Как найти высоту изображения в собирающей линзе
Перейти к содержимому

Как найти высоту изображения в собирающей линзе

Тонкие линзы. Построение изображений.

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка , то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке .

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка называется изображением точки .

Если в точке пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке концентрируется энергия световых лучей.

Если же в точке пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть — расстояние от точки до линзы, — фокусное расстояние линзы. Имеются два принципиально разных случая: и (а также промежуточный случай ). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: . Точечный источник света расположен дальше от линзы, чем левая фокальная плоскость (рис. 1 ).

Рис. 1. Случай a>f: действительное изображение точки S

Луч , идущий через оптический центр, не преломляется. Мы возьмём произвольный луч , построим точку , в которой преломлённый луч пересекается с лучом , а затем покажем, что положение точки не зависит от выбора луча (иными словами, точка является одной и той же для всевозможных лучей ). Тем самым окажется, что все лучи, исходящие из точки , после преломления в линзе пересекаются в точке и теорема об изображении будет доказана для рассматриваемого случая .

Точку мы найдём, построив дальнейший ход луча . Делать это мы умеем: параллельно лучу проводим побочную оптическую ось до пересечения с фокальной плоскостью в побочном фокусе , после чего проводим преломлённый луч до пересечения с лучом в точке .

Теперь будем искать расстояние от точки до линзы. Мы покажем, что это расстояние выражается только через и , т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча .

Опустим перпендикуляры и на главную оптическую ось. Проведём также параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

Но , так что соотношение (4) переписывается в виде:

Отсюда находим искомое расстояние от точки до линзы:

Как видим, оно и в самом деле не зависит от выбора луча . Следовательно, любой луч после преломления в линзе пройдёт через построенную нами точку , и эта точка будет действительным изображением источника

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника пересекаются после линзы в одной точке — его изображении — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2 .

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3 ).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5 ). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

Теперь разделим обе части этого равенства на a:

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для . В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6) . Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что не зависит от расстояния (рис. 1, 2 ) между источником и главной оптической осью!

Это означает, что какую бы точку отрезка мы ни взяли, её изображение будет находиться на одном и том же расстоянии от линзы. Оно будет лежать на отрезке — а именно, на пересечении отрезка с лучом , который пойдёт сквозь линзу без преломления. В частности, изображением точки будет точка .

Тем самым мы установили важный факт: изображением отрезка лужит отрезок . Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

Собирающая линза: действительное изображение предмета.

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая . Здесь можно выделить три характерных ситуации.

1. . Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4 ; двойной фокус обозначен ). Из формулы линзы следует, что в этом случае будет (почему?).

Рис. 4. : изображение действительное, перевёрнутое, увеличенное

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Из подобия треугольников и получим:

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. . В этом случае из формулы (6) находим, что и . Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5 ).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. . В этом случае из формулы линзы следует, что (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6 ).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

Собирающая линза: мнимое изображение точки.

Второй случай: . Точечный источник света расположен между линзой и фокальной плоскостью (рис. 7 ).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом , идущим без преломления, мы снова рассматриваем произвольный луч . Однако теперь на выходе из линзы получаются два расходящихся луча и . Наш глаз продолжит эти лучи до пересечения в точке .

Теорема об изображении утверждает, что точка будет одной и той же для всех лучей , исходящих из точки . Мы опять докажем это с помощью трёх пар подобных треугольников:

Снова обозначая через расстояние от до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

Величина не зависит от луча , что и доказывает теорему об изображении для нашего случая . Итак, — мнимое изображение источника . Если точка не лежит на главной оптической оси, то для построения изображения удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8 ).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9 ).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая . Сначала переписываем это соотношение в виде:

а затем делим обе части полученного равенства на a:

Сравнивая (7) и (11) , мы видим небольшую разницу: перед слагаемым стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина , вычисляемая по формуле (10) , не зависит также от расстояния между точкой и главной оптической осью. Как и выше (вспомните рассуждение с точкой ), это означает, что изображением отрезка на рис. 9 будет отрезок .

Собирающая линза: мнимое изображение предмета.

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10 ). Оно получается мнимым, прямым и увеличенным.

Рис. 10. : изображение мнимое, прямое, увеличенное

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай полностью разобран. Как видите, он качественно отличается от нашего первого случая . Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай .

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай: . Источник света расположен в фокальной плоскости линзы (рис. 11 ).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника , расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки ? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч и произвольный луч (рис. 12 ). На выходе из линзы имеем два расходящихся луча и , которые наш глаз достраивает до пересечения в точке .

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка будет одной и той же для всех лучей . Действуем с помощью всё тех же трёх пар подобных треугольников:

Величина b не зависит от луча span
, поэтому продолжения всех преломлённых лучей span
пересекутся в точке — мнимом изображении точки . Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10) . В случае их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации и .

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13 ).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14 ).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

а потом разделим обе части полученного равенства на a:

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7) , (11) и (14) можно записать единообразно:

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина считается отрицательной;
— для рассеивающей линзы величина считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

Рассеивающая линза: мнимое изображение предмета.

Величина , вычисляемая по формуле (13) , опять-таки не зависит от расстояния между точкой и главной оптической осью. Это снова даёт нам возможность построить изображение предмета , которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15 ).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Тонкая линза: формула и вывод формулы. Решение задач с формулой тонкой линзы

Сейчас речь пойдет о геометрической оптике. В этом разделе много времени уделяется такому объекту, как линза. Ведь она может быть разной. При этом формула тонкой линзы одна на все случаи. Только нужно знать, как ее правильно применить.

физика формула тонкой линзы

Виды линз

Ею всегда является прозрачное для световых лучей тело, которое имеет особенную форму. Внешний вид объекта диктуют две сферические поверхности. Одну из них допускается заменить на плоскую.

Причем у линзы может оказаться толще середина или края. В первом случае она будет называться выпуклой, во втором — вогнутой. Причем в зависимости от того, как сочетаются вогнутые, выпуклые и плоские поверхности, линзы тоже могут быть разными. А именно: двояковыпуклыми и двояковогнутыми, плосковыпуклыми и плосковогнутыми, выпукло-вогнутыми и вогнуто-выпуклыми.

В обычных условиях эти объекты используются в воздухе. Изготавливают их из вещества, оптическая плотность которого больше, чем у воздуха. Поэтому выпуклая линза будет собирающей, а вогнутая — рассеивающей.

тонкая собирающая линза

Общие характеристики

До того, как говорить о формуле тонкой линзы , нужно определиться с основными понятиями. Их обязательно нужно знать. Поскольку к ним постоянно будут обращаться различные задачи.

Главная оптическая ось — это прямая. Она проведена через центры обеих сферических поверхностей и определяет место, где находится центр линзы. Существуют еще дополнительные оптические оси. Они проводятся через точку, являющуюся центром линзы, но не содержат центры сферических поверхностей.

В формуле тонкой линзы есть величина, определяющая ее фокусное расстояние. Так, фокусом является точка на главной оптической оси. В ней пересекаются лучи, идущие параллельно указанной оси.

Причем фокусов у каждой тонкой линзы всегда два. Они расположены по обе стороны от ее поверхностей. Оба фокуса у собирающей действительные. У рассеивающей — мнимые.

Расстояние от линзы до точки фокуса — это фокусное расстояние (буква F ) . Причем его значение может быть положительным (в случае собирающей) или отрицательным (для рассеивающей).

С фокусным расстоянием связана еще одна характеристика — оптическая сила. Ее принято обозначать D. Ее значение всегда — величина, обратная фокусу, то есть D = 1/ F. Измеряется оптическая сила в диоптриях (сокращенно, дптр).

тонкая линза

Какие еще обозначения есть в формуле тонкой линзы

Помимо уже указанного фокусного расстояния, потребуется знать несколько расстояний и размеров. Для всех видов линз они одинаковые и представлены в таблице.

Обозначение Название
d расстояние до предмета
h высота изучаемого предмета
f расстояние до изображения
H высота получившегося изображения

Все указанные расстояния и высоты принято измерять в метрах.

В физике с формулой тонкой линзы связано еще понятие увеличения. Оно определяется как отношение размеров изображения к высоте предмета, то есть H/h . Его можно обозначить буквой Г.

Что нужно для построения изображения в тонкой линзе

Это необходимо знать, чтобы получить формулу тонкой линзы, собирающей или рассеивающей. Чертеж начинается с того, что обе линзы имеют свое схематическое изображение. Обе они выглядят как отрезок. Только у собирающей на его концах стрелки направлены наружу, а у рассеивающей — внутрь этого отрезка.

Теперь к этому отрезку необходимо провести перпендикуляр к его середине. Так будет изображена главная оптическая ось. На ней с обеих сторон от линзы на одинаковом расстоянии полагается отметить фокусы.

Предмет, изображение которого требуется построить, рисуется в виде стрелки. Она показывает, где находится верх предмета. В общем случае предмет помещается параллельно линзе.

задачи на формулу тонкой линзы

Как построить изображение в тонкой линзе

Для того чтобы построить изображение предмета, достаточно найти точки концов изображения, а потом их соединить. Каждая из этих двух точек может получиться от пересечения двух лучей. Наиболее простыми в построении являются два из них.

Идущий из указанной точки параллельно главной оптической оси. После соприкосновения с линзой он идет через главный фокус. Если речь идет о собирающей линзе, то этот фокус находится за линзой и луч идет через него. Когда рассматривается рассеивающая, то луч нужно провести так, чтобы его продолжение проходило через фокус перед линзой.

Идущий непосредственно через оптический центр линзы. Он не изменяет за ней своего направления.

Бывают ситуации, когда предмет поставлен перпендикулярно главной оптической оси и заканчивается на ней. Тогда достаточно построить изображение точки, которая соответствует краю стрелки, не лежащей на оси. А потом провести из нее перпендикуляр к оси. Это и будет изображение предмета.

Пересечение построенных точек дает изображение. В тонкой собирающей линзе получается действительное изображение. То есть оно получается непосредственно на пересечении лучей. Исключением является ситуация, когда предмет помещен между линзой и фокусом (как в лупе), тогда изображение оказывается мнимым. У рассеивающей же оно всегда получается мнимым. Ведь оно получается на пересечении не самих лучей, а их продолжений.

Действительное изображение принято чертить сплошной линией. А вот мнимое — пунктиром. Связано это с тем, что первое на самом деле там присутствует, а второе только видится.

Вывод формулы тонкой линзы

Это удобно сделать на основе чертежа, иллюстрирующего построение действительного изображения в собирающей линзе. Обозначение отрезков указано на чертеже.

вывод формулы тонкой линзы

Раздел оптики не зря называется геометрической. Потребуются знания именно из этого раздела математики. Для начала необходимо рассмотреть треугольники АОВ и А 1 ОВ 1 . Они подобны, поскольку в них имеется по два равных угла (прямые и вертикальные). Из их подобия следует, что модули отрезков А 1 В 1 и АВ относятся как модули отрезков ОВ 1 и ОВ.

Подобными (на основании того же принципа по двум углам) оказываются еще два треугольника: COF и A 1 FB 1 . В них равны отношения уже таких модулей отрезков: А 1 В 1 с СО и FB 1 с OF. Исходя из построения равными будут отрезки АВ и СО. Поэтому левые части указанных равенств отношений одинаковые. Поэтому равны и правые. То есть ОВ 1 / ОВ равно FB 1 / OF.

В указанном равенстве отрезки, обозначенные точками, можно заменить на соответствующие физические понятия. Так ОВ 1 — это расстояние от линзы до изображения. ОВ является расстоянием от предмета до линзы. OF — фокусное расстояние. А отрезок FB 1 равен разности расстояния до изображения и фокуса. Поэтому его можно переписать по-другому:

f / d = ( f – F ) / F или Ff = df – dF.

Для вывода формулы тонкой линзы последнее равенство необходимо разделить на dfF. Тогда получается:

Это у есть формула тонкой собирающей линзы. У рассеивающей фокусное расстояние отрицательное. Это приводит к изменению равенства. Правда, оно незначительное. Просто в формуле тонкой рассеивающей линзы стоит минус перед отношением 1/ F. То есть:

Задача о нахождении увеличения линзы

Условие. Фокусное расстояние собирающей линзы равно 0,26 м. Требуется вычислить ее увеличение, если предмет находится на расстоянии 30 см.

Решение. Его начать стоит с введения обозначений и перевода единиц в Си. Так, известны d = 30 см = 0,3 м и F = 0,26 м. Теперь нужно выбрать формулы, основная из них та, которая указана для увеличения, вторая — для тонкой собирающей линзы.

Их нужно как-то объединить. Для этого придется рассмотреть чертеж построения изображения в собирающей линзе. Из подобных треугольников видно, что Г = H/h = f/d. То есть для того, чтобы найти увеличение, придется вычислить отношение расстояния до изображения к расстоянию до предмета.

Второе известно. А вот расстояние до изображения полагается вывести из формулы, указанной ранее. Получается, что

Теперь эти две формулы необходимо объединить.

Г = dF / ( d ( d — F )) = F / ( d — F ).

В этот момент решение задачи на формулу тонкой линзы сводится к элементарным расчетам. Осталось подставить известные величины:

Г = 0,26 / (0,3 — 0,26) = 0,26 / 0,04 = 6,5.

Ответ: линза дает увеличение в 6,5 раз.

формула тонкой собирающей линзы

Задача, в которой нужно найти фокус

Условие. Лампа расположена в одном метре от собирающей линзы. Изображение ее спирали получается на экране, отстоящем от линзы на 25 см. Вычислите фокусное расстояние указанной линзы.

Решение. В данные полагается записать такие величины: d =1 м и f = 25 см = 0,25 м. Этих сведений достаточно, чтобы из формулы тонкой линзы вычислить фокусное расстояние.

Так 1/ F = 1/1 + 1/0,25 = 1 + 4 = 5. Но в задаче требуется узнать фокус, а не оптическую силу. Поэтому остается только разделить 1 на 5, и получится фокусное расстояние:

Ответ: фокусное расстояние собирающей линзы равно 0,2 м.

Задача о нахождении расстояния до изображения

Условие. Свечку поставили на расстоянии 15 см от собирающей линзы. Ее оптическая сила равна 10 дптр. Экран за линзой поставлен так, что на нем получается четкое изображение свечи. Чему равно это расстояние?

Решение. В краткую запись полагается записать такие данные: d = 15 см = 0,15 м, D = 10 дптр. Формулу, выведенную выше, нужно записать с небольшим изменением. А именно, в правой части равенства поставить D вместо 1/ F.

После нескольких преобразований получается такая формула для расстояния от линзы до изображения:

Теперь необходимо подставить все числа и сосчитать. Получается такое значение для f: 0,3 м.

Ответ: расстояние от линзы до экрана равно 0,3 м.

тонкая линза формула

Задача о расстоянии между предметом и его изображением

Условие. Предмет и его изображение отстоят друг от друга на 11 см. Собирающая линза дает увеличение в 3 раза. Найти ее фокусное расстояние.

Решение. Расстояние между предметом и его изображением удобно обозначить буквой L = 72 см = 0,72 м. Увеличение Г = 3.

Здесь возможны две ситуации. Первая — предмет стоит за фокусом, то есть изображение получается действительное. Во второй — предмет между фокусом и линзой. Тогда изображение с той же стороны, что и предмет, причем мнимое.

Рассмотрим первую ситуацию. Предмет и изображение находятся по разные стороны от собирающей линзы. Здесь можно записать такую формулу: L = d + f. Вторым уравнением полагается записать: Г = f / d. Необходимо решить систему этих уравнений с двумя неизвестными. Для этого заменить L на 0,72 м, а Г на 3.

Из второго уравнения получается, что f = 3 d. Тогда первое преобразуется так: 0,72 = 4 d. Из него легко сосчитать d = 0, 18 (м). Теперь легко определить f = 0,54 (м).

Осталось воспользоваться формулой тонкой линзы, чтобы вычислить фокусное расстояние. F = (0,18 * 0,54) / (0,18 + 0,54) = 0,135 (м). Это ответ для первого случая.

Во второй ситуации — изображение мнимое, и формула для L будет другой: L = f — d. Второе уравнение для системы будет тем же. Аналогично рассуждая, получим, что d = 0, 36 (м), а f = 1,08 (м). Подобный расчет фокусного расстояния даст такой результат: 0,54 (м).

Ответ: фокусное расстояние линзы равно 0,135 м или 0,54 м.

Вместо заключения

Ход лучей в тонкой линзе — это важное практическое приложение геометрической оптики. Ведь их используют во многих приборах от простой лупы до точных микроскопов и телескопов. Поэтому знать о них необходимо.

Выведенная формула тонкой линзы позволяет решать множество задач. Причем она позволяет делать выводы о том, какое изображение дают разные виды линз. При этом достаточно знать ее фокусное расстояние и расстояние до предмета.

Фокусное расстояние собирающей линзы 10 см, расстояние от переднего фокуса 5 см

Фокусное расстояние собирающей линзы 10 см, расстояние от переднего фокуса 5 см, высота предмета 2 см. Найти высоту действительного изображения.

Задача №10.5.36 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

Схема к решению задачи

Если линза создает действительное изображение, значит предмет расположен левее заднего фокуса линзы, то есть \( > \).

Чтобы построить изображение точки A в собирающей линзе в данном случае, нужно провести через точку A два луча: один параллельно главной оптической оси, а второй через главный оптический центр O. Первый луч, преломившись в линзе в точке C, пройдет через задний фокус линзы. Второй луч проходит через линзу, не преломляясь. На пересечении этих лучей и будет находиться точка A1. Проекция этой точки на главную оптическую ось есть точка B1. Вот и все, изображение построено. Как мы видим, оно получилось действительным (поскольку получается на сходящемся пучке лучей) и перевернутым.

Запишем формулу тонкой линзы для этого случая:

В этой формуле \(F\) – фокусное расстояние линзы, знак перед ним “+”, поскольку линза – собирающая, \(d\) – расстояние от линзы до предмета, знак перед ним “+”, поскольку предмет – действительный (в случае одиночной линзы предмет всегда действительный, оно бывает мнимым в случае системы линз), \(f\) – расстояние от линзы до изображения, знак перед ним “+”, поскольку изображение – действительное (то есть образуется на сходящемся пучке лучей – смотрите рисунок).

Поперечное увеличение предмета в линзе \(\Gamma\) определяют по формуле (это можно вывести из подобия треугольников AOB и A1OB1):

Из формулы (1) выразим расстояние от линзы до изображения \(f\):

В правой части приведем дроби под общий знаменатель:

Учитывая полученное выражение, равенство (2) примет вид:

Выразим отсюда искомую высоту изображения \(H\):

Из рисунка к задаче прекрасно видно, что \(a = d – F\), поэтому окончательно получим:

Если подставить в эту формулу значения величин из условия задачи, то мы получим ответ (не забываем переводить эти значения в систему СИ):

Ответ: 0,04 м.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Оптика. Линза. Формула тонкой линзы. Увеличение.

Если дистанцию от предмета до линзы выразить с помощью d, а дистанцию от линзы до изображения с помощью f, то формула тонкой линзы принимает нижеследующий вид:

Оптика. Линза. Формула тонкой линзы. Увеличение.

.

d – дистанция от предмета до линзы (ОВ);

f – дистанция между линзой и изображением (ОВ ` );

F < 0 – для рассеивающей линзы;

H – линейные размеры изображения;

h – линейные размеры предмета;

Оптика. Линза. Формула тонкой линзы. Увеличение.

Когда линза собирающая, то 1/F > 0, когда линза рассеивающая, то перед 1/F указывают знак « — ».

Когда изображение действительное, то 1/f > 0; когда изображение мнимое, то перед 1/f указываем знак «-».

Единицами измерения составляющих формулы тонкой линзы приняты метры.

Увеличением называют параметр, выражающий соотношение размеров изображения Н к размерам предмета h. Для его обозначения применяют символ F.

Оптика. Линза. Формула тонкой линзы. Увеличение.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *