Как влияет железный сердечник помещенный в катушку на магнитное поле
Перейти к содержимому

Как влияет железный сердечник помещенный в катушку на магнитное поле

Если в катушку, по которой идет ток, внести железный сердечник, ее магнитное действие усиливается. Почему?

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Как можно усилить магнитные свойства катушки током

магнитное поле катушки с током электромагниты и их применение

Интенсивность магнитного поля можно определить числом линий магнитного потока, которое приходится на единицу площади. Магнитное поле возникает всюду, где протекает электрический ток, причем магнитный поток в воздухе пропорционален последнему. Прямой провод, несущий ток, можно согнуть в виток. При достаточно малом радиусе витка это приводит к возрастанию магнитного потока. При этом сила тока не увеличивается.

Эффект концентрации магнитного потока можно еще усилить, увеличивая количество витков, т. е. скручивая провод в катушку. Справедливо и обратное. Магнитное поле катушки с током можно ослабить, если уменьшить количество витков.

энергия магнитного поля катушки с током

Выведем важное соотношение. В точке максимальной плотности магнитного потока (в ней на единицу площади приходится больше всего линий потока) соотношение между электрическим током I, числом витков провода n и магнитным потоком В выражается так: In пропорционально В. Ток в 12 А, текущий по катушке из 3 витков, создает точно такое же магнитное поле, как и ток в 3 А, текущий по катушке из 12 витков. Это важно знать, решая практические задачи.

Вариант 1

1. Приведите примеры промышленного использования электромагнитов.

2. Какие изменения в свойствах электромагнита произойдут, если внутрь катушки внести железный стержень?

3. На рисунке указаны полюса источника тока, к которому присоединен электромагнит. Какой полюс электромагнита располагается наверху?

4. На рисунке указано положение северного полюса электромагнита. Где располагается положительная клемма источника тока?

5. Почему северный полюс магнитной стрелки показывает на север?

Соленоид

магнитное поле катушки с током электромагниты

Катушка из намотанного провода, создающая магнитное поле, называется соленоидом. Провода можно наматывать на железо (железный сердечник). Подойдет и немагнитная основа (например, воздушный сердечник). Как вы видите, можно использовать не только железо, чтобы создать магнитное поле катушки с током. С точки зрения величины потока любой немагнитный сердечник эквивалентен воздуху. То есть приведенное выше соотношение, связывающее ток, число витков и поток, в этом случае выполняется достаточно точно. Таким образом, магнитное поле катушки с током можно ослабить, если применить эту закономерность.

Использование железа в соленоиде

магнитные линии поля катушки с током

Для чего в соленоиде используется железо? Его наличие влияет на магнитное поле катушки с током в двух отношениях. Оно увеличивает магнитное действие тока, часто в тысячи раз и более. Однако при этом может нарушаться одна важная пропорциональная зависимость. Речь идет о той, которая существует между магнитным потоком и током в катушках с воздушным сердечником.

Микроскопические области в железе, домены (точнее, их магнитные моменты), при действии магнитного поля, которое создается током, строятся в одном направлении. В результате при наличии железного сердечника данный ток создает больший магнитный поток на единицу сечения провода. Таким образом, плотность потока существенно возрастает. Когда все домены выстраиваются в одном направлении, дальнейшее увеличение тока (или числа витков в катушке) лишь незначительно повышает плотность магнитного потока.

Расскажем теперь немного об индукции. Это важная часть интересующей нас темы.

Главное.

Для перевода кратных и дольных единиц измерения в СИ нужно помнить степень 10, которую показывает приставка (например кило-, санти-, и т. д.).

Несколько основных кратных единиц измерения:

Кило — [к] — 10³. Пример: 1 км = 10³ м (километр).

Мега — [М] — 10⁶. Пример: 1 МПа = 10⁶ Па (мегапаскаль).

Гига — [Г] — 10⁹. Пример: 1 ГГц = 10⁹ Гц (гигагерц).

Тера — [Т] — 10¹². Пример: 1 ТВ = 10¹² В (терравольт).

Пета — [П] — 10¹⁵. Пример: 1 ПН = 10¹⁵ Н (петаНьютон).

Другие используются достаточно редко.

Несколько основных дольных единиц измерения:

Деци — [д] — 10⁻¹. Пример: 1 дм = 10⁻¹ м (дециметр).

Санти — [c] — 10⁻². Пример: 1 см = 10⁻² м (сантиметр).

Милли — [м] — 10⁻³. Пример: 1 мН = 10⁻³ Н (миллиньютон).

Микро — [мк] — 10⁻⁶. Пример: 1 мкКл = 10⁻⁶ Кл (микрокулон).

Нано — [н] — 10⁻⁹. Пример: 1 нс = 10⁻⁹ с (наносекунда).

Пико — [п] — 10⁻¹². Пример: 1 пФ = 10⁻¹² Ф (пикофарад).

Другие используются также достаточно редко.

Индукция магнитного поля катушки с током

Хотя магнитное поле соленоида с железным сердечником гораздо сильнее магнитного поля соленоида с воздушным сердечником, величина его ограничена свойствами железа. Размер того, которое создается катушкой с воздушным сердечником, теоретически не имеет предела. Однако, как правило, получать огромные токи, необходимые для создания поля, сравнимого по величине с полем соленоида с железным сердечником, очень трудно и дорого. Не всегда следует идти этим путем.

индукция магнитного поля катушки с током

Что будет, если изменить магнитное поле катушки с током? Это действие может породить электрический ток точно так же, как ток создает магнитное поле. При приближении магнита к проводнику магнитные силовые линии, пересекающие проводник, индуцируют в нем напряжение. Полярность индуцированного напряжения зависит от полярности и направления изменения магнитного потока. Этот эффект значительно сильнее проявляется в катушке, чем в отдельном витке: он пропорционален числу витков в обмотке. При наличии железного сердечника индуцированное напряжение в соленоиде увеличивается. При таком способе необходимо движение проводника относительно магнитного потока. Если проводник не будет пересекать линии магнитного потока, напряжение не возникнет.

Постоянные магниты. Что это?

Китайцы, как и греки, тоже замечали интересное свойство некоторых минералов притягивать к себе железосодержащие предметы. Слово «притягивать» китайцы ассоциируют со словами «прижиматься», «любить» и поэтому назвали такие минералы «чу-ши», что значит «любящий камень». Так как эти минералы создала природа, и человек не мог повлиять на естественное действие камней, их стали называть постоянными магнитами.

Теперь уже известно, что так интересно проявляется природный минерал магнитный железняк (магнетит). Это достаточно хрупкий черного цвета минерал, плотность его примерно 5000 кг/м 3 .


Магнитный железняк.

Древние люди приписывали магнитному железняку свойства «живой души». Минерал, по их словам, устремлялся к железу, как собака к куску мяса. Ученые объясняют отношение древних к явлениям природы незнанием физики.

На самом деле, все заключается в особом виде материи – поле.

Магнитное поле и притягивает к постоянному магниту железные предметы, ведь, например, мелкие гвоздики или кнопки устремляются к магниту даже без соприкосновения с ним, а на некотором расстоянии.

Магнетит (природный магнитный железняк) проявляет свойства притягивания не очень сильно. Человеком на его основе созданы искусственные магниты с более мощным магнитным полем. В качестве материала в них используются такие металлы, как кобальт, никель и, конечно же, железо. Такие металлы способны намагничиваться, попадая в магнитное поле, а потом становятся самостоятельными магнитами.


Разные формы искусственных магнитов. Источник

Какую бы форму не имел магнит, у него есть участки, где наиболее сильно проявляются магнитные свойства. Эти участки называют магнитными полюсами. У каждого, даже самого маленького магнита, есть два полюса. Современные технологии позволяют намагничивать металлические предметы так, что у них образуется и 4 и 6 полюсов.

Увидеть, как по-разному притягиваются железные опилки к магниту, можно на простейшем опыте с дугообразным школьным магнитом. Просто поднести к опилкам магнит, опилки тут же «прилипнут» к нему:


Дугообразный магнит.

Полюсами такого магнита будут края дуги, где больше всего скопилось железных опилок.

У полосового магнита, форма которого прямоугольный параллелепипед, полюса находятся далеко друг от друга. Чем ближе к середине, тем меньше проявляются магнитные свойства.


Полосовой магнит.

Как получают энергию

Электрические генераторы вырабатывают ток на основе тех же принципов. Обычно магнит вращается между катушками. Величина индуцированного напряжения зависит от величины поля магнита и скорости его вращения (они определяют скорость изменения магнитного потока). Напряжение в проводнике прямо пропорционально скорости магнитного потока в нем.

Во многих генераторах магнит заменен соленоидом. Для того чтобы создать магнитное поле катушки с током, соленоид подключают к источнику тока. Какой в этом случае будет электрическая мощность, вырабатываемая генератором? Она равна произведению напряжения на силу тока. С другой стороны, взаимосвязь тока в проводнике и магнитного потока позволяет использовать поток, создаваемый электрическим током в магнитном поле, для получения механического движения. По этому принципу работают электродвигатели и некоторые электроизмерительные приборы. Однако для создания движения в них необходимо затрачивать дополнительную электрическую мощность.

Электромагниты и их применение

Электромагниты используют настолько повсеместно, что, пожалуй, трудно назвать электромеханический прибор, в котором бы они не применялись. Двери в подъездах удерживаются электромагнитами.

Электродвигатели самых различных устройств преобразуют электрическую энергию в механическую с помощью электромагнитов. Звук в колонках создается с помощью магнитов. И это далеко не полный список. Огромное количество удобств современной жизни обязано своим существованием применению электромагнитов.

Сильные магнитные поля

В настоящее время, используя явление сверхпроводимости, удается получать невиданной интенсивности магнитное поле катушки с током. Электромагниты могут быть очень мощными. При этом ток протекает без потерь, т. е. не вызывает нагрева материала. Это позволяет применять большое напряжение в соленоидах с воздушным сердечником и избежать ограничений, обусловленных эффектом насыщения. Очень большие перспективы открывает такое мощное магнитное поле катушки с током. Электромагниты и их применение не зря интересуют множество ученых. Ведь сильные поля могут использоваться для движения на магнитной «подушке» и создания новых видов электродвигателей и генераторов. Они способны высокую мощность при малой стоимости.

магнитное поле катушки с током можно ослабить если

Энергия магнитного поля катушки с током активно используется человечеством. Она уже долгие годы широко применяется, в частности на железных дорогах. О том, как используются магнитные линии поля катушки с током для регулирования движения поездов, мы сейчас и поговорим.

Регулирование движения на железной дороге

магнитное поле катушки с током

Движение плоского магнита включает сигнальный звонок или сирену. Далее происходит следующее. Через пару секунд кабина машиниста проходит над электромагнитом, который связан со светофором. Если тот дает поезду зеленую улицу, то электромагнит оказывается под напряжением и ось постоянного магнита в вагоне поворачивается в свое первоначальное положение, выключая сигнал в кабине. Когда же на светофоре горит красный или желтый свет, электромагнит бывает выключен, и тогда после некоторой задержки автоматически включается тормоз, если, конечно, это забыл сделать машинист. Тормозная цепь (как и звуковой сигнал) подключается к сети с момента поворота оси магнита. Если магнит во время задержки возвращается в первоначальное положение, то тормоз не включается.

Указатель юга и севера – компас. Полюсы магнитные

«Указатель юга» — так называли древние китайцы свое изобретение. Это был прибор в форме ложки, изготовленный из природного магнита. Ложка могла вращаться вокруг вертикальной оси.


Древний китайский компас.

Ручка ложки указывала южное направление. Она была северным полюсом ложки-магнита.

Развитие науки не остановилось, и современные компасы уже имеют другой вид:


Разные виды компасов.

Магнитная стрелка, главный элемент компаса, — это постоянный магнит и имеет два полюса. Конец стрелки, указывающий на географический Север, называют северным (N), а противоположный – южным (S) полюсом. Отсюда и название полюсов различных магнитов.

Раскраска магнитов в красный и синий цвета условна, реже используются и другие цвета. Существенным является то, что полюсы магнитов существуют только парами. Если распилить, например, полосовой магнит, получатся два полосовых магнита, и у них будет снова по два полюса: северный и южный.

В школьных лабораторных работах используются маленькие магниты на подставке, которые насаживаются на тонкую иглу и могут свободно вращаться вокруг этой иглы. Такие устройства называются магнитными стрелками, как подобие стрелок компасов.

С помощью стрелок изучается взаимодействие полюсов магнитов. Если приблизить стрелки друг к другу, они начинают поворачиваться и установятся по следующему правилу:

Земной шар является огромным магнитом, у которого есть свои полюсы. Но нельзя путать магнитные полюсы Земли с географическими. Согласно правилу, синий (северный) конец стрелки должен поворачиваться к Южному полюсу земного шара, так как притягиваются разноименные полюсы. Да, действительно, это так. Южный магнитный полюс Земли находится вблизи Северного географического полюса, но не в той же точке, а чуть в стороне, на острове Принца Уэльского. Северный магнитный полюс находится в Антарктиде, где и Южный географический.


Источник

Месторасположение магнитных полюсов Земли не остается постоянным. Полюсы смещаются на расстояние нескольких десятков километров в год.

Очень широк список областей, где применяются магниты:

  • автомобилестроение;
  • приборостроение;
  • автоматика;
  • телемеханика;
  • тормозные системы;
  • компасы;
  • медицина;
  • радиотехника;
  • электротехника.

От изучения природных магнитных явлений человек давно шагнул к элетромагнитным явлениям, без чего невозможно развитие знаний об электричестве и электрическом токе.

Упр.1466 ГДЗ Лукашик 7-9 класс по физике (Физика)

Изображение 1466°. Почему магнитное действие катушки, по которой идет ток, усиливается, когда в нее вводят железный сердечник?1) Катушка с железным сердечником при пропускании.

©Reshak.ru — сборник решебников для учеников старших классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — авторский с подробными пояснениями профильными специалистами. Вы сможете скачать гдз, решебники, улучшить школьные оценки, повысить знания, получить намного больше свободного времени.

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

Про магнитное поле, соленоиды и электромагниты

Магнитное поле создается не только естественными или искусственными постоянными магнитами, но и проводником, если по нему проходит электрический ток. Следовательно, существует связь между магнитными и электрическими явлениями.

Убедиться в том, что вокруг проводника, по которому проходит ток, образуется магнитное поле, нетрудно. Над подвижной магнитной стрелке параллельно ей поместите прямолинейный проводник и пропустите через него электрический ток. Стрелка займет положение, перпендикулярное проводнику.

Какие же силы могли заставить повернуться магнитную стрелку? Очевидно, силы магнитного поля, возникшего вокруг проводника. Выключите ток, и магнитная стрелка займет свое обычное положение. Это говорит о том, что с выключением тока исчезло и магнитное поле проводника.

Про магнитное поле, соленоиды и электромагниты

Таким образом, проходящий по проводнику электрический ток создает магнитное поле. Чтобы узнать, в какую сторону отклонится магнитная стрелка, применяют правило правой руки. Если расположить над проводником правую руку ладонью вниз так, чтобы направление тока совпадало с направлением пальцев, то отогнутый большой палец покажет направление отклонения северного полюса магнитной стрелки, помещенной под проводником. Пользуясь этим правилом и зная полярность стрелки, можно определить также направление тока в проводнике.

Правило правой руки

М агнитное поле прямолинейного проводника имеет форму концентрических кругов. Если расположить над проводником правую руку ладонью вниз так, чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс магнитной стрелки . Такое поле называется круговым магнитным полем.

Направление силовых линий кругового поля зависит от направления электрического тока в проводнике и определяется так называемым правилом «буравчика» . Если буравчик мысленно ввинчивать по направлению тока, то направление вращения его ручки будет совпадать с направлением магнитных силовых линий поля. Применяя это правило, можно узнать направление тока в проводнике, если известно направление силовых линий поля, созданного этим током.

Возвращаясь к опыту с магнитной стрелкой, можно убедиться в том, что она всегда располагается своим северным концом по направлению силовых линий магнитного поля.

Итак, вокруг прямолинейного проводника, по которому проходит электрический ток, возникает магнитное поле. Оно имеет форму концентрических кругов и называется круговым магнитным полем.

Соленои д. Магнитное поле соленоида

Магнитное поле возникает вокруг любого проводника независимо от его формы при условии, что по проводнику проходит электрический ток.

В электротехнике мы имеем дело с различного рода катушками, состоящими из ряда витков. Для изучения интересующего нас магнитного поля катушки рассмотрим сначала, какую форму имеет магнитное поле одного витка.

Про магнитное поле, соленоиды и электромагниты

Представим себе виток толстого провода, пронизывающий лист картона и присоединенный к источнику тока. Когда через виток проходит электрический ток, то вокруг каждой отдельной части витка образуется круговое магнитное поле. По правилу «буравчика» нетрудно определить, что магнитные силовые линии внутри витка имеют одинаковое направление (к нам или от нас, в зависимости от направления тока в витке), причем они выходят с одной стороны витка и входят в другую сторону. Ряд таких витков, имеющий форму спирали, представляет собой так называемый соленоид (катушку) .

Вокруг соленоида, при прохождении через него тока, образуется магнитное поле. Оно получается в результате сложения магнитных полей каждого витка и по форме напоминает магнитное поле прямолинейного магнита. Силовые линии магнитного поля соленоида, так же как и в прямолинейном магните, выходят из одного конца соленоида и возвращаются в другой. Внутри соленоида они имеют одинаковое направление. Таким образом, концы соленоида обладают полярностью. Тот конец, из которого выходят силовые линии, является северным полюсом соленоида, а конец, в который силовые линии входят, — его южным полюсом.

Полюса соленоида можно определить по правилу правой руки , но для этого надо знать направление тока в его витках. Если наложить на соленоид правую руку ладонью вниз, так чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс соленоида . Из этого правила следует, что полярность соленоида зависит от направления тока в нем. В этом нетрудно убедиться практически, поднеся к одному из полюсов соленоида магнитную стрелку и затем изменив направление тока в соленоиде. Стрелка моментально повернется на 180°, т. е. укажет на то, что полюсы соленоида изменились.

Соленоид обладает свойством втягивать в себя легкие ж е лезные предметы. Если внутрь соленоида поместить стальной брусок, то через некоторое время под действием магнитного поля соленоида брусок намагнитится. Этот способ применяют при изготовлении постоянных магнитов.

Про магнитное поле, соленоиды и электромагниты

Электромагнит представляет собой катушку (соленоид) с помещенным внутрь нее железным сердечником. Формы и размеры электромагнитов разнообразны, однако общее устройство всех их одинаково.

Катушка электромагнита представляет собой каркас, изготовленный чаще всего из прессшпана или фибры и имеющий различные формы в зависимости от назначения электромагнита. На каркас намотана в несколько слоев медная изолированная проволока — обмотка электромагнита. Она имеет различночисло витков и изготовляется из проволоки различного диаметра, в зависимости от назначения электромагнита.

Для предохранения изоляции обмотки от механических повреждений обмотку покрывают одним или несколькими слоями бумаги или каким-либо другим изолирующим материалом. Начало и конец обмотки выводят наружу и присоединяют к выводным клеммам, укрепленным на каркасе, или к гибким проводникам с наконечниками на концах.

Катушка электромагнитаКатушка электромагнита насажена на сердечник из мягкого, отожженного железа или сплавов железа с кремнием, никелем и т. д. Такое железо обладает наименьшим остаточным магнетизмом. Сердечники чаще всего делают составными из тонких листов, изолированных друг от друга. Формы сердечников могут быть различными, в зависимости от назначения электромагнита.

Если по обмотке электромагнита пропустить электрический ток, то вокруг обмотки образуется магнитное поле, которое намагничивает сердечник. Так как сердечник сделан из мягкого железа, то он намагнитится мгновенно. Если затем выключить ток, то магнитные свойства сердечника также быстро исчезнут, и он перестанет быть магнитом. Полюсы электромагнита, как и соленоида, определяются по правилу правой руки. Если в обмотке электромагнита и зм енить направление тока, то в соответствии с этим изменится и полярность электромагнита.

Действие электромагнита подобно действию постоянного магнита. Однако между ними есть большая разница. Постоянный магнит всегда обладает магнитными свойствами, а электромагнит — только тогда, когда по его обмотке проходит электрический ток.

Кроме того, сила притяжения постоянного магнита неизменна , так как неизменен магнитный поток постоянного магнита. Сила же притяжения электромагнита не является величиной постоянной. Один и тот же электромагнит может обладать различной силой притяжения. Сила притяжения всякого магнита зависит от величины его магнитного потока.

Про магнитное поле, соленоиды и электромагниты

С ила притяжения электромагнита , а следовательно, и его магнитный поток зависят от величины тока, проходящего через обмотку этого электромагнита. Чем больше ток, тем больше сила притяжения электромагнита, и, наоборот, чем меньше ток в обмотке электромагнита, тем с меньшей силой он притягивает к себе магнитные тела.

катушка электромагнитаНо для различных по своему устройству и размерам электромагнитов сила их притяжения зависит не только от величины тока в обмотке. Если, например, взять два электромагнита одинакового устройства и размеров, но один с небольшим числом витков обмотки, а другой — с гораздо большим, то нетрудно убедиться, что при одном и том же токе сила притяжения последнего будет гораздо больше. Действительно, чем больше число витков обмотки, тем большее при данном токе создается вокруг этой обмотки магнитное поле, так как оно слагается из магнитных полей каждого витка. Значит, магнитный поток электромагнита, а следовательно, и сила его притяжения будут тем больше, чем большее количество витков имеет обмотка.

Есть еще одна причина, влияющая на величину магнитного потока электромагнита. Это — качество его магнитной цепи. Магнитной цепью называется путь, по которому замыкается магнитный поток. Магнитная цепь обладает определенным магнитным сопротивлением . Магнитное сопротивление зависит от магнитной проницаемости среды, через которую проходит магнитный поток. Чем больше магнитная проницаемость этой среды, тем меньше ее магнитное сопротивление.

электромагнитТак как м агнитная проницаемость ферромагнитных тел (железа, стали) во много раз больше магнитной проницаемости воздуха, поэтому выгоднее делать электромагниты так, чтобы их магнитная цепь не содержала в себе воздушных участков. Произведение силы тока на число витков обмотки электромагнита называется магнитодвижущей силой . Магнитодвижущая сила измеряется числом ампер-витков.

Например, по обмотке электромагнита, имеющего 1200 витков, проходит ток силой 50 ма. М агнитодвижущая сила такого электромагнита равна 0,05 х 1200 = 60 ампер-витков.

Действие магнитодвижущей силы аналогично действию электродвижущей силы в электрической цепи. Подобно тому как ЭДС является причиной возникновения электрического тока, магнитодвижущая сила создает магнитный поток в электромагните. Точно так же, как в электрической цепи с увеличением ЭДС увеличивается ток в цени, так и в магнитной цепи с увеличением магнитодвижущей силы увеличивается магнитный поток.

Действие магнитного сопротивления аналогично действию электрического сопротивления цепи. Как с увеличением сопротивления электрической цепи уменьшается ток, так и в магнитной цепи увеличение магнитного сопротивления вызывает уменьшение магнитного потока.

Зависимость магнитного потока электромагнита от магнитодвижущей силы и его магнитного сопротивления можно выразить формулой, аналогичной формуле закона Ома: магнитодвижущая сила = (магнитный поток / магнитное сопротивление )

Магнитный поток равен магнитодвижущей силе, деленной на магнитное сопротивление.

Число витков обмотки и магнитное сопротивление для каждого электромагнита есть величина постоянная. Поэтому магнитный поток данного электромагнита изменяется только с изменением тока, проходящего по обмотке. Так как сила притяжения электромагнита обусловливается его магнитным потоком, то, чтобы увеличить (или уменьшить) силу притяжения электромагнита, надо соответственно увеличить (или уменьшить) ток в его обмотке.

Поляризованный электромагнит представляет собой соединение постоянного магнита с электромагнитом. Он устроен таким образом. К полюсам постоянного магнита прикреплены так называемые полюсные надставки из мягкого железа. Каждая полюсная надставка служит сердечником электромагнита , на нее насаживается катушка с обмоткой. Обе обмотки соединяются между собой последовательно.

Так как полюсные надставки непосредственно присоединены к полюсам постоянного магнита, то они обладают магнитными свойствами и при отсутствии тока в обмотках; при этом сила притяжения их неизменна и обусловливается магнитным потоком постоянного магнита.

Действие поляризованного электромагнита заключается в том, что при прохождении тока по его обмоткам сила притяжения его полюсов возрастает или уменьшается в зависимости от величины и направления тока в обмотках. На этом свойстве поляризованного электромагнита основано действие электромагнитных поляризованных реле и других электротехнических устройств .

Действие магнитного поля на проводник с током

Если в магнитное поле поместить проводник так, чтобы он был расположен перпендикулярно силовым линиям поля, и пропустить по этому проводнику электрический ток, то проводник придет в движение и будет выталкиваться из магнитного поля.

В результате взаимодействия магнитного поля с электрическим током проводник приходит в движение, т. е. электрическая энергия превращается в механическую.

Сила, с которой проводник выталкивается из магнитного поля, зависит от величины магнитного потока магнита, силы тока в проводнике и длины той части проводника, которую пересекают силовые линии поля. Направление действия этой силы, т. е. направление движения проводника, зависит от направления тока в проводнике и определяется по правилу левой руки.

Если держать ладонь левой руки так, чтобы в нее входили магнитные силовые линии поля, а вытянутые четыре пальца были обращены по направлению тока в проводнике, то отогнутый большой палец укажет направление движения проводника . Применяя это правило, надо помнить, что силовые линии поля выходят из северного полюса магнита.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *