаться. В этой статье мы рассмотрим несколько схем регуляторов зарядного тока. Ведь этот узел – неотъемлемая часть любого «правильного» СЗУ.

Простые зарядные устройства с ручной регулировкой

Начнем с простых устройств, позволяющих вручную регулировать параметры зарядки. Поскольку большинство аккумуляторных батарей легковых автомобилей имеет емкость не более 100-120 Ач, зарядного устройства, обеспечивающего ток до 10 ампер, будет вполне достаточно.

Простой регулятор с балластными конденсаторами

Сделать такое зарядное устройство, не имеющее дефицитных деталей, сможет каждый, умеющий пользоваться мультиметром и держать в руках паяльник. Взглянем на схему, приведенную ниже.

Схема зарядного устройства

Схема простого зарядного устройства с балластными конденсаторами

Устройство состоит из понижающего трансформатора Tr1, мощного выпрямителя, собранного на диодах VD1-VD4 и набора конденсаторов разной емкости С1-С4. Каждый из конденсаторов может включаться в цепь питания трансформатора при помощи отдельного выключателя S2-S4. Емкости конденсаторов подобраны так, что каждый последующий обеспечивает выходной ток ЗУ вдвое больший, чем предыдущий.

В зависимости от номинала и количества подключенных конденсаторов будет изменяться выходное напряжение, а значит, и зарядный ток. Комбинируя конденсаторы выключателями S2-S4, можно изменять зарядный ток от 1 до 15 А с шагом 1 А, что более чем достаточно для зарядки любой АКБ.

Напряжение на клеммах аккумуляторной батареи, подключенной к клеммам XS2, XS3, можно контролировать при помощи вольтметра PU1. Величину зарядного тока покажет амперметр PA1. Выключателем питания служит тумблер S1.

В конструкции можно использовать любой сетевой трансформатор (можно самодельный), обеспечивающий ток не менее 10 А при выходном напряжении 22-24 В. Диоды Д305 можно заменить на любые выпрямительные, рассчитанные на прямой ток не менее 10 А и выдерживающие обратное напряжение не ниже 40 В. Диоды выпрямительного моста необходимо установить на изолированные друг от друга радиаторы с площадью рассеяния не менее 100 см 2 каждый.

Важно! Если полупроводники будут устанавливаться на один общий радиатор, то это нужно делать через изолирующие слюдяные прокладки. При этом рассеиваемая площадь радиатора выбирается не менее 300 см 2 .

Конденсаторы C2-C4 – неполярные, бумажные, рассчитанные на рабочее напряжение не ниже 300 В. Подойдут, к примеру, МБГЧ, МБГО, КБГ-МН, МБМ, МБГП, которые широко использовались в качестве фазосдвигающих для асинхронных двигателей бытовой техники. На месте PU1 может работать любой вольтметр постоянного тока с пределом измерения 30 В. PA1 – амперметр с пределом измерения 20-30 А, в качестве которого удобно использовать любой микроамперметр с соответствующим шунтом.

С плавной регулировкой тока зарядки

Следующая схема сложнее, где в качестве регулирующего элемента использует тиристор. Преимущество данной конструкции – плавная регулировка выходного напряжения, а значит, и зарядного тока. Диапазон регулировки – 0-10 А. Принцип работы СЗУ – фазоимпульсное управление ключом (тиристором).

Схемы самодельного зарядного устройства с регулировкой тока и напряжения

Прибор состоит из силового трансформатора T1, выпрямительного моста, собранного на мощных диодах VD1-VD4, и схемы регулировки тока, собранной на транзисторах VT1, VT2 и тиристоре VS1. Переменное напряжение величиной 18-22 В поступает со вторичной обмотки силового трансформатора на выпрямительный мост. Выпрямленное, оно подается на схему регулировки. В начале полуволны начинает заряжать конденсатор С2. Скорость его зарядки можно плавно регулировать переменным резистором R1.

Как только конденсатор зарядится до определенной величины, откроется аналог однопереходного транзистора, собранный на элементах VT1, VT2. Конденсатор быстро разрядится через управляющий электрод тиристора, последний откроется и будет находиться в таком состоянии до окончания этой полуволны. При появлении следующей процесс повторится.

В качестве силового подойдет любой сетевой трансформатор с напряжением на вторичной обмотке 18-22 В при токе не менее 10 А. На месте VT1, кроме указанного, могут работать КТ361Б-КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж-KT501K. Вместо КТ315А подойдут КТ315Б-Д, КТ3102А, КТ312Б, КТ503В-Г, П307. В качестве С2 могут использоваться конденсаторы типа МБГП, К73-17, К42У-2, К73-16, К73-11 емкостью 0.47-1 мкФ. Вместо КД105Б подойдут КД105В, КД105Г или Д226 с любой буквой. Переменный резистор R1 типа СПО-1, СП-1, СПЗ-30а.

Амперметр PA1 – любой с током полного отклонения 10 А. Вместо мощных выпрямительных диодов Д245 подойдут любые из серий КД213, КД203, Д245, КД210, Д242, Д243, выдерживающие ток не менее 10 А и обратное напряжение на ниже 50 В. Их необходимо установить на радиаторы площадью не менее 100 см 2 . Тиристор КУ202В можно заменить на КУ202Г-Е и даже на Т-160 или Т-250. Он тоже устанавливается на радиатор.

Полезно! Если выходное напряжение трансформатора несколько выше 22 В (скажем, 24-28 В), то можно использовать и его. Единственное, при этом необходимо номинал резистора R5 увеличить до 200 Ом.

С зарядкой ассиметричным током

Это зарядное устройство имеет предел регулировки тока от 0 до 10 А и производит зарядку ассиметричным током, при котором определенное время батарея заряжается, а остальную часть – разряжается током около 600 мА. Это существенно продлевает жизнь АКБ и предотвращает сульфатацию.

Схемы самодельного зарядного устройства с регулировкой тока и напряжения

Здесь регулировка зарядного тока производится по высокому переменному напряжению при помощи симметричного тиристора (симистора). Принцип регулировки тот же, что и в предыдущей схеме, – фазоимпульсное управление. Но схема регулятора выглядит и работает несколько иначе.

В начале положительной полуволны зарядка конденсатора С2 происходит через резистор R3 и диод VD1 диодного моста VD1-VD4. Как только конденсатор зарядится до напряжения зажигания газоразрядной лампы HL1 (время зарядки зависит от положения движка переменного резистора R1), последняя зажжется. Конденсатор быстро разрядится через управляющий электрод симистора, и он откроется, подавая напряжение на сетевую обмотку понижающего трансформатора Т1.

В таком состоянии симистор будет находиться до окончания полупериода. При отрицательной полуволне конденсатор будет заряжаться через резистор R5 и диод VD2. При этом полярность напряжения будет противоположной предыдущей. Снова разряд в лампе, тиристор открывается, пропуская на обмотку уже отрицательную полуволну.

Пониженное напряжение, величина которого зависит от положения движка R1, выпрямляется диодами VD5, VD6 и подается на клеммы аккумуляторной батареи, производя ее зарядку выбранным нами током. После закрытия симистора и до следующего его открытия батарея разряжается через нагрузочный резистор R6, обеспечивающий разрядный ток порядка 600 мА.

Зарядный ток можно контролировать при помощи амперметра PA1, прибор PV1 показывает напряжение на клеммах АКБ.

Важно! Устанавливая величину зарядного тока по амперметру, необходимо учитывать и ток (600 мА), протекающий через резистор R6. То есть, если мы установим на приборе 6 А, фактический зарядный ток, протекающий через АКБ, будет составлять 6 – 0.6 = 5.4 А.

О деталях. В качестве сетевого подойдет любой трансформатор соответствующей мощности (выдаваемый ток не менее 10 А) с выходным напряжением 20 В и отводом от середины. Если вторичная обмотка не имеет отвода от середины, то можно использовать выпрямитель, собранный по мостовой схеме. Диоды VD5, VD6 – любые мощные выпрямительные на ток не менее 10 А и обратное напряжение не ниже 40 В.

VD1-VD4 можно заменить на любые выпрямительные, выдерживающие ток не менее 200 мА и напряжение 300 В. Конденсаторы С1, С2 – пленочные или бумажные, неполярные. Симистор можно заменить на КУ208В. Амперметр PA1 имеет предел измерения 15-20 А, вольтметр PV1 – 20 В. Мощные выпрямительные диоды VD5, VD6 и симистор VS1 необходимо установить на радиаторы. При этом диоды можно установить на общий радиатор без изолирующих прокладок. Диоды VD1-VD4 в радиаторе не нуждаются.

Схемы регуляторов тока на микросхемах

Выше мы рассмотрели несколько схем зарядных устройств с ручной регулировкой. Основной их недостаток – отсутствие стабилизации. В процессе зарядки АКБ ток через нее уменьшается, а это значит, что придется постоянно контролировать и подстраивать этот параметр. Но построить стабилизированный источник питания ненамного сложнее. Для начала несколько схем регулятора тока для зарядного устройства со стабилизацией, которые можно использовать для построения стационарных ЗУ.

Стабилизатор

Эта схема позволяет заряжать шести- и двенадцативольтовые батареи током одной, заранее установленной стабильной величины до 10 ампер.

Схемы самодельного зарядного устройства с регулировкой тока и напряжения

Стабилизатор тока для зарядного устройства

Сердцем узла является интегральный стабилизатор напряжения, включенный по схеме токовой стабилизации. Величина зарядного тока будет зависеть от номинала резистора R4, который можно рассчитать по формуле:

I = 1. 2/R ,

  • I – необходимый зарядный ток в А;
  • R – номинал резистора R4 в Ом.

Поскольку сама по себе микросхема КР142ЕН12А маломощная, для обеспечения большей мощности используются транзисторные ключи T1 и T2, включенные параллельно. Резисторы R1 и R2 – токовыравнивающие. Они компенсируют разброс параметров транзисторов.

Несмотря на токовыравнивающие резисторы желательно подбирать транзисторы с как можно более близкими коэффициентами передачи.

Резисторы R1, R2, R4 изготавливаются из отрезков обмоточного провода необходимой длины, которые для большей компактности свернуты в спираль. Транзисторы VT1 и VT2 можно установить на один общий радиатор без изолирующих прокладок. Площадь рассеяния радиатора – 300 см 2 . Если на место R4 установить мощный реостат сопротивлением 0.8 Ом, то легко получить регулируемый стабилизатор.

Регулятор-стабилизатор

Эта схема является регулируемым стабилизатором и в отличие от предыдущей имеет более высокий КПД, поскольку рассеиваемая мощность на токозадающем резисторе намного меньше из-за его низкого сопротивления.

Схема регулятора-стабилизатора тока

Узел собран на операционном усилителе LM358 и полевом транзисторе IRFZ44. Регулировка зарядного тока производится при помощи переменного резистора R3. Резистор R5 является токозадающим.

При указанных на схеме номиналах R5 регулировка будет производиться в диапазоне 0 … 8 А. Если необходимы большие величины, то номинал резистора нужно уменьшить.

На месте T1 может работать транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Полевой транзистор устанавливаем на радиатор.

Регулятор тока и напряжения

И напоследок рассмотрим схему, которая будет полезна для конструирования зарядного устройства с регулировкой напряжения и тока. Подойдет она и в качестве лабораторного источника питания. Устройство обеспечивает плавную регулировку напряжения в диапазоне 2.4-28 вольт и регулировку ограничения тока от 0 до 15 ампер. По сути, это готовое зарядное устройство-автомат, достаточно добавить к схеме силовой трансформатор с выходным напряжением 18-22 В и способный обеспечить ток до 15 А.

Схемы самодельного зарядного устройства с регулировкой тока и напряжения

Регулятор напряжения собран на транзисторах Т1 Т2 и регулируемом стабилитроне D1 по схеме обычного параметрического стабилизатора. Величина выходного стабилизированного напряжения регулируется при помощи переменного резистора P1. Стабилизатор-регулятор тока выполнен на интегральном стабилизаторе напряжения DD1 и мощном полевом транзисторе T3. Регулировка осуществляется при помощи переменного резистора P2. Схемы обоих узлов классические и особых пояснений не требуют.

Единственное, скажем пару слов о назначении светодиодов Led1 и Led2. Они служат для индикации правильного подключения СЗУ к аккумуляторной батарее. Если полярность верная, то загорится индикатор Led1: можно подключать зарядное устройство к сети и начинать зарядку. Если полярность перепутана, то загорится Led2. Пока прибор не включен в сеть, ему ничего не грозит. Просто меняем полярность на правильную.

Полезно! Зарядка батареи производится следующим образом. Резистором P1 устанавливаем конечное напряжение зарядки (14.5 В), резистором P2 – начальный ток заряда (0.1 от емкости батареи). В процессе зарядки АКБ напряжение на ее клеммах будет увеличиваться, и как только оно достигнет установленного нами значения, ток зарядки упадет до 100-200 мА, процесс закончен.

В устройстве вместо моста KBPC2510 можно использовать любые мощные выпрямительные диоды (VD1-VD4), выдерживающие ток не менее 15 А и обратное напряжение 50 В. Транзистор TIP35C можно заменить на КТ867А, TIP41С – на КТ805 или КТ819. Диоды и транзисторы нужно установить на радиаторы площадью не менее 100 см 2 каждый. Если используется мост, то он тоже должен иметь радиатор. Аналоги управляемого стабилитрона TL431 – КР142ЕН19А, К1156ЕР5Т, KA431AZ, LM431BCM, HA17431VP, IR9431N.

Интегральный стабилизатор напряжения L7812CV заменим на LM7812CT, UA7812CKC KA7812A, MC7812CT, КР142ЕН8Б. Полевой транзистор IRFP250 можно заменить на IRFP260. Ему тоже нужен радиатор. Светодиоды – любые индикаторные, желательно разного цвета свечения.

Подведем итоги

Итак, мы выяснили, что схем, позволяющих регулировать параметры зарядки аккумуляторной батареи, немало. Сложные и простые, с широким функционалом и просто стабилизаторы – выбирать есть из чего. Ну а тем, кого не удовлетворила, надо признать, довольно скромная подборка конструкций, можно рекомендовать статью «как сделать зарядное устройство для автомобильного аккумулятора своими руками» и несколько роликов по теме.

Есть у меня такая традиция — печку каждый год чинить…

Доброго времени суток, уважаемые товарищи. Поздравляю вас с прошедшими/наступившими праздниками и все с таком духе. Подобленился я чет писать сюда, а с учетом того, что писать особо и нечего то и руки не доходили. Ну там бампер передний крякнул, колеса поменял, дворники… Скукотища. В общем ржавеем потихоньку и ничего интересного не происходит в целом ))) А если все же о теме, то следовало бы написать в заголовке что-то типа ‘хроники моего личного идиотизма’, но…

Итак, начнем немного издалека и сделаем охренитительный флешбек даже вернемся к моменту покупки машины:

Зима 1: Твою мать, да что-ж так холодно-то, грею машину минут по 10, а теплеть начинает только когда уже подъезжаю к работе…
Зима 2: Агонь, ништяк, вот это я понимаю пошла жара в хату. Живем.
Зима 3: Кажется без проишествий. А нет, сдох мотор печки. Купил ‘контрактную’ нижнюю половину печки с мотором и крыльчаткой, ура, работает.
Зима 4: Мотор ‘контрактной’ печки сдох, ушла ось вращения, проточив нехилую канавку в верхней части мотора и перемолотив внутри себя магниты и остальную нутрянку. Параллельно задубел и лопнул кусок шланга от выхода печки до электропомпы и травило антифриз. Пофиг, пляшем, предварительно пообщавшись со знакомыми жигулистами и купив мотор с крыльчаткой от таза (Pekar 21238118020).
Весна 4.1: Надо-бы поменять антифриз. Причем поменять ‘по умному’, выкрутив сливную пробку из блока. Выкрутил, слил, закрутил, трещина по внутренней резьбе… Поменял антифриз, приехали. Благо нашел человека, который исправил этот косяк в течение 15 минут и заварил пробоину моего судна корыта. Промыл систему охлаждения. Антифриз в этот раз решил залить тож концентрат HEPU, но теперь G11 зеленого цвета (P999-GRN).

Ввиду того, что имеется у меня такая штуковина, как дистанционный запуск двигателя, то очень уж полюбил я в зиму пользоваться обогревом салона авто в режиме климат контроля. На мой взгляд плюсы тут очевидны. Если печку оставить работать в ручном режиме на максимум, или на минимум, то через 10 минут работы авто имеем либо холодный двигатель и салон, либо прогретый двигатель и не прогретый салон. А вот если оставить в режиме авто и накрутить температуру градусов 25, то при запуске печка сперва молчит, ждет когда чутка растеплеется под капотом, а дальше уже постепенно и в растяжечку повышает обороты мотора печки от нуля до максимума (такое впечатление, что в режиме климата число положений регулятора вращения не 4, а около 8) и на выходе мы имеем прогретый мотор и теплый салон. Красота.

Небольшой хинт для тех, у кого имеется климат. Как только вы зимой выставляете температуру и жмакаете кнопку AUTO на климате, направление обдува перебрасывается в ноги, но… Если при этом не трогать регулятор оборотов печки, а просто поменять направление обдува скажем на ноги-стекло, то направление обдува зафиксируется, а мощность оборотов вращения вентилятора останется в автоматическом режиме, хотя на дисплее будет светиться MANUAL. Вот такой-вот полуклимат с заданным нами направлением обдува.

Так вот, в один херовый прекрасный день погружаю я свою тушку в салон машины и чую, что как-то непривычно прохладно. Печка молотит на всю катушку, движок холодный. Пытаюсь сбавить обороты — а хрен там. Пытаюсь ее вообще выключить — а хрен там, продолжает молотить на всю катушку. И что делать? муравью, ска, йух приделать Лезем в гугл. И сразу-же натыкаемся на пост товарища Goddfatherr , за что ему огромный респект, читаем и понимаем, что у нас сдох транзистор NEC K2500 в терморегуляторе. Где его взять? В нашей глухомани нигде, но у нас есть Чип и Дейл с доставкой через евросеть, которые всегда придут на помощь. Полазив чутка по чипу и дейлу, нужного транзистора я не нашел, но нашел рекомендуемый многими аналог IRFP064NPBF. Отлично, его и берем. На этом моменте по идее должен был наступить хеппи енд, но это явно не про меня и не про мой ниссан (давно надо было его святым бензином побрызгать и провести очищение огнем, достал меня падла уже всякими мелочами и не очень). Далее снова будет небольшая хронология событий, которая на данный момент меня поставила в тупик и немного фоток процесса моих приключений.

1. Получаю на руки тот самый IRFP064NPBF. Гуглю процесс замены, перепаиваю, ставлю обратно — работает. На радостях аж 3 раза включил и выключил машину — работает. Этим-же вечером включаю машину, печка полностью потухла.
2. Гуглим дальше — скорее всего сдох теперь уже термопредохранитель, который у нас на 140 градусов и на 2 ампера. Временно вылечить данную проблему можно замкнув два контакта на фишке, которая подключается к терморегулятору. Печка снова лупит в режиме максимум. Немного неудобно, но ездить можно. Топаем опять в чип и дейл и покупаем парочку термопредов с похожей температурой, но рассчитанных на больший ток (двухамперных не нашел к сожалению) ZH103-139 и ZH103-145. По маркировке понятно, что первый рассчитан на 139 градусов, второй на 145. Т.к. родной у нас был 140 градусный, я решил впаять ZH103-139, а второй оставить прозапас. Снова снимаем терморегулятор, распаиваем, меняем. Новый термопред чуть больших размеров, поэтому пришлось немного рассверлить на плате отверстия под ножки. Встал и запаялся без проблем. Подключаем, ура, снова все работает.
3. Прошло две недели. Снова печка не выключается, а значит наш IRFP064NPBF прожил очень уж недолго. Может брак? Угадайте, на какой сайт снова лезем? Конечно-же на сраный чип и дейл (есть подозрения, что абсолютно все радиоэлементы из ассортимента там голимая китайщина) и затариваемся уже двумя транзисторами (IRFP064NPBF и 2SK2500) и на всякий случай еще одним термопредом ZH103-139. Получаем коробку в руки и что мы видим? 2SK2500 есть ни что иное, как наш родной NEC K2500, хотя на картинке с сайта оно было черным безликим транзистором. Подозреваю, что тупо китайский дешманский клон. В общем, очередной ремонт, но теперь уже в картинках.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *