Как найти силу тока зная эдс и сопротивление
Перейти к содержимому

Как найти силу тока зная эдс и сопротивление

Закон Ома

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Онлайн калькулятор

Найти силу тока

Напряжение: U = В
Сопротивление: R = Ом

Сила тока

Формула
Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12 /2= 6 А

Найти напряжение

Сила тока: I = A
Сопротивление: R = Ом

Напряжение

Формула
Пример

Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

Напряжение на этом участке U = 6⋅2 = 12 В

Найти сопротивление

Напряжение: U = В
Сила тока: I = A

Сопротивление

Формула
Пример

Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

Электрическое сопротивление на этом участке R = 12 /6 = 2 Ом

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Онлайн калькулятор

Найти силу тока

ЭДС: ε = В
Сопротивление всех внешних элементов цепи: R = Ом
Внутреннее сопротивление источника напряжения: r = Ом

Формула
Пример

Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

Сила тока I = 12 /4+2 = 2 А

Найти ЭДС

Сила тока: I = А
Сопротивление всех внешних элементов цепи: R = Ом
Внутреннее сопротивление источника напряжения: r = Ом

Формула
Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

ЭДС ε = 2 ⋅ (4+2) = 12 В

Найти внутреннее сопротивление источника напряжения

Сила тока: I = А
ЭДС: ε = В
Сопротивление всех внешних элементов цепи: R = Ом

Внутреннее сопротивление источника напряжения: r =

Формула
Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом

Найти сопротивление всех внешних элементов цепи

Сила тока: I = А
ЭДС: ε = В
Внутреннее сопротивление источника напряжения: r = Ом

Сопротивление всех внешних элементов цепи: R =

Формула
Пример

Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

Закон Ома

Закон Ома

Резистор — смелый элемент, потому что умудряется противостоять хитрому и умному электрическому току. О том, почему ток вдруг хитрый, и как все величины электрической цепи взаимосвязаны — в этой статье.

· Обновлено 8 июня 2022

Сопротивление

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

Наглядное представление сопротивления

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.

Эту закономерность можно описать следующей формулой:

Сопротивление

R = ρ · l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм 2 ]

ρ — удельное сопротивление [Ом · мм 2 /м]

Единица измерения сопротивления — ом. Названа в честь физика Георга Ома.

Будьте внимательны!

Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм 2 . В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм 2 . При умножении мм 2 сокращаются и мы получаем величину в СИ.

Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм 2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм 2 .

Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

Практикующий детский психолог Екатерина Мурашова

Таблица удельных сопротивлений различных материалов

Константан (сплав NiCu + Mn)

Манганин (сплав меди марганца и никеля — приборный)

Нейзильбер (сплав меди, цинка и никеля)

Никелин (сплав меди и никеля)

Нихром (сплав никеля, хрома, железа и марганца)

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:

изображение резисторов на схеме

В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:

как выглядит резистор

Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:

выбор сопротивления резистора

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Бесплатные занятия по английскому с носителем

Реостат

Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.

что такое реостат

Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.

По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:

Сопротивление

R = ρ · l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм 2 ]

ρ — удельное сопротивление [Ом · мм 2 /м]

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».

У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

U — напряжение [В]

R — сопротивление [Ом]

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.

Давайте решим несколько задач на закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.

Решение:

Возьмем закон Ома для участка цепи:

I = 220/880 = 0,25 А

Ответ: сила тока, проходящего через лампочку, равна 0,25 А

Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.

Задача два

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм 2 , а удельное сопротивление нити равно 1,05 Ом · мм 2 /м.

Решение:

Сначала найдем сопротивление проводника.

Площадь дана в мм 2 , а удельное сопротивления тоже содержит мм 2 в размерности.

Это значит, что все величины уже даны в СИ и перевод не требуется:

R = 1,05 · 0,5/0,01 = 52,5 Ом

Теперь возьмем закон Ома для участка цепи:

I = 220/52,5 ≃ 4,2 А

Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А

А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.

Задача три

Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм 2 , а сила тока в цепи — 8,8 А

Решение:

Возьмем закон Ома для участка цепи и выразим из него сопротивление:

Подставим значения и найдем сопротивление нити:

R = 220/8,8 = 25 Ом

Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:

Подставим значения и получим:

ρ = 25 · 0,01/0,5 = 0,5 Ом · мм 2 /м

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Ответ: нить накаливания сделана из константана.

Закон Ома для полной цепи

Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.

Что такое ЭДС и откуда она берется

ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.

Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

Закон Ома для полной цепи

R — сопротивление нагрузки [Ом]

r — внутреннее сопротивление источника [Ом]

Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

Решим задачу на полную цепь.

Задачка

Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом

Решение:

Возьмем закон Ома для полной цепи:

Ответ: сила тока в цепи равна 1 А.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.

сопротивление равно 0

Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

U — напряжение [В]

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Резисторы следуют друг за другом

Резисторы следуют друг за другом

Между резисторами есть два узла

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока одинакова на всех резисторах

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

Общее напряжение цепи складывается из напряжений на каждом резисторе

Напряжение одинаково на всех резисторах

Общее сопротивление цепи складывается из сопротивлений каждого резистора

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

Общее сопротивление для двух параллельно соединенных резисторов

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

задача для самопроверки

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

Ответ: общее сопротивление цепи равно Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

задача для самопроверки 2

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соединены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

задача для самопроверки 3

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

r = 12/0,5 − 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Закон Ома для полной цепи: формула, определение и решение задач

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении. Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Закон ома простыми словами

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.

Задачка простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

Закон Ома для полной цепи

Формулировка закона Ома для полной цепи – сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Закон Ома для полной цепи

Здесь могут возникнуть вопросы. Например, что такое ЭДС?

Электродвижущая сила – это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает заряд.

В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

Задача на закон Ома для полной цепи

Теперь решим задачу посложнее.

Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Электрическая цепь

Источник электрического тока, соединенный проводами с различными электроприборами и потребителями электри­ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления, источники тока, включатели, лампы, при­боры и т. д.) обозначены специальными значками.

Закон Ома для полной электрической цепи

Направление тока в цепи — это направление от положи­тельного полюса источника тока к отрицательному. Это пра­вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус­ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен­ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря­да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным.

Закон Ома для цепи

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

Интересно по теме: Как проверить стабилитрон.

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

Закон Ома для участка цепи.

Закон Ома для участка цепи.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Все о законе Ома: простыми словами с примерами для
Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Последовательное и параллельное включение элементов

Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение. Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.

Цепь последовательно включенных резистивных элементов

Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:

  • I = I1= I2 ;
  • U = U1+ U2 ;
  • R = R1+ R2

Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения. Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.

При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx. Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.

Цепь параллельно включенных резистивных элементов

На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:

  • I = I1+ I2 … ;
  • U = U1= U2 … ;
  • 1 / R = 1 / R1+ 1 / R2 + …

Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение. Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила
не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через
работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы
называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда
вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом,
— это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа
прямо пропорциональна перемещаемому заряду
. Поэтому отношение
уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается
:

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

Итак, , и мы приравниваем правые части формул (2) и (3):

После сокращения на получаем:

Вот мы и нашли ток в цепи:

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При
формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от
, и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

КПД электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

КПД электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный
.

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

или, что то же самое:

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Формулировка закона Ома для полной цепи

Сформулированный закон Ома для полной цепи будет таким. Сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

схема-для-закона-ома-полной цепи

Формула для закона Ома

формула

  • I – сила тока в цепи, А;
  • ε – ЭДС источника напряжения, В;
  • R – сопротивление всех внешних элементов цепи, Ом;
  • r – внутреннее сопротивление источника напряжения, Ом.

Для полного понимания закона Ома для полной цепи, посмотрите видео:

3 примера задач с их решением

задачи

Где и когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Закон Ома для полной цепи — формулы и определение с примерами

Работа тока на участке цепи равна произведению силы тока, напряжения па этом участке и промежутка времени, в течение которого совершалась работа:
Закон Ома для полной цепи - формулы и определение с примерами

Закон Джоуля — Ленца:

  • количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления и времени прохождения тока по проводнику:

Закон Ома для полной цепи - формулы и определение с примерами

Для однородного участка цепи количество выделившейся теплоты можно вычислить по любой из трех эквивалентных формул: Закон Ома для полной цепи - формулы и определение с примерами

Мощность, идущая на нагревание проводника, равна работе, которая совершается током за единицу времени:
Закон Ома для полной цепи - формулы и определение с примерами

Единицей мощности электрического тока, так же как и механической мощности, является ватт (1 Вт):
Закон Ома для полной цепи - формулы и определение с примерами

Коэффициент полезного действия (КПД) Закон Ома для полной цепи - формулы и определение с примерамиопределяется отношением полезно использованной энергии Закон Ома для полной цепи - формулы и определение с примерамик полной энергии Закон Ома для полной цепи - формулы и определение с примерамиполученной системой: Закон Ома для полной цепи - формулы и определение с примерамии является характеристикой эффективности работы системы.

Рассмотрим полную электрическую цепь, содержащую источник ЭДС Закон Ома для полной цепи - формулы и определение с примерамис внутренним сопротивлением r и подключенный к ним резистор сопротивлением R (рис. 121).

Закон Ома для полной цепи - формулы и определение с примерами

Из определения ЭДС источника тока следует, что совершаемая источником работа
Закон Ома для полной цепи - формулы и определение с примерами

Из закона сохранения энергии следует, что в такой цепи происходит превращение энергии, запасенной источником тока, только в теплоту. При этом работа сторонних сил за промежуток времени Закон Ома для полной цепи - формулы и определение с примерамиравна выделившемуся в цепи количеству теплоты:
Закон Ома для полной цепи - формулы и определение с примерами

По закону Джоуля — Ленца

Закон Ома для полной цепи - формулы и определение с примерами
Таким образом,
Закон Ома для полной цепи - формулы и определение с примерами
откуда
Закон Ома для полной цепи - формулы и определение с примерами

Полученное выражение представляет собой закон Ома для полной цепи:
сила тока в полной цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна полному сопротивлению цепи.

Заметим, что максимально возможный ток в цепи с данным источником тока возникает в том случае, если сопротивление внешней части цепи стремится к нулю.

Максимально возможный ток через источник называют также током короткого замыкания Закон Ома для полной цепи - формулы и определение с примерами

Закон Ома для полной цепи - формулы и определение с примерами
Короткое замыкание представляет серьезную опасность для мощных источников тока, поскольку может вывести их из строя.

У гальванических элементов (батареек) сила тока короткого замыкания небольшая, поэтому оно для них не очень опасно.

Внутреннее сопротивление свинцовых аккумуляторов имеет значение от r = 0,1 Ом до r = 0,01 Ом, и сила тока короткого замыкания в них может быть от Закон Ома для полной цепи - формулы и определение с примерами= 20 А до Закон Ома для полной цепи - формулы и определение с примерами= 200 А. А поскольку при этом возможно разрушение пластин аккумуляторов, то следует соблюдать меры безопасности при работе с ними.
В быту, в осветительных сетях, на распределительных станциях ЭДС имеет величины свыше 100 В, а внутреннее сопротивление цепи очень мало, и согласно закону Ома для замкнутой цепи сила тока короткого замыкания может доходить до 1000 А. Вследствие этого короткое замыкание может привести к пожару. Для зашиты от пожаров в электрические цепи включаются плавкие предохранители, которые плавятся при определенной силе тока и размыкают цепь.

Короткое замыкание может возникнуть из-за плохой изоляции, когда два токоведущих провода соединяются между собой (закорачиваются). Внешнее сопротивление цепи в этом случае стремится к нулю, и сила тока резко возрастает.

Короткое замыкание электропроводки в быту может стать причиной пожара, поэтому ни в коем случае не занимайтесь ремонтом электрических сетей самостоятельно!

Закон Ома для полной цепи можно записать в следующем виде:
Закон Ома для полной цепи - формулы и определение с примерами

Таким образом, ЭДС источника равна сумме падений напряжений на внешнем и внутреннем участках замкнутой цепи.

Закон Ома для полной цепи - формулы и определение с примерами

Закон Ома для полной цепи наглядно можно показать с помощью рисунка 122, где в качестве источника тока взят гальванический элемент Вольта (Сu—Zn).
Потенциал клеммы у цинковой пластины условно принят за нуль. Длина перпендикуляра к проводнику АВС в данной точке цепи пропорциональна ее потенциалу.

Падение напряжения на внешнем участке цепи равно IR, внутри источника — Ir.
Скачки потенциалов на цинковой и медной пластинах Закон Ома для полной цепи - формулы и определение с примерамисоответственно обусловлены химическими процессами.
Для лучшего понимания процессов, происходящих в замкнутой электрической цепи рассмотрим аналогичную механическую модель (рис. 123).

Закон Ома для полной цепи - формулы и определение с примерами

Подобно тому как шарик скатывается по винтовой наклонной плоскости под действием силы тяжести из положения 2 в положение 3, так электроны движутся на внешнем участке цепи под действием сил электрического поля.
Для того чтобы поднять шарик в исходное положение 2, необходимо совершить работу против силы тяжести, которая в случае электрической цепи аналогична работе сторонних сил внутри источника тока.

В данном случае пружинное устройство 1, совершающее работу за счет энергии упругой деформации, является механическим аналогом источника ЭДС в замкнутой цепи.

Для работы различных устройств мы используем батарейки (гальванические элементы), которые включаем последовательно с соблюдением полярности.
При последовательном соединении n источников тока, когда «минус» первого источника соединяется с «плюсом» второго и т. д. (рис. 124), их ЭДС и внутренние сопротивления суммируются:
Закон Ома для полной цепи - формулы и определение с примерами
В частном случае, если Закон Ома для полной цепи - формулы и определение с примерамито
Закон Ома для полной цепи - формулы и определение с примерами

Параллельное соединение источников тока, когда «плюсы» всех источников соединяются в один узел, а «минусы» — в другой (рис. 125), используется значительно реже для повышения надежности электропитания. Можно показать, что при параллельном соединении п одинаковых источников тока суммарная ЭДС батареи равна ЭДС одного источника, а внутреннее сопротивление рассчитывается по законам параллельного соединения:
Закон Ома для полной цепи - формулы и определение с примерами

Работа по перемещению зарядов на неоднородном участке цепи равна сумме работ, совершаемых сторонними силами источника тока и силами электрического поля.

Поскольку напряжение на участке цепи равно отношению работы к перенесенному заряду Закон Ома для полной цепи - формулы и определение с примерамито
Закон Ома для полной цепи - формулы и определение с примерами

Знак перед Закон Ома для полной цепи - формулы и определение с примерамиберется положительный, если ЭДС увеличивает потенциал в цепи в направлении прохождения тока, и отрицательный — если уменьшает.

С учетом того, что U = IR (R — полное сопротивление резисторов и источников ЭДС на участке цепи), находим силу тока на участке цепи:
Закон Ома для полной цепи - формулы и определение с примерами

Эта формула выражает закон Ома для неоднородного участка цепи: падение напряжения на неоднородном участке цепи — произведение силы тока I и сопротивления участка цепи R:
Закон Ома для полной цепи - формулы и определение с примерами

Отметим, что падение напряжения пропорционально суммарной работе всех сил, в то время как напряжение U пропорционально работе только электростатических сил.

Мощность, выделяемая на внешнем участке цепи, в которую включены тепловые потребители энергии, называется полезной мощностью. Для ее вычисления используются формулы:
Закон Ома для полной цепи - формулы и определение с примерами

Мощность, выделяемая на внутреннем сопротивлении источника тока, называется теряемой мощностью и вычисляется по формулам:
Закон Ома для полной цепи - формулы и определение с примерами

Сумма полезной и теряемой мощностей равна полной мощности источника тока, которая учитывает выделение энергии как на внешнем, так и на внутреннем участках цепи:
Закон Ома для полной цепи - формулы и определение с примерами

Коэффициент полезного действия источника тока, определяемый как отношение полезной мощности к полной, зависит от сопротивления нагрузки и внутреннего сопротивления источника тока:
Закон Ома для полной цепи - формулы и определение с примерами

Наибольшую полезную мощность от данного источника можно получить тогда, когда внешнее сопротивление равно внутреннему (R = r), и в этом случае максимальный КПД Закон Ома для полной цепи - формулы и определение с примерами= 50 % (докажите это).

Закон Ома для полной цепи

Открытый Г. Омом закон для участка цени в общем случае справедлив и для полной цепи, если принимать во внимание как внешнюю, так и внутреннюю части цепи. Математическую запись закона Ома для этого случая можно получить на основании закона сохранения энергии, универсального для всех процессов в природе.

Пусть электрическая цепь состоит из источника тока, имеющего ЭДС и внутреннее сопротивление г, и проводника сопротивлением R (рис. 1.51).

Закон Ома для полной цепи - формулы и определение с примерами
Pиc. 151. Замкнутая электрическая цепь

Согласно закону сохранения энергии работа сторонних сил равна сумме работ электрического тока во внешней и внутренней частях цепи:

Закон Ома для полной цепи - формулы и определение с примерами

По определению
Закон Ома для полной цепи - формулы и определение с примерами

Закон Ома для полной цепи - формулы и определение с примерами

Если учесть, что по закону Ома для участка цепи U =IR, то получим формулу этого закона для полной цепи:

Закон Ома для полной цепи - формулы и определение с примерами

Таким образом, сила тока в полной цепи пропорциональна электроднижущей силе источника и обратно пропорциональна полному сопротивлению цепи.

Сила тока в полной цепи пропорциональна электродвижущей силе источника и обратно пропорциональна полному сопротивлению цепи:
Закон Ома для полной цепи - формулы и определение с примерами

Пользуясь законом Ома для полной цепи, можно рассчитать два экстремальных случая н электрической цепи — короткое замыкание и разомкнутую цепь. Если сопротивление внешней цепи стремится к нулю (короткое замыкание), то сила тока в цепи
Закон Ома для полной цепи - формулы и определение с примерами

Это будет максимальное значение силы тока для данной цепи.
Если цепь разорвана (R→∞ ), то ток в цени прекращается при любых значениях ЭДС и внутреннего сопротивления. В последнем случае напряжение нм полюсах источника тока будет равно электродвижущей силе. Поэтому иногда дают упрощенное определение ЭДС: это величина, равная напряжению на клеммах источника при разомкнутой цепи.

Источники тока могут соединяться в батареи. Существуют несколько способов соединения источников тока.

Последовательным называют соединение, при котором соединяются друг с другом разноименные полюса источников: положительный предыдущего с отрицательным следующего и т. д. (рис. 1.52). Чаще всего соединяют источники с одинаковыми характеристиками, поэтому при последовательном соединении N источников ЭДС батареи будет в N раз больше, чем ЭДС одного источника:

Закон Ома для полной цепи - формулы и определение с примерами

Внутреннее сопротивление такой батареи будет также в N раз больше:
Закон Ома для полной цепи - формулы и определение с примерами

Закон Ома для полной цепи - формулы и определение с примерами
Рис. 152. Схема последовательного соединения источников тока

Для последовательного соединения источников тока закон Ома для полной цепи будет записываться:

Закон Ома для полной цепи - формулы и определение с примерами

Последовательное соединение источников τoιca удобно в том случае, когда сопротивление потребителя значительно больше внутреннего сопротивления одного источника тока.
Параллельным является соединение, при котором все одноименные полюса соединяется в один узел (рис. 1.53).

Закон Ома для полной цепи - формулы и определение с примерами

Pиc. 153. Схема параллельного соединения источников тока

Параллельное соединение применяют тогда, когда в цепи необходимо получить большое значение силы тока при небольшом напряжении.

Электродвижущая сила батареи параллельно соединенных одинаковых источников равна ЭДС одного источника:

Закон Ома для полной цепи - формулы и определение с примерами

Формула закона Ома для параллельного соединения источников имеет вид:

Закон Ома для полной цепи - формулы и определение с примерами

Параллельное соединения удобно тогда» когда сопротивление внешней части цепи значительно меньше внутреннего сопротивления одного источника.

При смешанном соединении батареи источников тока (параллельно или последовательно) в свою очередь соединяют последовательно или параллельно (рис. 1.54).

Закон Ома для полной цепи - формулы и определение с примерами
Pиc. 1.54. Смешанное соединение источников тoκa

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *