Проведение измерений с помощью осциллографа
Цифровой осциллограф, конечно, намного совершеннее обычного электронного, позволяет запоминать осциллограммы, может подключаться к персональному компьютеру, имеет математическую обработку результатов, экранные маркеры и многое другое. Но при всех достоинствах эти приборы нового поколения обладают одним существенным недостатком, — это высокая цена.
Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы стоимостью всего в несколько тысяч рублей, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.
На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных, с которыми мы ранее познакомились в этой статье.
При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.
Рисунок 1. Осциллограф С1-73
Что измеряет осциллограф
Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.
Рисунок 2. Осциллограф С1-101
Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.
Здесь следует вспомнить, что существуют специальные высокочастотные осциллографы, входное сопротивление которых всего 50 Ом. В радиолюбительской практике такие приборы не находят применения. Поэтому далее речь пойдет об обычных универсальных осциллографах.
Полоса пропускания канала Y
Осциллограф измеряет напряжения в очень широких пределах: от напряжений постоянного тока, до напряжений достаточно высокой частоты. Размах напряжения может быть достаточно разнообразным, — от десятков милливольт до десятков вольт, а при использовании внешних делителей вплоть до нескольких сотен вольт.
При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.
Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих
Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.
На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.
Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.
У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.
Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.
В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц, при этом цена составляет почти 200 000 рублей. Согласитесь, не каждый может позволить себе купить столь дорогой прибор.
Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.
Виды исследуемых сигналов и их параметры
Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.
Рисунок 6. Формы электрических колебаний
Периодические сигналы. Характеристики сигналов
Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.
Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.
Рисунок 7. Периодические колебания
Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.
Кроме компонентов X и Y осциллограмма содержит еще компонент Z – интенсивность, или попросту яркость (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.
Рисунок 8. Три компонента исследуемого сигнала
Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.
В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.
Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.
Скважность и коэффициент заполнения
Для характеристики прямоугольных импульсов используется параметр, называемый скважностью. Это есть отношение периода следования импульсов T к длительности импульса τ. Для меандра скважность равна двум, — величина безразмерная: S= T/τ.
В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.
Рисунок 9. Осциллограмма меандра D=50%
Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»
Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.
Рисунок 10. Прямоугольный импульс D=10%
Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 – величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.
Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.
Измерение напряжения прямоугольного импульса
Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.
Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.
Рисунок 11. Измерение амплитуды прямоугольного импульса
Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.
Что еще можно увидеть в прямоугольном импульсе
Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.
Рисунок 12. Реальный прямоугольный импульс
Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.
Рисунок 13. Параметры прямоугольного импульса
На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.
По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.
На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.
Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.
Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.
С прямоугольными импульсами все вроде бы понятно и просто. Но мы совсем забыли о синусоиде. В сущности, там то — же самое: можно измерить напряжения и временные параметры. Один период синусоиды показан на рисунке 15.
Рисунок 15. Параметры синусоиды
Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.
Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.
Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.
Как осциллографом измерить ток
В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.
Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.
Схема для измерения тока через конденсатор показана на рисунке 16.
Рисунок 16. Измерение тока через конденсатор
Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.
Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода
При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.
Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.
Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: катушка индуктивности, обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.
Как одним движением сжечь 10000$ и получить удар током
В данной статье затрагиваются вопросы, касающиеся сетевого напряжения, которое может представлять угрозу жизни и здоровью человека, а также работоспособности приборов. Вся информация в этой статье представлена исключительно в ознакомительных целях. Вы используете указанную информацию на свой страх и риск. Автор ни в коем случае не несет ответственности за какой-либо прямой, непрямой, особый или иной косвенный ущерб в результате любого использования информации из данной статьи.
Структура источника питания
В данном разделе, конечно, мы не будем подробно рассматривать устройство импульсных преобразователей, это тема для целой серии статей. Мы рассмотрим этот вопрос в минимальном объеме, необходимом для понимания темы статьи. Итак, на рисунке ниже приведена по сути структурная схема простейшего обратноходового преобразователя. Обратноходовый преобразователь здесь выбран исключительно для примера, совершенно не важно, какая топология источника питания (прямоходовый, мост, полумост, пуш-пул или вообще балластный конденсатор), все сказанное верно для любой из них.
В ней не показаны фильтры синфазных и дифференциальных помех, цепи защиты и некоторые другие компоненты, однако для рассмотрения нашего вопроса это и не нужно. На схеме мы видим диодный мост, к которому подводится сетевое напряжение, микросхему ШИМ-контроллера, объединенную с силовым транзистором, трансформатор и цепь обратной связи. Сетевое напряжение выпрямляется диодным мостом: плюс подводится к трансформатору и коммутируется силовым транзистором, а минус образует потенциал локальной (силовой) земли. Относительного этого потенциала питается ШИМ-контроллер, измеряется напряжение обратной связи, а также относительно него подаются управляющие напряжения на затворы силового транзистора (который в данной схеме находится внутри контроллера). Если мы хотим измерить какое-то напряжение на первичной стороне, это тоже надо делать относительного этого потенциала. В общем, классический такой GND, за исключение одного нюанса: он гальванически не развязан от сети (имеет прямую связь с фазой и нейтралью через пару диодов). И вот именно этот нюанс и является решающим, однако об этом позднее.
Структура осциллографа
В данном разделе будет рассмотрен вопрос, касающейся гальванической связи как между непосредственно самими каналами осциллографа, так и между каналами осциллографа и линией заземления. Существует два типа осциллографов: с изолированными каналами и без такой изоляции. Осциллографы с изолированными каналами – довольно редкий вид приборов, и этот факт будет обязательно подчеркнут в описании устройства. Если вы никогда не задумывались о том, есть ли у вашего осциллографа такая изоляция, то, скорее всего, ее нет. Что это значит на практике? Это значит, что сопротивление между земляным хвостом щупа осциллографа и земляным выводом в сетевой розетке 230 В близко к нулю. Для лучшего понимания, этот факт продемонстрирован на рисунке ниже.
На данном рисунке показано измерение сопротивление между земляным хвостом щупа осциллографа и земляным контактом шнура питания осицллографа. Как видим, величина сопротивления очень мала и составляет всего 2,18 Ома. В реальности она еще меньше, потому что здесь не учитывалось сопротивление самих щупов мультиметра, которое может быть более 1 Ома.
Итак, сделаем важный вывод: у осциллографа земляной хвост щупа соединен с земляным контактом розетки и через нее заземлен в электрическом щитке.
Структура бытовой сети 230 В
Наиболее полное описание структуры сети 230 В, конечно, лучше найти в какой-нибудь литературе по теории электрических цепей, прочитав раздел про трехфазные цепи. В рамках данной статьи будет представлена только очень маленькая часть этого курса, имеющая непосредственное отношение к нашей проблеме.
В обычную бытовую розетку приходит как правило 3 провода: фаза, нейтраль и заземление. В старых домах советской постройки третьего провода (заземления) может и не быть. Провод заземления в общем-то соответствует своему названию: в конечном итоге он переходит в шину (контур заземления), которая закапывается глубоко в землю где-нибудь под зданием или в непосредственной близости от него (разумеется, не просто абы как, а в соответствии с определенными правилами). Этот провод предназначен для защиты человека от возможного поражения электрическим током: в случае нештатной ситуации, например, попадания напряжения на корпус прибора, ток начинает идти по проводу заземления, что приводит к срабатыванию защитной автоматики и отключению напряжения.
Нейтраль по сути своей очень близка к заземлению. Если вы внимательно рассмотрите линию электропередач в сельской местности, то заметите, что нейтральный проводник заземляется на каждой опоре.
Кроме того, нейтральный проводник заземлен также и на подстанции (здесь есть свои нюансы, но в быту обычно это так, схемы с изолированной нейтралью мы не рассматриваем).
В идеальном мире сопротивление между проводом заземления и нейтралью в розетке равно нулю, и они имеют абсолютно одинаковый потенциал. В реальном мире сопротивление проводников вносит свои коррективы и между нейтралью и заземлением имеется сопротивление порядка единиц-десятков Ом. Запомним этот факт, он пригодится нам в дальнейшем.
Фазный проводник – это непосредственно сам «рабочий» проводник, который формирует синусоиду относительно нейтрали. Синусоида в бытовой розетке имеет амплитуду порядка 325 В и колеблется в плюс и в минус относительно нейтрального проводника. Таким образом, при положительной полуволне синусоиды ток течет из фазного проводника в нейтральный, а при отрицательной полуволне наоборот – ток течет из нейтрального проводника в фазный.
Что происходит при подключении осциллографа?
Итак, сведем в кучку выводы по предыдущим разделам статьи:
- В сетевом импульсном источнике питания цепь локальной (силовой) земли связана с нейтралью и фазой через диоды.
- У осциллографа земляной хвост щупа соединен внутри него с земляным контактом розетки.
- Сопротивление между нейтралью и заземлением в сети мало и составляет единицы-десятки Ом.
- При положительной полуволне синусоиды ток течет из фазного проводника в нейтральный, а при отрицательной полуволне – из нейтрального в фазный.
Для начала давайте посмотрим, как ведет себя схема без подключенного осциллографа. На рисунке ниже приведены результаты моделирования такой схемы (картинка кликабельна).
Сопротивление R1 в данном случае – это сопротивление нагрузки. Я выбрал его равным 100 кОм. Можно взять любое другое, в данном случае его величина не принципиальна. Сопротивление R2 – это сопротивление между нейтральным и проводником и заземлением. Я выбрал его равным 10 Ом. Амплитудное напряжение между фазой и нейтралью составляет 325 В, что соответствует действующему значению напряжения в 230 В, сигнал показан на зеленом графике.
Как видно из графиков тока, он нигде не превышает величины нескольких миллиампер и вся система чувствует себя хорошо.
А что будет, если подключить к такой цепи осциллограф? Результат показан на рисунке ниже (картинка кликабельна).
Как видим, в модель добавился резистор R3 с сопротивлением 2 Ома. Этот резистор соответствует сопротивлению между земляным хвостом щупа осциллографа и контактом заземления шнура питания осциллографа. Чуть выше мы проводили измерение этого параметра и получили величину равную порядка 2 Ом. Этот резистор подключен к локальной силовой земле PGND: именно к этой цепи вы скорее всего и подключите землю осциллографа, если захотите произвести измерения на первичной стороне источника питания. Но как же ведет себя при этом ток? А он вырастает до катастрофических величин. Величина тока в нашей модели составляет более 25 А! В данном случае ток ограничен величиной сопротивления между нейтралью и заземлением, внутренним сопротивлением диодного моста, а также величиной сопротивления всех проводов. И этот ток протекает, помимо всего прочего, через резистор R3, т.е. через щуп осциллографа и через его внутренние цепи. 25 А через внутренние цепи осциллографа гарантированно выжгут внутри все, что возможно, не факт даже, что уцелеет сама печатная плата. Таким образом, данная картинка весьма наглядно показывает, что будет с прибором, если вот так просто попытаться измерить сигналы на не отвязанном от сети источнике.
Если чуть проанализировать результаты выше, то становится понятным, что смертельным для осциллографа оказывается отрицательная полуволна синусоиды в розетке. Отрицательная полуволна создает в точке между диодами D1 и D3 отрицательный потенциал. К точке PGND оказывается приложен нулевой потенциал (GND) через хвост щупа осциллографа, который соединен внутри него с землей розетки. Таким образом, у нас образуется разность потенциалов, причем диод D1 оказывается включенным в прямой полярности, что и приводит к резкому росту тока. Все вышесказанное наглядно проиллюстрировано на рисунке ниже.
А как же УЗО?
Действительно, при подключении земляного хвоста осциллографа к локальной (силовой) земле на стороне сетевого напряжения возникает дисбаланс токов и это должно отрабатываться УЗО. Возможно, оно и спасет цепи осциллографа от полного выгорания, однако, увы, УЗО срабатывает отнюдь не мгновенно, время его реакции составляет десятки миллисекунд. За это время вполне успеет проскочить хотя бы одна полуволна синусоиды сетевого напряжения, которая если не выжжет прибор совсем, скорее всего, все равно повредит чувствительные входные цепи осциллографа. Кроме того, в электрическом щитке УЗО присутствует далеко не всегда. Поэтому, не смотря на то, что УЗО, безусловно, полезный компонент электропроводки, в данном случае неразумно полагаться на защиту прибора с его помощью. Но как же быть, если все-таки необходимо посмотреть какие-то сигналы у прибора, работающего от сети 230 В? На самом деле, есть несколько способов, как это можно сделать относительно безопасно, об этом в следующем разделе
Как посмотреть сигналы на стороне сетевого напряжения и не спалить приборы?
1. Использовать осциллограф с гальванически развязанными каналами
У осциллографа с гальванически развязанными каналами все каналы имеют изоляцию как друг относительно друга, так и относительно земли. Таким образом, при подключении прибора к схеме, у нас не будет образовано контура, через который может произойти короткое замыкание и выгорание схемы. Однако будьте все равно предельно внимательны, даже если у вас осциллограф с развязанными каналами. Внимательно изучите документацию на свой прибор и обратите внимание на конкретные цифры по максимально допустимому напряжению относительно земли. Если вы будете анализировать сигналы на стороне сетевого напряжения, то, скорее всего, вам понадобятся специальные высоковольтные щупы, которые позволяют проводить измерения под большим потенциалом. Использование осциллографа с развязанными каналами имеет один большой недостаток – цена. Такие осциллографы заметно дороже осциллографов с аналогичными характеристиками, земли каналов которых соединены на общем шасси. Кроме того, модельный ряд таких осциллографов довольно-таки скудный, по сравнению с классическими осциллографами, конечно же. В общем, если у вас есть осциллограф с изолированными каналами и вы умеете с ним работать, скорее всего, вы мало что нового узнали из этой статьи.
2. Использовать дифференциальный пробник
Если у вас нет осциллографа с гальванически развязанными каналами, но есть обычный, то можно развязать какой-либо его канал с использованием специального устройства, которое называется дифференциальный пробник. Пример такого устройства приведен на рисунке ниже.
С помощью данного устройства возможно относительно безопасно смотреть сигналы на стороне сетевого напряжения. Существует достаточно большое число видов подобных устройств на разные входные напряжения и частот с разными коэффициентами деления входного напряжения. Как правило это активные устройства, требующие дополнительного питания, например, устройство с рисунка выше требует адаптер 9 В. Цена подобных устройств обычно тоже не очень демократична и составляет десятки, а иногда и сотни тысяч рублей (по курсу на момент написания статьи).
3. Использовать развязывающий трансформатор
Вполне рабочий способ защитить осциллограф и посмотреть при этом сигналы на стороне сетевого напряжения – использование развязывающего трансформатора с коэффициентом трансформации 1:1 (т.е. величина напряжения на выходе трансформатора равна величине напряжения на его входе). Через такой трансформатор необходимо подключить объект исследования (например, все тот же анализируемый нами источник питания). Поясняющий рисунок с результатами моделирования приведен ниже (картинка кликабельна).
Как видим, не смотря на то, что к схеме точно таким же образом подключен заземленный хвост щупа осциллографа, на графиках тока нет никаких запредельных величин. Ток через внутренности осциллографа (через сопротивление R3) равен нулю, а амплитуда тока источника питания и нагрузки составляет несколько миллиампер, как было у нас при не подключенном осциллографе. Это происходит потому, что теперь у нас земля PGND гальванически развязана от сетевого напряжения. Однако это вовсе не значит, что теперь все безопасно для человека: на выходе трансформатора по-прежнему 230 В действующего напряжения, которые могут представлять смертельную опасность.
При использовании развязывающего трансформатора помимо коэффициента трансформации необходимо также обязательно посмотреть на такой параметр, как максимально допустимая мощность. Очевидно, что потребляемая вашей нагрузкой мощность не должна превышать максимально допустимую мощность, на которую рассчитан трансформатор. Таким образом, этот способ вряд ли подойдет для анализа установок на несколько киловатт: габариты и масса требуемого трансформатора будут слишком велики.
4. Использовать лабораторный источник питания
Если ваш объект исследования – импульсный источник питания, то безопасно посмотреть его первичные цепи можно запитав его не от сети 230 В, а через лабораторный источник питания постоянного тока. Внутри такого источника питания всегда стоит трансформатор, таким образом достигается гальваническая развязка, и осциллограф можно безбоязненно подключать к анализируемой схеме. Поскольку на входе импульсного источника питания стоит выпрямитель, то для его работы нет большой разницы, подадите вы на вход синусоиду или же постоянное напряжение. Разумеется, величина этого постоянного напряжения должна соответствовать выпрямленному сетевому напряжению с каким-либо допуском. На прошлой работе в качестве такого источника питания мы использовали источник Б5-50, он изображен на рисунке ниже.
Он выглядит не очень современно, однако умеет выдавать на выходе напряжение до 300 В и неплохо подходит для отладки схем мощностью до пары сотен ватт.
Дополнительный очень жирный плюс использования лабораторного источника питания при отладке – вы можете выставить на источнике питания необходимое ограничение по току. Таким образом, даже если схема неисправна, у вас не будет громкого ба-баха и с большой долей вероятности ничего не сгорит. Такой подход несравнимо лучше всем известного включения схемы через лампочку накаливания. Единственное о чем стоит помнить – мощность лабораторного источника питания должна быть достаточной для организации питания исследуемой схемы.
5. Использовать розетку без заземления
Внимание! Данный способ относится к категории опасных, поэтому я не могу рекомендовать использовать его. Однако все-таки для полноты картины я должен про него рассказать, хотя бы для того, чтобы сообщить о возможных опасностях. Более того, бывает, что зачастую он оказывается единственным возможным способом посмотреть сигнал на стороне сетевого напряжения без привлечения какого-либо специального оборудования типа развязывающего трансформатора или осциллографа с изолированными каналами. Данный способ заключается в том, что осциллограф включается в розетку без клеммы заземления (см. рисунок ниже).
Таким образом разрушается контур протекания тока, однако это приводит к одной большой проблеме. Теперь земля осциллографа оказывается под смертельно опасным потенциалом. Это значит, что опасное для жизни напряжение будет присутствовать на всех BNC-разъемах осциллографа, на земляных хвостах всех подключенных щупов, а также, возможно, и на корпусах всех других приборов, включенных в ту же розетку (в случае, если в розетке все же есть контакты заземления, но к ней не подведен заземляющий провод). И если теперь одной рукой просто задеть коаксиальный разъем на корпусе осциллографа, а другой при этом, условно, схватиться за батарею… в общем, вы понимаете. Совершенно недопустимо использовать этот способ, если у вас осциллограф в металлическом корпусе. Если все-таки используете этот способ, то отключите все лишние щупы, а также другие провода (USB, RS-232 и др.), убедитесь, что в розетку включен только один осциллограф, выполните все подключения, настройте заранее все крутилки на осциллографе, убедитесь, что не заденете случайно BNC разъемы и только потом подавайте сетевое напряжение.
Тем не менее, при соблюдении всех мер предосторожностей, этот способ в целом рабочий. Под спойлером ниже приведена осциллограмма напряжения из розетки, снятая мной еще в студенческие годы как раз с использованием этого самого способа. Поскольку сетевое напряжение имеет размах, превышающий количество клеток на экране осицллографа, измерение происходило через резистивный делитель напряжения 1:5.
6. Использовать осциллограф с питанием от аккумуляторной батареи
Некоторые осциллографы могут работать от встроенных аккумуляторных батарей. Сетевой шнур при этом не подключается, соответственно, осциллограф оказывается не заземленным. По сути этот способ является полным аналогом предыдущего, только вместо розетки без заземления используется питание осциллографа от встроенной батареи. Этот способ абсолютно точно также опасен, как и предыдущий: на всех разъемах осциллографа будет присутствовать все тот же смертельно опасный потенциал, поэтому все меры безопасности, описанные в предыдущем пункте статьи, в равной степени справедливы и для этого способа.
7. Запитать управляющие микросхемы низким напряжением от лабораторного источника
Иногда бывают ситуации, когда для отладки не обязательно наличие высокого сетевого напряжения. В таком случае лучше просто запитать управляющие цепи с помощью низковольного лабораторного источника питания. Величина требуемого напряжения всегда прописана в документации на конкретные микросхемы (например, в случае исследования ШИМ-контроллера оно обычно не превышает 20 В). Сетевое напряжение 230 В при этом, само собой, не подается, поэтому можно абсолютно безопасно исследовать осциллографом импульсы на выходе контроллера, работу осциллятора, величину опорных напряжений и другие критические сигналы. Конечно, без наличия сетевого напряжения все проверить не получиться, но откровенно мертвый контроллер без проблем можно продиагностировать.
Общие рекомендации по работе с сетевым напряжением
1. При работе с сетевым напряжением всегда соблюдайте технику безопасности
Да, сто раз про это везде уже писали, но, тем не менее, почему-то часто то, как делать не надо, выясняется только на своей шкуре своем опыте. Не стоит лезть в приборы под напряжением во время работы, лучше выполните все подключения до включения питания. Не забывайте про накопительные конденсаторы: на их разряд нужно некоторое время, которое может стремиться к бесконечности (условно, конечно же), если разработчик не поставил разрядных резисторов.
2. Изучите инструкцию на ваш прибор
Конечно, жизнь слишком коротка, чтобы читать инструкции, поэтому их обычно открывают только когда что-то не работает или сломано. Но если вы работаете с сетевым напряжением, все-таки стоит заранее посмотреть, а какие, собственно, предельные цифры у вашего прибора. Небрежность в этом вопросе может стоить очень дорого.
3. Используйте недорогие приборы
Если вы исследуете сетевое напряжение, то отложите в сторону ваш крутой Tectronix DPO 7254 ценою в несколько миллионов и возьмите какой-нибудь Наntек DSO 5102 за пару десятков тысяч рублей. На стороне сетевого напряжения вам не нужны гигасемплы и крутая математика, зато если что-то пойдет не так, ошибка не будет стоить настолько дорого.
4. По возможности всегда работайте с гальванической развязкой от сети
Из-за несоблюдения этого правила в этом мире погорело уже куча электроники. В моей практике был случай, который стоил мне ноутбука и JTAG-отладчика. Я проводил отладку одного устройства и вроде бы ничего не предвещало беды. Устройство имело металлический корпус и на корпусе была установлена неоновая лампочка, которая светилась от сети 230 В. Корпус, естественно, был заземлен. Сама плата с микроконтроллером была запитана от отдельного изолированного источника питания. И в один прекрасный момент эта лампочка пробилась на корпус устройства. В этот момент к плате был подключен JTAG-отладчик, который был воткнут в ноутбук. Ноутбук же в свою очередь был включен в розетку с заземлением. Таким образом, ток пошел по цепочке «неоновая лампочка – корпус – плата – JTAG-отладчик – ноутбук – источник питания ноутбука – заземление». Разумеется, ноутбук и программатор при этом выгорели без возможности восстановления. Этого можно было бы избежать, если бы применялся JTAG-отладчик с гальванической развязкой. Ну и использовать топовый MacBook Pro в качестве рабочей машины при отладке силовой электроники, конечно же, тоже не стоит (см. предыдущий пункт).
Как измерить ток осциллографом: гайд от Суперайс
Осциллограф – универсальный прибор, способный регистрировать сигналы произвольной формы в широком амплитудном диапазоне. Помимо обычной визуализации сигнала, они также способны к его анализу и интерпретации. Поэтому осциллографы получили широкое распространение в радиотехнике и электронике.
Все осциллографы способны измерять только изменение напряжения, но существуют ли способы изучения характеристик тока при помощи осциллографа?
Время чтения: 12 минут |
Как измерить ток осциллографом?
Распространение импульсных схем привело
к тому, что форма протекающего тока, часто не совпадает с формой напряжения. Искажения оказывают значительное влияние как на элементы схемы источника питания, так и потребителя. Поэтому достоверная информация о форме сигнала, в первую очередь, необходима для:
- оценки характеристик получаемого сигнала;
- определения наличия в сигнале выбросов;
- обнаружения источника создаваемых искажений;
- определения необходимых характеристик электронных компонентов схемы.
Осциллограф широко применяется для регистрации периодических и быстроменяющихся импульсов напряжения. А что ток? Как дело обстоит с ним? Взглянем, какие используются способы регистрации сигналов электрического тока при помощи осциллографа.
Способ 1. Измерение на токоизмерительном шунте
Измерение на токоизмерительном шунте – один из наиболее часто применяемых методов измерения больших токов. Суть метода основана на том, что исследуется не сам ток, протекающий по проводнику, а создаваемое на нем падение напряжения. Так как сам шунт является чисто активным элементом, то форма напряжения, регистрируемого на нем, будет полностью идентична форме действующего тока. Обычно, в качестве шунтов, используются резисторы не большого сопротивления (менее 0,5 Ом).
Шунт постоянного тока (DC 0 — 100 В, Ток: 0 — 50 А).
Регистрируемое на шунте падение напряжения так же называют дифференциальным, а сам шунт — токоизмерительным или токочувствительным резистором.
В ряд устройств уже могут быть встроены токочувствительные шунты. Так в конструкции большинства блоков питания такие резисторы используют для получения сигнала обратной связи. Если в исследуемую электрическую схему уже встроен резистор обратной связи или иной шунт, то проводить измерения следует именно на нем.
Чтобы улучшить получаемые результаты измерения падения напряжения на шунте, можно воспользоваться дифференциальным пробником. Но следует учитывать, что синфазный сигнал присутствующий на резисторе, не должен быть выше допустимого к измерению значения. При этом напряжение на резисторе должно быть достаточно велико.
Схема включения шунтирующего резистора.
При исследовании слабых сигналов необходимо обеспечить минимальный уровень шума в измерительной системе. Дифференциальные пробники должны выбираться с минимальным затуханием сигнала, а также иметь минимально необходимую для измерения полосу пропускания. Сами измерения следует проводить используя на щупах минимальный коэффициент усиления. Чтобы уменьшить шум измерительной системы, также необходимо ограничить, до допустимых пределов, полосу пропускания осциллографа.
Также необходимо учитывать наличие у щупа емкости, а также собственного сопротивления. Они оказывают значительное влияние на работу измерительной системы осциллографа. В первую очередь это связано с тем, что сопротивление измерительного резистора очень мало.
Щуп G3100 к осциллографу с делителем 1:100 (100 МГц, 2,5 кВ).
При отсутствии встроенного шунта, последовательно нагрузке, необходимо самостоятельно установить резистор. К выбору токоизмерительного шунта необходимо подходить тщательно.
Причина этого в том, что слишком низкое сопротивление резистора даст малое значение падения напряжения, которое сложно будет зарегистрировать. Слишком большое сопротивление даст хорошее качество сигнала, но на шунте будет слишком большая рассеиваемая мощность, что окажет значительное влияние на работу самой схемы.
Также необходимо помнить, что существует ряд факторов, значительно влияющих на форму получаемого с шунта сигнала. И это:
- индуктивное сопротивление, привносимое токочувствительным шунтом в общую схему;
- образование RC-фильтра входной емкостью дифференциального пробника и измерительным резистором.
При самостоятельном добавлении измерительного резистора постарайтесь включить его в цепь как можно ближе к земле, чтобы свести к минимуму синфазные сигналы, возникающие на резисторе. В первую очередь из-за того, что они способны привнести дополнительные помехи в измерительную систему.
Учитывайте также, что с повышением исследуемой частоты характеристика подавления синфазных сигналов ослабевает. Это также ведет к снижению точности измерений при регистрации высокочастотных токов. В такой ситуации необходимо использовать активные пробники.
Способ 2. Использование токоизмерительного пробника
Протекающий по проводнику электрический ток создает вокруг него электромагнитное поле.
Чтобы измерить его силу и в последующем зарегистрировать полученный сигнал при помощи осциллографа, необходимо преобразовать энергию электромагнитного поля в электрический ток и напряжение. Для осуществления этого используют специальные датчики – токоизмерительные пробники.
Использование токоизмерительных пробников позволяет не только визуализировать сигнал, но также выполнить анализ его текущей формы. А при наличии функции математических вычислений, встроенной в осциллограф, можно определять у регистрируемого сигнала: мгновенные значения, полную и активную составляющие, смещение фазы, а также некоторые другие характеристики.
В настоящее время в осциллографии применяют два вида дифференциальных пробников:
- переменного тока (AC);
- переменного и постоянного тока (AC/DC).
AC пробники
Для измерения переменного тока в обоих видах устройств используют принцип работы трансформатора. Где основным условием для его реализации является протекание переменного сигнала по проводнику. Изменение импульса сопровождается колебанием с определенной частотой амплитуды напряжения, а также сменой полярности. Эти изменения вызывают появление, исчезновение, а также смену направления вектора электромагнитного поля, образующегося вокруг проводника.
При размещении чувствительной электромагнитной катушки, в этом переменном электромагнитном поле, в ней появляется электрический ток. Данное явление называется электромагнитной индукцией, а сам ток считается наведенным или индуцированным.
Принцип действия электромагнитной индукции.
Индуцированный в катушке сигнал имеет ту же форму и характеристики, что и исходный, протекающий в проводнике. Отличается он только меньшей амплитудой. Подученный таким образом сигнал, можно визуализировать, а также подвергнуть необходимому анализу на осциллографе.
Самые простые AC пробники – это пассивные катушки, намотанные на сердечник из ферромагнитного материала. Сами катушки изготавливают с высокой точностью, с выверенными размерами и характеристиками.
Ряд устройств выполняются на сердечниках тороидальной формы. При их использовании нужно продеть проводник с исследуемым сигналом через катушку. Однако чаще, токоизмерительные пробники, конструируются разъемными. Их конструкция позволяет свободно открывать и закрывать замкнутый сердечник для свободного размещения внутрь проводника. Такая конструкция позволяет проводить измерения без необходимости разрыва тестируемой цепи.
Токовые пробники с разъемным сердечником обладают хорошей чувствительностью и работают без внешнего источника питания. К их недостаткам можно отнести высокую механическую жесткость, а также часто небольшую апертуру. Эти факторы ограничивают их применимость.
Токовый пробник LOTO AC100A.
Для исследования переменного тока могут использоваться устройства, основанные на конструкции катушки (петли) Роговского. Устройства такого типа считаются альтернативой классическим токоизмерительным пробникам имеющих разъемный магнитопровод. Конструктивно они имеют высокую механическую гибкость за счет отсутствия твердого магнитопровода, коим выступает воздух. Это свойство позволяет раскрыть катушку на необходимую ширину и намотать ее на вывод исследуемого компонента или сигнальный провод.
У катушек, имеющих ферромагнитный сердечник, при работе возникает магнитное насыщение. Значительно это проявляется при высоких уровнях тока, что приводит к искажению индуцированного сигнала. Однако, поскольку сердечник у петли Роговского не обладает магнитными свойствами, то это явление у него отсутствует. Следовательно, катушки Роговского обладают высокой достоверностью принимаемого сигнала независимо от уровня протекающего тока.
Однако отсутствие ферромагнитного сердечника и общая пассивная конструкция катушки дают невысокую чувствительность. Поэтому для усиления принимаемого с катушки сигнала им необходимы активные усилители, требующие дополнительный источник питания.
AC/DC пробники
Для исследования большинства преобразователей энергии требуются универсальные устройства, способные зарегистрировать переменный, а также постоянный импульсы.
Универсальные AC/DC пробники, для измерения переменного тока, используют встроенный воздушный трансформатор. Для измерения же постоянного тока задействован специальный датчик, работающий на эффекте Холла. Для обеспечения работы датчика Холла требуется электронная схема, а также дополнительный источник электропитания. Из-за этой особенности такие пробники называют активными.
В качестве питания может использоваться источник, интегрированный в конструкцию осциллографа или другой, внешний. Это может быть батарея, аккумулятор или блок питания. Также существуют модели, использующие питание от USB.
Активные пробники более требовательны к настройке. Плохая калибровка или же её отсутствие – ведет к появлению значительных временных и амплитудных расхождений регистрируемых сигналов.
Токовый пробник для осциллографа PINTECH PT710-D.
Выводы и заключение
Для достижения максимальной точности измерения, нужно подобрать подходящий способ измерения, а также использовать соответствующую технику. Все рассмотренные нами методы измерения имеет как свои преимущества, так и недостатки.
При использовании первого метода измерения достаточно шунтирующего резистора, а также классических измерительных щупов, поставляемых в комплекте с большинством осциллографов. При необходимости их можно приобрести отдельно. Например, такие:
- (1:10, 20МГц); (1:100, 100МГц); (1:10, 200МГц).
Для второго метода измерения могут применяться как пассивные, так и активные устройства. К преимуществам пассивных можно отнести: отсутствие дополнительного питания, простота конструкции и низкая цена. Однако при этом у них низкая полоса пропускания и чувствительность. Например, модель LOTO AC100A имеет полосу пропускания в диапазоне от 50 Гц до 150 кГц.
Активные же устройства, напротив, имеют высокую чувствительность, большую полосу пропускания (от 500МГц и выше) и способны измерять не только переменные, но также и постоянные сигналы. Однако активные модели требуют дополнительный источник питания.
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз
Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.
Для чего предназначен осциллограф
Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:
- амплитуду электрического сигнала — соотношение напряжения и времени;
- проанализировать сдвиг фаз;
- увидеть искажение электрического сигнала;
- на основе результатов вычислить частоту тока.
Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:
- форму периодического сигнала;
- значение положительной и отрицательной полярности;
- диапазон изменения сигнала во времени;
- длительность положительного и отрицательного полупериода.
Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.
Принцип действия осциллографа
Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:
- вертикальное – показывает исследуемое напряжение;
- горизонтальное – демонстрирует затраченное время.
За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально, всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.
На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.
Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.
Классификация и виды
Различают два основных вида осциллографов:
- аналоговые — аппараты для измерения средних сигналов;
- цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.
По принципу действия существуют следующая классификация:
- Универсальные модели.
- Специальное оборудование.
Наиболее популярными являются универсальные устройства . Эти осциллографы используют для анализа различных видов сигналов:
- гармонических;
- одиночных импульсов;
- импульсных пачек.
Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.
Универсальные осциллографы делятся на два основных вида:
- моноблочные — имеют общую специализацию измерений;
- со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.
Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.
Универсальные и специальные устройства делятся на:
- скоростные – применяются в быстродействующих приборах;
- запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.
При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.
Устройство и основные технические параметры
Каждый прибор имеет ряд следующих технических характеристик:
- Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
- Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
- Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
- Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
- Значения переходной характеристики, показывающие время нарастания и выброс.
Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.
Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.
Как выполняются измерения
Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.
Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.
Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.
Измерение тока
При измерении тока цифровым осциллографом, следует узнать какой вид тока необходимо наблюдать. Осциллографы имеют два режима работы:
- Direct Current («DC») для постоянного тока;
- Alternating Current («АС») для переменного.
Постоянный ток измеряется при включённом режиме «Direct Current». Щупы аппарата следует подключить к блоку питания в прямом соответствии с полюсами. Чёрный крокодил присоединяется к минусу, красный — к плюсу.
На экране устройства появится прямая линия. Значение вертикальной оси будет соответствовать параметру постоянного напряжения. Силу тока можно вычислить согласно закону Ома (напряжение поделить на сопротивление).
Переменный ток представляет собой синусоиду, из-за того, что напряжение также переменно. Поэтому измерить его значение можно только в определённый промежуток времени. Параметр также вычисляется при помощи закона Ома.
Измерение напряжения
Чтобы измерить напряжение сигнала понадобится вертикальная ось координат линейного двухмерного графика. Из-за этого всё внимание будет уделено высоте осциллограммы. Поэтому перед началом наблюдения следует настроить экран более удобно для измерения.
Затем переводим аппарат в режим DC. Присоединяем щупы к цепи и наблюдаем результат. На дисплее аппарата появится прямая линия, значение которой будет соответствовать напряжению электрического сигнала.
Измерение частоты
Прежде чем, понять, как измерить частоту электрического сигнала, следует узнать, что такое период, так как эти два понятия взаимосвязаны. Один период – это наименьший промежуток времени, через который амплитуда начинает повторяться.
Увидеть период на осциллографе легче при помощи горизонтальной оси координат времени. Нужно лишь заметить, через какой промежуток времени линейный график начинает повторять свой рисунок. Началом периода лучше считать точки соприкосновения с горизонтальной осью, а концом повторения этой же координаты.
Чтобы удобнее измерить период сигнала, скорость развёртки уменьшают. В таком случае погрешность измерения не так высока.
Частота — это значение обратно пропорционально анализируемому периоду. То есть, чтобы измерить значение, нужно одну секунду времени поделить на количество периодов, происходящих за этот промежуток. Полученная частота измеряется в Герцах, стандарт для России — 50 Гц.
Измерение сдвига фаз
Сдвигом фазы считают — взаимное расположение двух колебательных процессов во времени. Параметр измеряется в долях периода сигнала, чтобы независимо от характера периода и частоты, одинаковые сдвиги фаз имели общее значение.
Первое что необходимо сделать перед измерением: выяснить какой из сигналов отстаёт от другого и затем определить значение знака параметра. Если ток идёт впереди, то параметр сдвига угла отрицательный. В случае, когда напряжение опережает — знак значения положительный.
Чтобы вычислить градус сдвига фаз следует:
- Умножить 360 градусов на число клеток сетки между началами периодов.
- Разделить полученный результат на число делений, занимаемых одним периодом сигнала.
- Подобрать отрицательный или положительный знак.
Измерять сдвиг фазы в аналоговом осциллографе неудобно, потому что выводящиеся на экраны графики имеют одинаковый цвет и масштаб. Для наблюдений такого рода используют либо цифровое устройство, либо двухканальные аппараты, чтобы разместить разные амплитуды на отдельный канал.
Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления
Что такое активная и реактивная мощность переменного электрического тока?
Что такое реле напряжения и для чего оно нужно в квартире
Что такое сетевой фильтр, для чего он нужен и где применяется
Что такое петля фаза-ноль простым языком — методика проведения измерения