Как определить полярность обмоток трансформатора
Перейти к содержимому

Как определить полярность обмоток трансформатора

Описание и проверка полярности трансформатора тока, техника безопасности

Трансформаторы тока

Вопрос-ответ

В трехфазных сетях из-за значительных токовых нагрузок для приведения измеряемого сигнала к приемлемому уровню применяются трансформаторы тока или ТТ. При монтаже этих приборов должна соблюдаться полярность, зависящая от направления, выбранного при намотке катушек, а также от их взаимного положения на самом сердечнике. Определение одноименных выводов, указывающих на правильную полярность данного трансформатора тока, является обязательной процедурой, предшествующей его монтажу.

Что это такое?

Под полярностью ТТ понимается определенный порядок расположения выводов его вторичной обмотки, обеспечивающий условия для передачи токового сигнала в нужной фазе. Имеющаяся на корпусе маркировка указывает на выводы, в которых выходной И1-И2 и входной Л1-Л2 сигналы действуют синфазно (имеют одну и ту же полярность). То есть они в этих точках должны достигать своих максимумов и минимумов одновременно.

Важно! От правильности включения катушек зависит корректность показаний подключенного к вторичной обмотке измерителя (счетчика электроэнергии, в частности).

При нарушении этого порядка они будут сильно отличаться от реальных значений.

Для чего проверяется полярность обмоток трансформатора тока

Несмотря на то, что на промышленных образцах ТТ полярность вторичной катушки указывается на самом изделии – возможны следующие непредвиденные ситуации:

  • Эти обозначения по каким-либо причинам отсутствуют (стерлись, например).
  • На корпусе ТТ и на встроенной в него катушке маркировки не совпадают.

Если спутан порядок включения вторичной (понижающей) катушки – в ней будет наводиться смещенный на 180 градусов переменный сигнал. В этом случае подключенный к ней электрический счетчик начнет учитывать реактивную нагрузку, а его показания будут заниженными. Любой представитель энергосетей в данной ситуации имеет право применить к нарушителю штрафные санкции.

Как проверить полярность?

Для проверки синфазности включения обмоток ТТ в измерительную цепь могут применяться как простейшие способы с использованием миллиамперметра и батарейки, так и профессиональные методы, основанные на применении специальных измерительных приборов.

С помощью батарейки и миллиамперметра

В ней источником является элемент питания с заявленным напряжением от 2-х до 6 Вольт. Типовая батарейка типа 3R12 на 4,5 Вольта с подпаянными к клеммам проводами вполне сгодится для этого.

Функцию измерителя выполняет миллиамперметр, имеющий пределы от 10-ти до 100 мА.

Обратите внимание: Следует выбрать индикатор с нулем по центру шкалы, что позволит отслеживать изменения любой полярности.

В начале измерений за правильную маркировку силовой обмотки принимается обозначение, указанное на рисунке (Л1 – справа, а Л2 – слева). Подсоединив «+» батарейки к началу Л1, а минус – к ее концу Л2 и замкнув тумблер, обнаружим, что стрелка индикатора на мгновение отклонилась вправо. Это значит, что изменение токов в обеих катушках происходит синфазно и что они включены правильно.

Если же стрелка при измерении отклонилась влево – это означает противоположность процессов. Когда в первичной обмотке ток возрастает, то одновременно во вторичной его значение уменьшается. В данной ситуации контакты И1и И2 следует поменять местами.

С помощью РЕТОМ-21

Выход прибора со звездочкой подключается к началу катушки Л1, а без обозначения – к ее концу Л2.

В меню прибора РЕТОМ-21 выбирается значение параметра первичной обмотки, а ток во вторичной цепи измеряется встроенным модулем РА. При этом на дисплее регистрируются его значение и фазный сдвиг. Если прибор показывает нулевую разницу фаз – катушки включены правильно (синфазно). В противном случае он будет показывать значение, близкое к 180-ти градусам.

С использованием ВАФ

Измерение этим прибором аналогично уже описанному выше способу, согласно которому в первичную обмотку поступает токовый импульс заданной величины. Вместе с тем на дисплее индицируется значение вторичного тока и его фаза по отношению к первичному. При нулевых фазных показаниях следует считать, что катушки включены правильно. В противном случае (разница фаз – 180 градусов) контакты второй обмотки придется поменять местами.

Техника безопасности

При проведении измерений специальными приборами должны соблюдаться следующие меры предосторожности:

  • К работе допускаются лица, освоившие правила работы с измерительным оборудованием.
  • Они должны пройти обязательный инструктаж, касающийся безопасных приемов работы с ТТ.
  • При определении полярности вторичной обмотки измеритель присоединяется к ее зажимам до момента подачи импульса в первичную цепь.

Лишь при условии соблюдения указанных правил удается обезопасить себя от потенциальных угроз.

Способы проверки полярности трансформаторов тока (миллиамперметр, РЕТОМ-21 и ВАФ)

Июль 9th, 2017 Рубрика: Трансформаторы тока, Электрооборудование

polyarnost_transformatorov_toka

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

На днях столкнулся с одним интересным явлением.

При проведении метрологами поверки трансформаторов тока, на одном из фидеров (присоединении) был забракован трансформатор тока на фазе В.

Остальные трансформаторы тока на этом фидере поверку успешно прошли.

Решено было заменить трансформатор тока только на фазе В, а остальные оставить существующие.

polyarnost_transformatorov_toka_17

Кстати, тип трансформатора тока Вам скорее всего известен — это распространенный для своего времени трансформатор тока Т-0,66 с коэффициентом трансформации 200/5.

polyarnost_transformatorov_toka_1

polyarnost_transformatorov_toka_2

После снятия трансформатора тока обозначение его выводов поставило меня в тупик.

С обозначением вторичных выводов И1 и И2 все было понятно: И1 — начало вторичной обмотки, И2 — конец вторичной обмотки.

polyarnost_transformatorov_toka_3

polyarnost_transformatorov_toka_4

А вот с первичной обмоткой явно была загадка!

Как видите, обозначение первичной обмотки отчетливо видно на корпусе самого трансформатора тока: Л1 — начало первичной обмотки, Л2 — конец первичной обмотки.

polyarnost_transformatorov_toka_5

polyarnost_transformatorov_toka_6

Но не тут то было! Если хорошо приглядеться, то на задней крепежной планке тоже имеется обозначение первичных выводов, но при этом оно в корне противоречит обозначению на корпусе трансформатора тока.

Со стороны начала первичной обмотки Л1 на крепежной планке имеется маркировка Л2, а со стороны конца первичной обмотки Л2 на крепежной планке имеется маркировка Л1.

polyarnost_transformatorov_toka_7

polyarnost_transformatorov_toka_8

В итоге получилось так, что у нового трансформатора тока ТОП-0,66, установленного взамен снятого Т-0,66, за начало первичной обмотки Л1 приняли не правильную сторону и после ввода в эксплуатацию векторная диаграмма имела следующий вид.

polyarnost_transformatorov_toka_18

polyarnost_transformatorov_toka_9

Как видите, зеленый вектор тока развернут на 180°, т.е. ток в фазе В имеет обратное направление. Естественно, что это несоответствие мы быстро устранили, установив трансформатор тока соответствующим образом. Ну а если быть точнее, то просто напросто поменяли местами подключаемые провода с выводов И1 и И2 на вторичной обмотке трансформатора тока фазы В.

Таким образом, векторная диаграмма стала иметь нормальный и правильный вид.

polyarnost_transformatorov_toka_10

У снятого трансформатора тока я решил определить полярность и в данной статье я Вам подробно расскажу какими способами я это буду осуществлять. Приведу в пример 3 способа, правда пользуюсь я только одним из них, и чуть дальше по тексту расскажу каким именно.

Первый способ, это наверное, один из самых распространенных и доступных способов определения полярности трансформаторов тока. Второй и третий способы требуют специального и дорогостоящего оборудования.

Определение полярности ТТ с помощью батарейки и миллиамперметра

Кстати, данный способ еще называют способом гальванометра. Вот, собственно, и схема подключения батарейки (источника постоянного тока) и гальванометра для определения полярности выводов трансформатора тока.

polyarnost_transformatorov_toka_11

В качестве источника постоянного тока можно использовать элементы питания напряжением от 2 (В) до 6 (В). Например, вполне сгодится обычная «плоская» батарейка типа 3R12 напряжением 4,5 (В), к выводам которой необходимо припаять соединительные провода.

polyarnost_transformatorov_toka_12

polyarnost_transformatorov_toka_16

Если в качестве источника постоянного тока Вы планируете использовать аккумулятор, то в цепь следует включить ограничительное сопротивление (резистор). В моем же примере с батарейкой ограничительное сопротивление не требуется.

В качестве измерительного прибора можно применить, либо миллиамперметр, либо милливольтметр, магнитоэлектрической системы. Предел миллиамперметра может находиться в пределах от 10 до 100 (мА), а милливольтметра — не более 3 (В).

Желательно применять прибор с нулем посередине шкалы, так легче и нагляднее определять отклонение стрелки. Если Вы не найдете прибор с нулем по середине, то имейте ввиду то, что стрелка прибора при отклонении влево будет ударяться в упор и есть вероятность ее отскакивания в правую сторону, что может привести в заблуждение и ошибочному проведению измерений.

В своем примере я буду использовать миллиамперметр типа М2001 с пределом 100 (мА) с нулем посередине шкалы. Прибора с меньшим пределом у меня нет в наличии, поэтому если будет проблематично определить сторону отклонения стрелки, то можно увеличить напряжение источника постоянного тока. Но обычно предела 100 (мА) в паре с батарейкой на 4,5 (В) вполне хватает.

polyarnost_transformatorov_toka_14

Полярность выводов миллиамперметра М2001 обозначена на корпусе прибора: слева — плюс, справа — минус.

polyarnost_transformatorov_toka_15

А сейчас я соберу приведенную выше схему для проверки полярности трансформатора тока.

polyarnost_transformatorov_toka_19

Нам необходимо определить, какое из обозначений первичной обмотки ТТ является верным, то, которое указано на корпусе трансформатора тока или, которое указано на его крепежной планке.

Сначала примем за правильное обозначение первичной обмотки обозначение, указанное на корпусе, т.е. вывод Л1 находится справа, а Л2 — слева.

Подключим положительный полюс «+» батарейки к началу первичной обмотки Л1, а отрицательный полюс «-» — к концу первичной обмотки Л2.

polyarnost_transformatorov_toka_21

Теперь кратковременно замкнем первичную цепь через батарейку.

polyarnost_transformatorov_toka_22

Как видите на фотографии выше, стрелка миллиамперметра кратковременно отклонилась влево.

Кстати, при размыкании первичной цепи, стрелка миллиамперметра отклоняется в противоположную сторону, но на это не обращайте внимания, главное — это зафиксировать отклонение стрелки именно в момент замыкания первичной цепи.

Отклонение стрелки миллиамперметра влево говорит о том, что указанная полярность на корпусе трансформатора тока является неверной. А значит, правильная маркировка указана все таки на крепежной планке.

Для меня это кажется немного странным! Я все таки надеялся, что правильная маркировка указана именно на корпусе трансформатора тока.

Тем не менее убедимся в своих убеждениях. Аналогично, подключим положительный полюс «+» источника постоянного тока к началу первичной обмотки Л1, а отрицательный полюс «-» — к концу первичной обмотки Л2. Только сейчас выводы Л1 и Л2 примем наоборот, т.е. Л1 находится слева, а Л2 — справа.

polyarnost_transformatorov_toka_23

polyarnost_transformatorov_toka_24

Как видите, при таком подключении стрелка миллиамперметра кратковременно отклонилась вправо, что говорит о том, что полярность трансформатора тока, указанная на крепежной планке является верной!

Суть первого способа определения полярности ТТ сводится к следующему. Необходимо подобрать такое включение трансформатора тока, чтобы при замыкании первичной цепи стрелка миллиамперметра отклонялась вправо. В таком случае выводы первичной и вторичной обмоток, присоединенные к «+» батарейки и «+» миллиамперметра будут однополярными, т.е. при протекании тока по первичной цепи от Л1 к Л2, ток во вторичной цепи будет протекать от И1 к И2.

Да, совсем забыл сказать, что в основе данного способа лежит явление электромагнитной индукции. Об этом Вы можете прочитать я любом учебнике по физике.

Определение полярности ТТ с помощью РЕТОМ-21

Как я и говорил, то второй способ требует специального оборудования. Для этого в парке приборов нашей электролаборатории (ЭТЛ) имеется многофункциональное испытательное устройство РЕТОМ-21. Я уже Вас подробно знакомил с ним в своих публикациях про прогрузку автоматических выключателей:

Если честно, то первым способом я уже давненько не пользуюсь, а в подобных сомнительных ситуациях при определении полярности трансформаторов тока применяю именно РЕТОМ-21.

Собираем следующую схему.

polyarnost_transformatorov_toka_25

Выход источника первичного тока I5 со звездочкой соединяем с началом первичной обмотки Л1 трансформатора тока, а без звездочки — с концом первичной обмотки Л2.

polyarnost_transformatorov_toka_26

В принципе, я уже определился, что правильная маркировка первичной обмотки ТТ обозначена на крепежной планке, поэтому сейчас я преднамеренно подключил эти вывода наоборот, чтобы показать Вам как РЕТОМ-21 определит и отобразит данное несоответствие.

Начало вторичной обмотки И1 трансформатора тока соединяем с аналоговым входом

РА, обозначенным красным цветом (со звездочкой), а конец вторичной обмотки И2 — с белым входом (без звездочки).

polyarnost_transformatorov_toka_27

polyarnost_transformatorov_toka_28

В меню РЕТОМ-21 выбираем источник первичного тока I5, а для измерения вторичного тока выбираем встроенный прибор РА. В соответствующем поле дисплея выбираем фазу (Φ) для измерения угла между первичным I5 и вторичным РА токами.

Теперь осталось навести ток в первичной цепи не менее 10% от номинального тока трансформатора тока. Я наведу 50 (А), что будет вполне достаточно.

Как видите, на дисплее отображается величина первичного тока 50 (А), вторичного тока 1,3 (А), а также угол 180,6° между токами первичной и вторичной обмоток.

polyarnost_transformatorov_toka_29

Это говорит о том, что выбрана не правильная полярность ТТ, т.е. выводы Л1 и И1 не однополярны.

Поменял местами выводы первичного тока РЕТОМ-21 и снова произвел измерение.

Как видите, угол между токами первичной и вторичной обмоток теперь составил 0,6°.

polyarnost_transformatorov_toka_30

Вот теперь можно с уверенностью сказать, что трансформатор тока подключен совершенно верно, что и требовалось доказать.

Таким образом, с помощью РЕТОМ-21 определить полярность трансформаторов тока вообще не составляет никаких сложностей, все легко, быстро и просто!

Определение полярности ТТ с помощью ВАФ

Помимо вышеприведенных способов можно применить еще более простой способ, правда для этого необходим прибор вольтамперфазометр, или сокращенно ВАФ. В парке приборов нашей ЭТЛ имеется «Парма ВАФ-А(М)», правда на последней поверке его забраковали по входам постоянного и переменного тока, но это уже другая история.

polyarnost_transformatorov_toka_31

polyarnost_transformatorov_toka_32

В первую очередь, трансформатор тока должен быть подключен к источнику первичного тока.

Для измерения угла сдвига между первичным и вторичным токами, т.е. определения полярности первичных и вторичных выводов, необходимо использовать опорные и измерительные клещи.

Опорные клещи необходимо подключить к опорному каналу ВАФа, а затем обхватить проводник первичной цепи (Л1-Л2) трансформатора тока. Измерительные клещи необходимо подключить к измерительному каналу ВАФа, а затем обхватить проводник, накоротко-замкнутой, вторичной цепи (И1-И2). Естественно, что при этом нужно соблюдать полярность самих клещей — на клещах имеется маркировка в виде звездочки или точки, которую и нужно обратить в сторону вхождения тока в обхват клещей.

polyarnost_transformatorov_toka_33

Но в моем комплекте опорные клещи отсутствуют, а имеются только измерительные клещи ИПТ 10 и ИПТ 300.

polyarnost_transformatorov_toka_34

Поэтому проверить полярность трансформатора тока (угол сдвига между первичным и вторичным токами) у меня нет возможности, хотя если дополнительно приобрести опорные клещи, то с помощью ВАФа можно смело определять полярность трансформатора тока.

После произведенных манипуляций ВАФ на своем дисплее отобразит величину тока измерительного канала, т.е. вторичного тока, а также угол сдвига между опорным и измерительным каналами, т.е. между первичным и вторичным токами. По этим данным и можно определить полярность ТТ.

Для наглядности приложил видео по материалам данной статьи:

Помимо рассмотренных примеров, зачастую необходимо определить полярность трансформаторов тока, встраиваемых в вводы выключателей или силовых трансформаторов, причем с разными схемами подключения (звезда с нулем, звезда, треугольник). В рамках данной статьи я об этом рассказывать не буду, если есть вопросы, то пишите в комментариях под данной статьей.

Проверка полярности трансформатора

Полярность трансформатора важна при параллельном подключении трансформаторов для усиления мощности или подключении нескольких однофазных трансформаторов чтобы получить трехфазный.

Значки полярности показывают соединения, в которых входное и выходное напряжения имеют одинаковую полярность. В данный момент времени, это важно при подключении трансформаторов тока для релейной защиты и измерения.

Полярность трансформатора зависит от того, намотаны ли катушки вокруг сердечника по часовой стрелке или против часовой стрелки и как подключены провода. Часто метки полярности отображаются с использованием символов, таких как метка точки или плюс-минус, на трансформаторе и паспортной табличке.

Как проверить полярность трансформатора.

Вы можете легко проверить полярность трансформатора, используя источник пониженного напряжения для возбуждения первичной обмотки. Сначала переместите клемму H1 на клемму X1 трансформатора. Затем подключите вольтметр между клеммой H2 и X2. Примените уменьшенное напряжение через H1 и H2 и запишите напряжение, измеренное на счетчике.

Внимание: Используйте минимальное переменное напряжение, способное возбуждать обмотку для снижения риска поражения током. Для поддержания минимального тестового напряжения рекомендуется использовать регулируемый источник напряжения переменного тока (типа ЛАТР).
Если значение напряжения равно сумме обмоток повышающих и понижающих, считается, что полярность трансформатора дополнительная (аддитивная). В противном случае, если показания счетчика меньше приложенного напряжения, полярность является вычитаемой (субтрактивной).См. схему

Правило большого пальца для определения полярности полярности трансформатора (ANSI)

Другое эмпирическое правило для определения полярности трансформатора исходит из обозначений ANSI(Американский национальный институт стандартов). В соответствии с этими стандартами, если вы столкнетесь с низковольтной стороной однофазного трансформатора (сторона, обозначенная X1, X2), соединение H1 всегда будет находиться слева от вас.

Если вывод с пометкой X1 также находится слева, это субтрактивная полярность. Если вывод X1 находится справа от вас, это добавочная полярность.

Подумайте о полярности трансформатора с точки зрения направления тока. Всякий раз, когда ток протекает через обозначенную полярностью клемму на первичной обмотке, ток, выходящий из вторичной обмотки, будет перемещаться в одном направлении, выходя из вывода с одинаковой маркировкой полярности.

определение полярности трансформатора

Всегда, когда ток протекает через клемму с обозначенной полярностью на первичной обмотке, ток, выходящий из вторичной обмотки, будет перемещаться в одном направлении, выходя из вывода с одинаковой маркировкой полярности.

Аддитивная полярность,как правило , характерна для небольших распределительных трансформаторов. Мощные трансформаторы, в большинстве ,обладают субтрактивной полярностью.

Размещение выводов в трехфазном трансформаторе также стандартизировано. Высоковольтные выводы расположены H3, H2, H1 и H0 слева направо, когда обращены к трансформатору со стороны высокого напряжения (См.схему).

В трехфазных трансформаторах низковольтные выводы X0, X1, X2 и X3 расположены слева направо

со стороны низкого напряжения. Термины «аддитивная полярность» и «субтрактивная полярность» не распространяются на трехфазные трансформаторы.

Полярность трехфазного трансформатора

Размещение выводов в трехфазном трансформаторе стандартизировано. При обращении с трехфазными трансформаторами со стороны низкого напряжения низковольтные выводы расположены XO, X1, X2 и X3 слева направо. Высоковольтные выводы расположены H3, H2, H1 и HO слева направо, когда они обращены к трансформатору с высоковольтной стороны.

Как узнать где первичная обмотка трансформатора. Простые советы о том, как проверить трансформатор мультиметром на работоспособность. Определение полярности выводов обмоток

Несмотря на большую популярность импульсных блоков питания, в которых также стоят трансформаторы (хотя и ферритовые), старые, добрые трансформаторы с железным сердечником по прежнему повсеместно используются. Для новичка или человека, особо не связанного с профессией электрика, электронщика может быть затруднительным быть подключения этих самых силовых трансформаторов к электрической сети 220 вольт. Например, вы у себя в гараже нашли нерабочее устройство и решили использовать имеющийся трансформатор для сборки блока питания для своих нужд. Но даже в самом простом трансе имеются 4 вывода, и не всегда можно понять какие 2 относятся к входу 220 В, а какие 2 к выходному, пониженному напряжению. Вот мы и постараемся разобраться с этим вопросом.
Итак, как я только что заметил, самый простой силовой трансформатор имеет 4 вывода. Два из которых являются входом первичной обмотки, рассчитанной на 220 вольт, а другие два вывода относятся к выходной, вторичной обмотке, с которой и нужно снимать пониженное напряжение для своих нужд. На «правильных» трансформаторах даже новичку легко понять где какая обмотка. Хотя бы по имеющимся надписям или по объему провода обмотки, с которой выводы выходят (там где много провода, это входная 220, где намного меньше провода, это выходная).

Если на первый взгляд проблематично определить где какая обмотка, то тут уж на помощь придет электронный мультиметр, которым нужно будет измерить сопротивление обмоток. Первичные, входные обмотки силовых, понижающих трансформаторов имеют в десятки раз больше сопротивление, по сравнению с вторичными, выходными обмотками. Первички мотаются более тонким проводом и имеют большее количество витков. А как известно, чем тоньше и длиннее провод, тем больше у него электрическое сопротивление. Вторички рассчитываются на меньшее напряжение (обычно это 3, 5, 6, 9, 12, 15, 24 вольта) и на больший ток. В принципе в этом и заключается основная функция понижающих трансформаторов, чтобы из большего сетевого напряжения с меньшим токов на входе делать меньшее напряжение и больший ток на выходе.

Итак, допустим у нас есть относительно небольшой трансформатор, который мы сняли с очень старого видеомагнитофона. Мощность таких трансформаторов около 20 ватт. Первичная обмотка может иметь аж три вывода. Один общий, относительно двух другим можно подавать на этот трансформатор либо 220 вольт или 110. На вторичной обмотке может быть от двух и более выводов. Чтобы выяснить, какое напряжение имеется на выходной обмотке нам сначало нужно найти входную обмотку, к которой мы будем подсоединять сетевое напряжение 220 вольт. Поскольку 220 В это самое большое напряжение на этом трансе, то мы мультиметром ищем два вывода, которые имеют самое большое сопротивление. Для трансформатора на 20 Вт сопротивление первички будет около 300 ом (200-500, где-то так). На вторичке сопротивление будет в десятки раз меньше!

Допустим мы нашли нашу первичную, входную обмотку. Далее мы подсоединяем к этим выводам сетевой провод и подключаем питание 220 вольт. После этого мультиметр переводим в режим измерения переменного напряжения. Начинаем аккуратно (чтобы случайно не ударило током) измерять переменное напряжение на остальных выводах. Скорее всего мы увидим стандартные низковольтные напряжения от 3 до 25 вольт. Естественно, наличие нужного напряжения еще не говорит о том, что этот трансформатор подходит для наших задач. Дело в том, что обмотка с нужным напряжением может оказаться малого диаметра, а это влияет на величину выдаваемого тока. То есть, чем больше сечение провода обмотки, тем больше тока она может обеспечить.

Чтобы понять какую максимальную величину силы тока можно получить с выходной обмотки, нужно просто измерить диаметр этой обмотки. Далее через поиск в интернете находим таблицу зависимости сечения провода трансформатора от силы тока. Для примерного расчета можно воспользоваться такой формулой: I = 3,14 * d² (I — амперы, d — мм). В итоге мы узнаем тот ток, который может обеспечить выходная обмотка с данным диаметром провода. Например после того как мы измеряли штангенциркулем диаметр провода с напряжением 12 вольт (к примеру), и оно равно 1 мм. То по формуле мы вычислим, что этот провод может нам обеспечить 3,14 ампер. Ну и выходную мощность этой обмотки можно посчитать так, мы напряжение перемножаем на ток: 12 вольт умножить на 3,14 ампер будет равно около 37 ватт.

Если на вашем трансформаторе несколько вторичных обмоток, то общая мощность трансформатора будет равна сумме мощностей всех вторичных обмоток, минус КПД транса (в среднем КПД трансформаторов равно около 80% ). Вот и получается, что если у нас трансформатор на 100 ватт, то суммарная мощность выходной или выходных обмоток может быть около 80 ватт, приблизительно.

Видео по этой теме:

Первое, что надо сделать, это взять листок бумаги, карандаш и мультиметр. Пользуясь всем этим, прозвонить обмотки трансформатора и зарисовать на бумаге схему. При этом должно получиться что-то очень похожее на рисунок 1.

Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу – «земле» схемы.

Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом. Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков. Сопротивление понижающих вторичных обмоток практически равно нулю – малое количество витков и толстый провод.

Трансформатор на 110В выдержит 220В ?

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не «спалить» и как определить максимальные токи вторичных обмоток. Такие и подобные вопросы задают себе многие начинающие радиолюбители. В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов фото в начале статьи , разобраться с каждым из них..

Надеюсь, эта статья будет полезной многим радиолюбителям. Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой. Рассмотрим все возможные варианты. Нагрузочный ток такой обмотки, будет равен наименьшему нагрузочному току из имеющихся обмоток. Например: имеются две обмотки с напряжениями 6 и 12 вольт и токами нагрузки 4 и 2 ампера — в итоге получим общую обмотку с напряжением 18 вольт и током нагрузки — 2 ампера.

Правильность соединения проверяется так. Соединяем вместе два провода от обмоток и на оставшихся двух измеряем напряжение. Если напряжение будет равно удвоенному, то соединение произведено не правильно, в этом случае меняем концы любой из обмоток. Если напряжение на оставшихся концах равно нулю, или около того перепад более чем в пол-вольта не желателен, обмотки в этом случае будут греться на ХХ , смело соединяем вместе оставшиеся концы.

Общее напряжение такой обмотки не изменяется, а нагрузочный ток будет равен сумме нагрузочных токов, всех соединённых параллельно обмоток. Например: имеются три обмотки с выходным напряжением 24 вольта и токами нагрузки по 1 амперу.

В итоге получим обмотку с напряжением 24 вольта и током нагрузки — 3 ампера. Общее напряжение и ток будет, как при последовательном соединении. Например: имеем две последовательно и три параллельно соединённые обмотки примеры, описанные выше.

Соединяем эти две составные обмотки последовательно. Общее напряжение такой обмотки будет равно разности напряжений, включённых встречно обмоток, общий ток будет равен наименьшей по току нагрузки обмотки. Такое соединение применяется в том случае, когда необходимо понизить выходное напряжение имеющейся обмотки. Так же, что бы понизить выходное напряжение какой либо обмотки, можно домотать поверх всех обмоток дополнительную обмотку проводом, желательно не меньшего диаметра той обмотки, напряжение которой необходимо понизить, что бы не уменьшился нагрузочный ток.

Определение напряжения вторичной обмотки

Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.

Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности. Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать. Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра. Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.

Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.

Определение начала и конца обмотки трансформатора

Конструктивно трансформатор может состоять из одной автотрансформатор или нескольких изолированных проволочных либо ленточных обмоток катушек , охватываемых общим магнитным потоком , намотанных, как правило, на магнитопровод сердечник из ферромагнитного магнитомягкого материала. Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории [3]. В году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции , лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества. При подключении к зажимам одной обмотки батареи гальванических элементов начинал отклоняться гальванометр на зажимах другой обмотки. Так как Фарадей работал с постоянным током, при достижении в первичной обмотке его максимального значения, ток во вторичной обмотке исчезал, и для возобновления эффекта трансформации требовалось отключить и снова подключить батарею к первичной обмотке.

Определение первичной и вторичной обмоток

Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще. Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.

Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание. Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.

Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся. В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением. На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно. Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше. Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Что такое трансформатор и как его проверить

Без этого электротехнического устройства потребители электроэнергии не смогли бы заряжать автомобильные аккумуляторы, подключать энергосберегающие источники света. Электротехническое изделие понижает стационарное напряжение до требуемого уровня. Прибор изготовлен на базе электромагнитной индукции. Продается в специализированных стационарных торговых предприятиях, интернет-магазинах. Понижающий трансформатор с на 12 вольт покупают водители, дачники, владельцы загородных домов, коттеджей для устройства внутридомовой низковольтной осветительной сети.

Максимальные ориентировочные значения индукции

Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

Понижающие трансформаторы. Виды и работа. Особенности

Канал ЭлектроХобби на YouTube. Несмотря на большую популярность импульсных блоков питания, в которых также стоят трансформаторы хотя и ферритовые , старые, добрые трансформаторы с железным сердечником по прежнему повсеместно используются. Для новичка или человека, особо не связанного с профессией электрика, электронщика может быть затруднительным быть подключения этих самых силовых трансформаторов к электрической сети вольт. Например, вы у себя в гараже нашли нерабочее устройство и решили использовать имеющийся трансформатор для сборки блока питания для своих нужд.

Как узнать мощность трансформатора

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не «спалить» и как определить максимальные токи вторичных обмоток. Такие и подобные вопросы задают себе многие начинающие радиолюбители. В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов фото в начале статьи , разобраться с каждым из них.. Надеюсь, эта статья будет полезной многим радиолюбителям. Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой.

Как узнать мощность трансформатора

Блог new. Технические обзоры. Опубликовано: , Эту страницу нашли, когда искали : как понять насколько мощный трансформатор , как проверить мощность трансформатора в амперах , на какую мощность рассчитан трансформатор ва , как найти мощность рассчитываемого трансформатора , стандарт как определить мощность силовой трансформатор , как расчитать сколько по мощности вторичка трансформатора , как определить мощность трансформатора по замерам , какая мощность трансформатора на 10 ампер , трансформатор работает с нагрузкой сравните входную и выходную мощность , как рассчитать трансформатор по току покоя усилителя , как определить характеристики трансформатора зная сечение обмоток , узнать сколько ампер дает трансформатор , сколько выдает трансформатор тока , как рассчитать выходную силу тока трансформатора , как узнат тр жилиза на какои мошност.

Наиболее важные параметры силовых трансформаторов

Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?

Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора. Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.

Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *