Спиральная антенна 433 МГц
Антенностроитель из меня просто никакой — я в этом успел убедиться после экспериментов с самодельными штырями и спиралями.
Поэтому я немного помучился, а когда понял, что многие проблемы с поделками на Arduino случаются именно по причине плохой связи, решил плюнуть на гордость, поддаться жабе и сдаться на милость профессионалам.
Результат — покупка готовых спиральных антенн диапазона 433 МГц, то есть для передатчиков и приемников, которые использую в домашней автоматике.
Общее впечатление: оно того стоило. Антенны меньше и аккуратнее, работают субъективно не хуже, а то и лучше моих самодельных.
Для понимания процесса немного той теории, что я усвоил. В портативной технике используются, в основном, три типа антенн:
1) Штыревые
2) Спиральные
3) Вытравленные непосредственно на печатной плате
Штыревые антенны обладают наилучшими характеристиками, но с рядом ограничений. Во-первых, на них сильно влияет окружение. Например, в ограниченном пространстве, в непосредственной близости от стен и подобных препятствий штыри могут работать не слишком хорошо из-за отражений и интерференции (вплоть до полного взаимного поглощения излученного и отраженного сигнала).
Во-вторых, оптимальная конструкция включает в себя расположение штыря перпендикулярно более-менее значимой заземленной пластине. Крошечная плата передатчика таковой, разумеется, не считается. Ценители, конечно, могут сделать отвод коаксиальным кабелем к нужной пластине с антенной, но для меня это как-то слишком.
Спиральные антенны несколько хуже штыревых и еще более зависимы от окружения, но у них неоспоримое преимущество. При сравнимом ухудшении характеристик они гораздо более компактны.
Наконец, антенны на печатных платах. Приемлемое сочетание характеристик и компактности, где не требуется сверхчувствительность. Поэтому часто используются в разных не слишком критичных приложениях — звонки всякие, автосигнализации.
По моему опыту вышло, что самодельные штыри и спирали, сделанные с максимумом нарушений всех рекомендаций все же ведут себя лучше, чем просто кусочек провода. Причем в ряде случаев спирали работали даже лучше штырей.
Именно поэтому, а также из-за компактности я остановился именно на спиральных антеннах.
Магазин выбрал наугад, просто посмотрел более-менее приемлемую цену и бесплатную доставку (включенную, разумеется, в цену). Отправка без трек-номера, так что даже успел забыть о заказе.
Тем не менее, доставка оказалась вполне быстрой: 21 августа заказал, а 16 сентября они приехали. Я приехал 17 сентября, и хотя 18-го все еще был в невменяемом состоянии после отпуска (ну разницы в часовых поясах), все же поменял самодельные спирали в домашнем контроллере на эти.
С некоторым замиранием сердца, между прочим, поменял. Мои-то посерьезнее выглядят 🙂
По виду антенны кажутся изготовленными из медной проволоки, но по факту это что-то другое. Поскольку они не деформируются, как медный провод, а, скорее, пружинят. Плюс в том, что при таком раскладе характеристики антенны будут более-менее стабильными. Минус — сложно поменять полосу пропускания, раздвигая витки. Если, конечно, для вас вдруг актуально менять полосу.
Кстати, приехали в обычном желтом мягком пакете, но в дороге не пострадали.
Длина спирали: 20 мм
Длина продолжения: 10 мм
Длина изгиба (перпендикулярная часть): 7 мм
Внешний диаметр: 5 мм
Внутренний диаметр: 3,5 мм (не знаю, почему так)
Диаметр проводника: 0.5 мм
Просто в канифоли они не облуживаются, но старая добрая таблетка аспирина (самый простой какой найдете в аптеке, никаких шипучих!) справляется с этой задачей отлично (только не дышите парами). Кислотный флюс, разумеется, тоже подойдет — просто у меня его нет.
После распайки вернул контроллер на место и провел быстрый тест. Свет работает, все розетки работают, кормушка — работает. Из этого вывод: эти спиральки как минимум не хуже самодельных.
Для сравнения и масштаба бедствия: рядом с батарейкой АА и моим самодельным спиральным монстром:
А так как волномера у меня нет, то дальше только субъективизм. Первое впечатление — дистанционное управление стало более уверенным. В особенности это касается одной капризной радиорозетки, которая раньше включалась не каждый раз и кормушки для котов, которая капризничает почище радиорозетки.
В дальнейших планах — замена самодельных антенн на эти в старых поделках (кормушка, погодный датчик) и перспективных новых изделиях 🙂
Резюме: вполне могу рекомендовать для любой самодельной техники, где используются передатчики и приемники диапазона 433 МГц по какой-то причине не оснащенные антеннами. Ну или для замены громоздких телескопических антенн, которые китайцы любят ставить в особо дешевую технику (возможно, характеристики станут чуть хуже, но комфорт и эстетика вполне оправдывают).
Минусов, кроме цены, придумать не получается.
Q: Да кому это нужно?!
A: Если вы читаете ответ на этот вопрос, вам это, скорее всего, не нужно.
Q: А че так дорого за кусок проволоки?
A: Ценовую политику продавца обсуждать не готов.
Q: Купил бы моток эмалированного провода, накрутил бы себе сотни антенн за копейки. Слабо, что ли?
A: Слабо. Катушка провода стоит гораздо дороже этих десяти антенн, а больше десяти мне, пожалуй, пока не нужно. Ну и потом еще — найти оправку нужного диаметра, отмерять провод с максимальной точностью, на которую я не способен. Мне проще купить готовые.
Спиральные антенны — изготовление и настройка
Такие антенны относительно просты в изготовлении. Размеры могут варьироваться от 9 до 25 см и больше (но это уже на любителя). Чтобы сделать такую антенну необходимо иметь разъем, подходящий к вашей портативке, кусок толстого телевизионного кабеля (например РК-75), провод ПЭВ диаметром от 0,25 до 0,7 мм., немного хорошего клея и термоусадка.
Из кабеля вытягивается все содержимое, остается только наружный слой изоляционного материала, т.е. пластиковая трубка диаметром 7-9 мм. (зависит от кабеля). Теперь необходимо «примерить» разъем. Я покупал обжимные разъемы с внутренним диаметром трубки для обжима кабеля (она же земля разъема) чуть большим диаметра кабеля. Т.е. изготовленная по методике, описанной выше, трубка просто вставляется в разъем на клей (использовался просто суперклей как наиболее быстросохнущий). Но склеивать все это пока рано. Сначала надо проделать в трубке небольшое отверстие милиметров на 4-5 выше того места, где закончится разъем. В это отверстие просовывается провод ПЭВ (снаружи внутрь, чтобы конец торчал изнутри трубки), которым вы будете наматывать вибратор. К его концу припаивается центральный штырек от разъема который защелкивается на место (для пущей прочности я еще капаю туда суперклеем). Далее торчащий из куска кабеля провод начинаем наматывать виток к витку от разъема «наружу». В зависимости от толщины провода изменяется длина намотки. Самым тонким проводом около 8-10 см., самым толстым 25 см. Но лучше всего намотать побольше и отматывать по мере настройки.
Когда все намотали пройдитесь клеем вдоль витков чтобы они не раскручивались и можно начинать ловить КСВ. Делается это специальным прибором, который именуется индикатором напряженности поля. Чем больше отклоняется стрелка во время нажатия РТТ на портативке с вашей антенной — тем лучше. Так отматываем виток за витком пока не увидим что показания достигли пика и начинают падать. Откусываем ненужное и антенна практически готова. Насаживаем термоусадку, затыкаем дырку с торца и вот ваша суперантенна! Но следует помнить что антенны с тонким вибратором, да еще и укороченные имеют подлое свойство работать только в узком диапазоне частот. Например антенна намотанная проводом 0.7 работает без заметного падения эффективности где-то в пределах 40-ка каналов, 0.2 — вообще каналов 15. Но в принципе хватает. Наделал я таких самоделок много и работают они замечательно, гораздо лучше всяких крысиных хвостов.
Усовершенствование «крысиного хвоста»
Ни для кого не секрет что антенны, поставляемые с большинством портативных радиостанций, работают весьма плохо. Их еще называют «крысиный хвост». Связано это (как в случае с Alan 42) с «неверной» настройкой самого хвоста. Не знаю какие цели преследовали создатели этой антенны, но ее резонансная частота находится где-то далеко вверху, чуть не в районе 29 МГц. Недолгие размышления на эту тему приводят к довольно простому решению: чем длиннее вибратор, тем ниже резонансная частота. Таким образом если просто удлинить его можно добиться, наконец, настройки в нужную сетку. Нужно оторвать нашлепку сверху и просто воткнуть кусочек провода между декоративным кембриком антенны и полотном вибратора. Немножко поработаем кусачками. Готово! Антенна отстроена в 20сЕ! Остается только заменить неприличный проводок чем-нибудь покрасивее и поупруже. Проще всего это сделать при помощи некоторого количества тонкого стального провода, скручивая несколько жил вместе, как и было сделано самими производителями. Расплетаем кончик вибратора антенны, сплетаем обратно вместе с нашим «удлинителем», пропаиваем жилка к жилке или просто кучей, надеваем новый кембрик и получаем то что должно быть на самом деле.
Спиральная антенна своими руками
Считается, что спиральная антенна характеризуется круговой поляризацией, но мнение ошибочно. В действительности структура витков такова, что принимаются волны и с линейной поляризацией. Это удобно, когда присутствует возможность работать на любой структуре волны. И спиральные антенны используются как облучатель зеркал на спутнике. Для радиолюбителей недостаток в том, что волна с линейной поляризацией ослабляется на три децибела, как известно, в радио и телевещании другого не используется. В стране спиральный облучатель уместен лишь для ловли НТВ+ со спутника, там метод не используется. Ряд специальных применений указанных антенн обсуждать не станем. Впрочем, запросы по теме встречаются в сети. Кому пригодится спиральная антенна, свитая из проволоки и одетая на кусок трубы, ответить не беремся, даже в сборнике работ радиолюбителей этот класс изделий отсутствует напрочь.
Конструкция спиральной антенны
Как собрать спиральную антенну
Спиральная антенная напоминает инфракрасный обогреватель специфической конструкции. В СССР военные заводы выпускали приборы бытового назначения. Отсюда сходство параболических тарелок и обогревателей. Для сборки понадобится узнать диаметр и шаг намотки проволоки, количество витков. Из материалов понадобятся:
- Стальной лист для экрана, произвольной толщины, чтобы не гнулся от ветра и прочих коллизий.
- Отрез проволоки, чтобы хватило намотать витки с запасом.
- Питающий кабель: для телевидения 75 Ом, для радио 50 Ом.
- Труба пластиковая нужного диаметра.
Спиральные антенны относятся к классу бегущей волны, сопротивление устройств велико, чтобы, правильно рассчитав устройство, подключить без согласования. Сначала размечается труба, с запасом, чтобы удалось воткнуть в экран и приклеить. Вдоль оси (лучше с двух сторон) размечается шаг намотки. В будущем риски используются для выравнивания. Отступите спереди пару-тройку сантиметров, начинайте работать маркером. Обратите внимание, что с обратной стороны виток смещается ровно на полшага.
Спираль наматывается на трубу без учета шага, с нужным числом витков. В дальнейшем, начиная с первой риски, нужно растянуть проволоку правильным образом. Чтобы не происходило смещения в дальнейшем, следует правильное положение зафиксировать каплями клея. Примерно по три-четыре на виток. Тем временем изготовим экран.
Выбирайте квадрат со стороной порядка пяти диаметров трубы намотки. Нет разницы, какова толщина стали, выдерживайте прочностные характеристики. В собранном виде экран перпендикулярен трубе.
Для электрической сборки следует в области окончания спирали (основание трубы) просверлить отверстие и проволоку пропустить внутрь. За экраном в боковине проделываем дополнительную дыру, куда пропускаем оплетку питающего кабель. Электрически центральная жила соединяется со спиралью, экран фидера с экраном антенны. Образуется конструкция для приема и передачи волн. Труба со стальным экраном соединяются клеем-герметиком по уголку, чтобы обеспечить строгую перпендикулярность деталей. Ключевые моменты:
- Спираль и экран изготавливаются из проводящего материала, к примеру, меди.
- Труба из диэлектрика.
Расчет спиральной антенны
Спиральные антенны хороши способностью ловить любой тип волны, используемый в наземном вещании. Однако для ловли радио следует ось направить вверх, экран же расположится горизонтально. Устройству присущи ярко выраженные направленные свойства, не ждите, что получится охватить ряд вышек из одной точки. Не так просто. Диаграмма направленности зависит от габаритов спиральной антенны и сильно:
- Если длина витка много меньше длины волны, преобладает боковое излучение, поперек оси антенны. Причем поляризация не круговая.
- В идеальном случае длина витка укладывается в рамки 0,75 – 1,3 длины волны. В этом случае наблюдаем главный лепесток диаграммы направленности, смотрящий вперед. Разумеется, необходим экран.
- Если длина спирали больше 1,5 длины волны, образуется два лепестка, направленных в переднюю полуплоскость. Точнее говоря, получается нечто, напоминающее конусную поверхность.
Косвенно (по второму пункту) читатели уже составили представление о диапазоне. В два раза полосу расширим, применяя не цилиндрическую, а конусную спираль (коническая спиральная антенна). Рекомендуем онлайн калькулятор на сайте http://aerial.dxham.ru/onlajn-raschety/raschety-antenn/raschet-spiralnoj-antenny. Здесь предлагается задать частоту, шаг намотки спирали и длину излучателя:
- От длины намотки спирали зависит ширина главного лепестка диаграммы направленности. Варьируйте число витков и наблюдайте за параметром (находится в низу страницы калькулятора). Едва приметно меняется диаметр намотки спирали. Этому нет объяснения, создателям калькулятора виднее. Разумеется, понадобится больше меди, что отражается в соответствующих параметрах.
- Добавим, что с увеличением длины растет и усиление. Это типичный эффект: сужается лепесток – растет усиление. Площадь диаграммы направленности – величина постоянная. Как говорил Ломоносов, если в одном месте чего прибудет, в другом непременно убыть должно. Заметьте, что с ростом витков едва приметно падает ширина полосы пропускания.
- От шага намотки зависит усиление: чем больше цифра, тем ниже усиление, тем уже диаграмма направленности. На наш взгляд это ошибка авторов, потому что выходит, что выгоднее мотать плотно. Вдобавок проволоки уйдет меньше. Показаны исключительно преимущества, на практике подобное выглядит сомнительно.
Из полезных свойств этого онлайн калькулятора хотелось бы отметить расчет минимального размера экрана. А насчет шага уточните в справочниках, чем и займемся. Кстати, любопытен факт, что по умолчанию на сайте сразу стоит частота WiFi 2,45 ГГц. Здесь сегодня спиральные антенны часто применяются.
Самодельная спиральная антенна
Нашли: усиление зависит только от числа витков. Шаг намотки рекомендуется выбирать 0,22 – 0,24 длины волны. На сайте это значение задаем в широких пределах. Предлагаем читателям выбрать шаг, варьируя число витков. Случается, что в отдельных калькуляторах встречаются ошибки, точной информацией владеет лишь веб-программист.
Кстати, в новом источнике сведения приведены, что экран размещается позади спирали на расстоянии 0,12 длины волны. При этом добавляется, что если диаметр экрана выбирается равным 0,8 длины волны и более, сторона квадрата еще больше: 1,1 λ. Ситуация не настолько очевидна, но представьте, что круг обязан вписаться внутрь – все встает на места.
Что касается согласования, сопротивление спиральной антенны сильно зависит от толщины проволоки и с ростом уменьшается. Возможно добиться цифры, равной 75 и даже 50 Ом. В данном случае согласования не требуется, что упрощает эксплуатацию. На высоких частотах это работает. К примеру, волновое сопротивление станет равным 75 Ом при толщине проволоки 5% длины волны. Получая 50 Ом, следует взять толщину проволоки 7% длины волны. Видите, что на частотах WiFi это реально, а значит, рассчитаем параметры так, избегая согласования.
Обратите внимание, в калькуляторе не дается возможности задать толщину провода, а с имеющимся волновое сопротивление равно 140 Ом. Вероятно, это профессиональная хитрость, по нашим сведениям кабель должен быть на 50 Ом на частотах WiFi. Зато легко проверить, выполняется ли зависимость от толщины провода. Приведем таблицу и сравним результат.
Итак, частота составляет 2450 МГц, находим длину волны по простой формуле:
λ = 299 792 458 / 2450 000 000 = 0,1223 метра.
Находим нужный диаметр провода для сопротивления 140 Ом:
0,1223 х 0,02 = 2,45 мм, проверим, совпадает ли это с онлайн калькулятором! Смотрим и видим: 2,4. Ну, если учесть, что без округления получилось 2,447 мм, то будем считать, что два источника повторяют друг друга, а значит указаниям по выбору шага намотки (см. выше) можно поверить. На этом считаем, что самодельная спиральная антенна готова, а также найдем толщину проволоки, при которой сопротивление станет равным 50 Ом: получается 8,5 мм. Причём на указанной высокой частоте сложно обеспечить требуемые условия. Посему целью самостоятельно сделать спиральную антенну чаще задаются компьютерщики.
Что касается нестыковок в калькуляторе, проверяйте читаемую в интернете техническую информацию несколько раз. Считаем, что ответили на вопрос, что такое спиральная антенна, и как сделать спиральную антенну. Плюс конструкции в простоте изготовления, если патчи нужно просчитывать, согласовывать, и не факт, что получится, здесь имеется неплохое устройство, удовлетворяющее заданным условиям, отсеивающее массу помех. С обеих сторон (на прием и передачу) стоят одинаковые антенны, чтобы работать с круговой поляризацией, в противном случае результат станет загадочно-непредсказуемым. Спиральная антенна, собранная самостоятельно – реальность.
- alt=»ДМВ антенна своими руками» width=»120″ height=»120″ />ДМВ антенна своими руками
- alt=»КВ антенна своими руками» width=»120″ height=»120″ />КВ антенна своими руками
- alt=»Антенна Харченко своими руками» width=»120″ height=»120″ />Антенна Харченко своими руками
- alt=»Цифровая антенна своими руками» width=»120″ height=»120″ />Цифровая антенна своими руками
Непонятно откуда взялось 0.02.
Если длина волны около 123 мм то 5% от этого будет примерно 6, а никак ни 2.
Спиральная антенна для портативных радиостанций
Спиральная антенна предназначена дня установки на радиостанции личного пользования в носимом варианте. По сравнению со штыревой телескопической антенной спиральная имеет меньшие размеры по длине, что создает неоспоримые преимущества при использовании радиостанции в условиях города. Несмотря на малые габариты, эта антенна имеет большую гибкость без нарушения электрического контакта, чего не скажешь о телескопической антенне, которая нередко теряет межколенный контакт и требует более бережного отношения. Но, самое главное, — эффективность антенны типа «спираль» по напряженности поля в 1,2 — 1,5 раза превосходит штыревую антенну с типовым размером 525 мм.
Результаты экспериментальных данных при двух вариантах связи — со штыревой и спиральной антеннами — показывают явные преимущества последней. Так, при выходной мощности передатчика 0,2 Вт и чувствительности приемника 1,5 — 2,0 мкВ дальность уверенной связи между однотипными радиостанциями в условиях города со спиральными антеннами составила 1,4 км, что на 0,5 км больше, чем со штыревыми.
Материалом заготовки антенны служит полиэтилен или любой другой, используемый для производства высокочастотных кабелей. На рис.1 приведены размеры и конструкция такой заготовки.
Формовка резьбового соединения в простейшем случае производится методом нагрева заготовки в корпусе разъема типа СР-50-74ФВ.
Размещение обмоток на заготовке показано на рис.2. Обмотка I содержит.80 витков провода, намотанного виток к витку на участке длиной 34 мм. Обмотка II содержит 29 витков провода, располагаемого равномерно по длине намотки 150 мм. Обе обмотки выполнены проводом марки ПЭВ-2 0,4 мм. Закрепляется конец намотки методом вплавления провода в полиэтилен.
Настройка антенны в резонанс ведется методом отмотки или домотки одного-двух витков провода со стороны разъема. Резонанса добиваются при максимальной отдаче мощности передатчика, что регистрируется прибором напряженности поля или любым анализатором спектра на расстоянии не менее 2 метров. По окончании настройки антенну необходимо поместить в гибкий влагонепроницаемый кожух.
Общий вид антенны в сборе показан на рис.3.
Радиолюбитель 5/92, с.14
Сушко С. Опубликована: 2005 г. 0 0
Вознаградить Я собрал 0 0
Оценить статью
- Техническая грамотность
Средний балл статьи: 0 Проголосовало: 0 чел.
Комментарии (1) | Я собрал ( 0 ) | Подписаться
Для добавления Вашей сборки необходима регистрация
0
Очень плохо, когда перепечатывают статью , а фамилия автора теряется. Обновите ее, уж так и быть.(Сушко С.А. UA9LBG)
Спиральная антенна была разработана мной дня установки на носимую радиостанцию «Вика» одного из производителей радиостанций Cи –Би диапазона 27МГц г. Свердловска еще на заре открытия гражданского диапазона.
По сравнению со штыревой телескопической антенной, предлагаемая антенна имеет меньшие размеры по длине, что создает неоспоримые преимущества при ее эксплуатаии в условиях города. Несмотря на малые габариты, эта антенна имеет большую гибкость без нарушения электрического контакта, чего не скажешь о телескопической антенне, которая нередко теряет «межколенный» контакт и требует более бережного отношения. Результаты экспериментов со штыревыми (525мм.) и спиральными антеннами показывают явные преимущества последних. Так, при выходной мощности АМ передатчика 0,2 Вт и чувствительности приемника 1,5 мкВ в условиях города, дальность уверенной связи между однотипными радиостанциями, со спиральными антеннами составляла 1,4 км, что на 0,5 км больше, чем со штыревыми телескопическими антеннами. Тем не менее, нужно помнить, что сильно укороченные спиральные антенны с поперечным излучением имеют высокую добротность и узкополосны. Предлагаемая вниманию радиолюбителей антенна имеет полосу пропускания порядка 50кгц по уровню -3дБ. Входное сопротивление антенны около 30 Ом, что необходимо учитывать при корректировке выходного сопротивления контура оконечного каскада Cи-Би станции.
Антенна состоит из двух частей, из спирального излучателя и удлиняющей катушки L1. Они намотаны сплошным проводом ПЭВ-2 0,4 мм на общей заготовке (рис.1), материалом которой служит полиэтилен или любой другой материал. Автор использовал изоляцию ВЧ кабеля. На рис.1 приведены размеры и конструкция такой заготовки. Подготовка заготовки заключается в том, что из нее нужно удалить центральную жилу. Лучше всего это делается предварительным нагревом центральной жилы разобранного кабеля низковольтным напряжением (1,5-3,0 В) с большим током короткого замыкания. Формовка резьбового соединения в простейшем случае производится методом нагрева заготовки непосредственно в корпусе разъема типа СР-50-74ФВ. Разобранный разъем устанавливается на электроплиту, нагревается, и в него вплавляют заготовку. После остывания она легко вывинчивается из разъема.
Удлинительная катушка L1 имеет сплошную намотку, и для середины Си-Би диапазона (20 канал) содержит 80 витков при длине намотки 34мм. Cпиральная часть антенны содержит 29 витков провода, располагаемого равномерно по длине намотки 150 мм. Начало катушки L1 просовывается в высверленное отверстие в заготовке, а конец cпиральной антенны закрепляется методом вплавления провода в полиэтиленовую заготовку. Настройка антенны в резонанс ведется методом отмотки или домотки одного-двух витков удлинняющей катушки L1. Резонанса добиваются при максимальной отдаче мощности передатчика, что регистрируется прибором напряженности поля или любым анализатором спектра на расстоянии не менее 2 метров. По окончании настройки антенну необходимо закрыть термоусадочной трубкой, учитывая то обстоятельство, что резонанс антенны немного уйдет вниз по частоте.