Смотрим на мир глазами рака-богомола: ближний инфракрасный диапазон
А вы думали, мы только чайники умеем делать? Не-а.
Мы все привыкли к тому, что цветы красные, черные поверхности не отражают свет, кока-кола непрозрачная, горячим паяльником нельзя ничего осветить как лампочкой, а фрукты можно легко отличить по их цвету. Но давайте представим на минутку, что мы может видеть не только видимый диапазон(хи-хи), но и ближний инфракрасный. Ближний инфракрасный свет — это вовсе не то, что можно увидеть в тепловизоре. Он скорее ближе в видимому свету, чем к тепловому излучению. Но у него есть ряд интересных особенностей — часто совершенно непрозрачные в видимом диапазоне предметы отлично просвечиваются в инфракрасном свете — пример на первой фотографии.
Черная поверхность плитки прозрачна для ИК, и с помощью камеры, у которой снят с матрицы фильтр можно рассмотреть часть платы и нагревательный элемент.
Для начала — небольшое отступление. То, что мы называем видимым светом — всего лишь узкая полоска электромагнитного излучения.
Вот, например я упер с википедии такую картинку:
Мы просто не видим ничего кроме этой маленькой части спектра. И фотоаппараты, которые делают люди — изначально кастрированы, чтобы добиться похожести фотоснимка и человеческого зрения. Матрица фотоаппарата способна видеть инфракрасный спектр, но специальным фильтром(он называется Hot-mirror) эта возможность убирается — иначе снимки будут выглядеть несколько непривычно для человеческого глаза. А вот если этот фильтр убрать…
Камера
Подопытным выступил китайский телефон, который изначально предназначался для обзора. К сожалению, выяснилось что радиочасть у него жестоко глючит — то принимает, то не принимает звонки. Само-собой, писать я про него не стал, но китайцы не захотели ни выслать замену, ни забрать этот. Так он остался у меня.
Разбираем телефон:
Вытаскиваем камеру. Паяльником и скальпелем аккуратно отделяем фокусировочный механизм(сверху) от матрицы.
На матрице должно быть тонкое стеклышко, возможно с зеленоватым или красноватым отливом. Если там его не — посмотрите на часть с «объективом». Если нет и там, то скорее всего все плохо — оно напылено на матрицу или на одну из линз, и снять ее будет более проблематично, чем найти нормальную камеру.
Если оно есть — нам надо его как можно более аккуратно снять, не повредив матрицу. У меня оно треснуло при этом, и пришлось долго выдувать осколки стекла с матрицы.
К сожалению, я потерял свои фотки, поэтому покажу фотку irenica из ее блога, которая делала тоже самое, но с веб-камерой.
Вот тот осколок стекла в углу — как раз и есть фильтр. Был фильтр.
Собираем все обратно, учитывая то, что при изменении зазора между объективом и матрицей камера не сможет правильно сфокусироваться — у вас получится или близорукая, или дальнозоркая камера. Мне потребовалось три раза собрать-разобрать камеру, чтобы добиться корректно работы механизма автофокуса.
Вот теперь можно окончательно собрать телефон, и начать исследовать этот новый мир!
Краски и вещества
Кока-кола внезапно стала полупрозрачной. Сквозь бутылку проникает свет с улицы, а через стакан видны даже предметы в комнате.
Плащ из черного стал розовым! Ну, кроме пуговиц.
Черная часть отвертки тоже посветлела. А вот у телефона эта участь постигла только кольцо джойстика, остальная часть покрыта другой краской, которая ИК не отражает. Так же как и пластик док-станции для телефона на заднем плане.
Таблетки из зеленых превратились в сиреневые.
Оба кресла в офисе тоже превратились из готично-черных в непонятные цветные.
Искусственная кожа осталась черной, а ткань — оказалось розовой.
Рюкзаку(он есть на заднем плане предыдущей фотки) стало еще хуже — он практически весь стал сиреневым.
Как и сумка для фотоаппарата. И обложка электронной книги
Коляска из синий превратилась в ожидаемо-фиолетовую. А световозвращающая нашивка, хорошо видимая в обычную камеру совсем не видна в ИК.
Красная краска, как близкая к нужной нам части спектра, отражая красный свет, захватывает и часть ИК. В итоге красный цвет заметно светлеет.
Причем таким свойством обладает все красная краска, что я замечал.
Огонь и температура
Еле тлеющая сигарета выглядит в ИК как очень яркая точка. Стоят ночью люди на остановке с сигаретами — а их кончики освещают им лица.
Зажигалка, свет которой на обычной фотографии вполне сравним с фоновым освещением в ИК режиме перекрыла жалкие потуги фонарей на улице. На фотографии даже не видно фона — умный фотоаппарат отработал изменение яркости, уменьшив экспозицию.
Паяльник при разогреве светится как небольшая лампочка. А в режиме поддержания температуры имеет нежно-розовый свет. А еще говорят что пайка не для девушек!
Горелка выглядит практически одинаково — ну разве что факел чуть дальше(на конце температура падает довольно быстро, и на определенном этапе уже перестает светить в видимом свете, но еще светит в ИК).
А вот если нагреть горелкой стеклянную палочку — стекло начнет светиться в ИК довольно ярко, и палочка будет выступать волноводом(яркий кончик)
Причем палочка будет светиться довольно долго и после прекращения нагрева
А фен термовоздушной станции вообще выглядит как фонарик с сеточкой.
Лампы и свет
Буква М на входе в метро горит гораздо ярче — в ней все еще используются лампы накаливания. А вот вывеска с название станции почти не изменила яркость — значит там люминесцентные лампы.
Двор ночью выглядит немного странно — сиреневая трава и гораздо светлее. Там, где камера в видимом диапазоне уже не справляется и вынуждена повышать исо(зернистость в верхней части), камере без ИК фильтра хватает света с запасом.
На этой фотографии получилась забавная ситуация — одно и то же дерево освещают два фонаря с разными лампами — слева лампой НЛ(оранжевая уличная), а справа — светодиодной. У первой в спектре излучения есть ик, и поэтому на фотографии листва под ней выглядит светлофиолетовой.
А у светодиодной нет ИК, а только видимый свет(поэтому лампы на светодиодах более энергоэффективны — энергия не тратится на излучение ненужного излучения, которое человек все равно не увидит). Поэтому листве приходится отражать то, что есть.
А если посмотреть на дом вечером, то можно заметить, что разные окна имеют разный оттенок — одни ярко-фиолетовые, а другие желтые или белые. В тех квартирах, чьи окна светятся фиолетовым(голубая стрелка) до сих пор используют лампы накаливания — горячая спираль светит всем подряд равномерно по всему спектру, захватывая и УФ и ИК диапазон. В подъездах используются энергосберегающие лампы холодного белого света(зеленая стрелка), а в части квартир — люминесцентные теплого света(желтая стрелка).
Восход. Просто восход.
Закат. Просто закат. Интенсивности солнечного света недостаточно для тени, а вот в инфракрасном диапазоне(может из-за разного преломления света с разной длинной волны, или из-за проницаемости атмосферы) тени видны отлично.
Занимательно. У нас в коридоре одна лампа сдохла и свет еле-еле, а вторая — нет. В инфракрасном свете наоборот — дохлая лампа светит гораздо ярче, чем живая.
Домофон. Точнее, штука рядом с ним, которая с камерами и подсветкой, которая включается в темноте. Она такая яркая, что видна и на обычную камеру, но для инфракрасной — это почти прожектор.
Подсветку можно включить и днем, закрыв пальцем датчик освещения.
Подсветка видеонаблюдения. У самой камеры подсветки не было, поэтому ее сколхозили из говна и палок. Она не очень яркая, потому что снята днем.
Живая природа
Волосатый киви и зеленый лайм по цвету почти не отличаются друг от друга.
Зеленые яблоки стали желтыми, а красные — ярко-сиреневыми!
Белые перцы стали желтыми. А привычные зеленый огурцы — каким-то инопланетным фруктом.
Яркие цветки стали практически однотонными:
Цветок почти не отличается по цвету от окружающей травы.
Да и яркие ягоды на кусте стало очень трудно увидеть в листве.
Да что ягоды — даже разноцветная листва стала однотонной.
Короче, выбрать фрукты по их цвету уже не получится. Придется спрашивать продавца, у него-то нормальное зрение.
Но почему на фотографиях все розовое?
Для ответа на этот вопрос нам придется вспомнить строение матрицы фотоаппарата. Я опять спер картинку из википедии.
Это фильтр байера — массив фильтров окрашенных в три разных цвета, расположенных над матрицей. Матрица воспринимает весь спектр одинаково, и только фильтры помогают построить полноцветную картинку.
Но инфракрасный спектр фильтры пропускают неодинаково — синие и красные больше, а зеленые меньше. Камера думает, что вместо инфракрасного излучения на матрицу попадает обычный свет и пытается формировать цветную картинку. На фотографиях, где яркость ИК-излучения минимальна обычные цвета еще пробиваются — на фотографиях можно заметить оттенки цветов. А там, где яркость большая, например на улице под ярким солнцем — ИК попадает на матрицу именно в той пропорции, которую пропускают фильтры, и которое образует розовый или фиолетовый цвет, забивая своей яркостью всю остальную цветовую информацию.
Если фотографировать с надетым на объектив фильтром — пропорция цветов получается другой. Например вот такой:
Эту картинку я нашел в сообществе ru-infrared.livejournal.com
Там же еще куча картинок снятых в инфракрасном диапазоне. Зелень на них белая потому, что ББ выставляется как раз по листве.
Но почему растения получаются такими яркими?
На самом деле, этот вопрос состоит из двух — почему зелень выглядит ярко и почему фрукты яркие.
Зелень яркая потому что в инфракрасной части спектра поглощение минимально(а отражение — максимально, что и показывает график):
Виновен в этом хлорофил. Вот его спектр поглощения:
Скорее всего это связано с тем, что растение защищается от высокоэнергетического излучения, подстраивая спектры поглощения таким образом, чтобы получить и энергию для существования и не быть засушенным от слишком щедрого солнца.
А это спектр излучения солнца(точнее, той части солнечного спектра, который достигает земной поверхности):
А почему ярко выглядит фрукты?
У плодов в кожуре зачастую нет хлорофилла, но тем не менее — они отражают ИК. Ответственно за это вещество, которое называется эпикутикулярный воск — тот самый белый налет на огурцах и сливах. Кстати, еспи погуглить «белый налет на сливах», то результатами будет что угодно, но только не это.
Смысл в этом примерно такой же — надо и окраску сохранить, которая может быть критична для выживания, и не дать солнцу высушить плод еще на дереве. Сушеный чернослив на деревьях это, конечно, отлично, но немного не вписывается в жизненные планы растения.
Но блин, почему рака-богомола?
Сколько я не искал, какие животные видят инфракрасный диапазон, мне попадались только раки-богомолы(ротоногие). Вот такие лапочки:
Кстати, если вы не хотите пропустить эпопею с чайником или хотите увидеть все новые посты нашей компании, вы можете подписаться на на странице компании(кнопка «подписаться»)
Незримый свет. Когда человек может видеть инфракрасное излучение?
Результаты последних исследований показывают, что так называемый видимый диапазон электромагнитного излучения можно расширить: оказывается, человек может в некоторых случаях видеть инфракрасный свет, несмотря на то, что он считается полностью невидимым для нашего глаза.
Серия экспериментов продемонстрировала, что подобный эффект возникает в результате того, что два инфракрасных фотона одновременно попадают на один пигментный белок глаза. Из-за этого выделяется энергия, инициирующая химические изменения, которые позволяют нам увидеть первоначально невидимый свет.
Наука гласит, что глаз человека способен разглядеть электромагнитные волны с длиной волны от 400 нанометров (синий свет) до 720 нанометров (красный свет). Тем не менее, известны случаи, когда люди видели специфический инфракрасный лазерный свет с длиной волны более 1000 нанометров и интерпретировали его как белый, зелёный или другие цвета.
Кшиштоф Палчевский, фармаколог университета Кейс Вестерн Резерв, говорит, что он видит свет с длиной волны около 1050 при низком уровне энергии лазера.
«Бывает, что такое излучение можно увидеть невооружённым глазом», — утверждает Палчевский в пресс-релизе.
Вместе со своими коллегами фармаколог выступил в роли ведущего автора нового исследования. Чтобы проверить, является ли чувствительность к инфракрасному свету уникальной для некоторых людей или же она встречается довольно часто,
Палчевский решил провести эксперимент. Он пригласил в свою лабораторию 30 здоровых добровольцев, которым провёл сканирование сетчатки пучком света низкого уровня энергии. Длина волны света периодически изменялась. Когда длина волны была доведена до уровня инфракрасного излучения, участники поначалу не видели света, но затем стали сообщать о том, что видят пучок.Длина волны на тот момент составляла более 1000 нанометров.
Это феноменальное явление оказалось присуще людям в целом, и Палчевский задался вопросом: как человек может видеть свет, который в принципе считается незримым? Существует две возможные гипотезы, которые способны объяснить этот феномен.
Первая из них предполагает, что свет с большой длиной волны попадает на коллагеновые волокна соединительной ткани глаза, тогда небольшое количество энергии излучения превращается в фотоны с длиной волны около половины длины волны первичного света. Это явление называется генерацией второй гармоники (ГВГ). Сетчатка затем детектирует этот видимый свет и заставляет мозг думать, что он пришел прямо из источника.
Вторая гипотеза гласит, что «инфракрасное зрение» является результатом явления, известного как двухфотонная изомеризация. Молекулы фоторецепторов в глазу поглощают энергию отдельных фотонов в обычном видимом диапазоне. Это побуждает молекулы изменить свою форму и вызвать цепь событий, которая позволяет нам видеть незримое излучение.
Но если два фотона, несущие каждый по половине энергии — и, следовательно, вдвое меньшую длину волны — попадают в глаз одновременно, то их энергии суммируются и, возможно, вызывают такую же изомеризацию, как и единичный «видимый» фотон.
Для проверки первой гипотезы Палчевский и его команда удалили коллаген из сетчатки глаза мыши и измерили реакцию животных на свет различных длин волн. Но сетчатка мыши среагировала на 1000-нанометровый лазерый так же, как и сетчатка человека с присутствующим коллагеном. Эти результаты позволили предположить, что генерация второй оптической гармоники в данном случае роли не играет.
Другое доказательство неверности первой гипотезы обнаружилось в ходе дополнителного опыта на мышах. Исследователи взяли кристаллы фоторецепторов белка родопсина у мышей и подвергли их воздействию инфракрасного излучения. Под светом с длиной волны в 1000 нанометров кристаллы изменили свой цвет с красного на жёлтый.
Если бы ГВГ была причиной изменения цвета, то спектр света, излучаемый кристаллами родопсина, имел бы характерный отпечаток, но ничего подобного исследователи не увидели.
Учёные пока не имеют экспериментальных доказательств в пользу второй гипотезы, утверждающей, что инфракрасное зрение объясняется двухфотонной изомеризацией. Тем не менее, компьютерное моделирование показало, что именно такое объяснение является пока единственно верным.
Квантово-химические расчёты демонстрируют, что родопсин может поглотить два низкоэнергетических фотона. При этом возбуждённое состояние двух фотонов в момент столкновения будет таким же, что и при попадании на белок глаза одного фотона видимого света.
Те же расчёты показывают, что двойная абсорбция должна достичь своего пика между 1000 и 1100 нанометрами, а это полностью согласуется с экспериментальными наблюдениями.
Инфракрасное зрение
Разные животные различно видят при отсутствии света. Некоторые из них с помощью инфракрасного зрения прекрасно видят в темноте.
Как выяснили в 1892 году ученые, гремучих змей привлекает пламя зажженных спичек. Но поначалу ученые думали, что змеи реагируют на мерцание пламени. Теперь мы знаем, что определенные разновидности змей и некоторые другие животные могут воспринимать тепло, излучаемое телом других животных.
«Тепловидящие» змеи
Проведенные в 30-х годах XX века учеными эксперименты с гремучими и родственными им ямкоголовыми змеями (кроталидами) показали, что змеи действительно могут как бы видеть тепло, испускаемое пламенем. Рептилии оказались способными обнаруживать на большом расстоянии едва уловимое тепло, испускаемое нагретыми предметами, или, иначе говоря, они были способны чувствовать инфракрасное излучение, длинные волны которого невидимы для человека.
Способность ямкоголовых змей чувствовать тепло настолько велика, что они могут на значительном расстоянии уловить тепло, излучаемое крысой. Датчики тепла находятся у змей в небольших ямках на морде, откуда и их название — ямкоголовые. В каждой небольшой, расположенной между глазами и ноздрями, направленной вперед ямке имеется крошечное, как булавочный укол, отверстие. На дне этих отверстий расположена мембрана, сходная строением с сетчаткой глаза, содержащая мельчайшие терморецепторы в количестве 500-1500 на квадратный миллиметр. Терморецепторы 7000 нервных окончаний соединены с ветвью тройничного нерва, расположенной на голове и морде. Поскольку зоны чувствительности обеих ямок перекрываются, ямкоголовая змея может воспринимать тепло стереоскопически. Стереоскопическое восприятие тепла позволяет змее, улавливая инфракрасные волны, не только находить добычу, но и оценивать расстояние до нее. Фантастическая тепловая чувствительность сочетается у ямкоголовых змей с быстрой реакцией, позволяющей шеям моментально, менее чем за 35 миллисекунд, реагировать на тепловой сигнал. Не удивительно, что обладающие такой реакцией змеи очень опасны.
Движение ради убийства
Способность улавливать инфракрасное излучение дает ямкоголовым змеям значительные возможности. Они могут охотиться ночью и преследовать основную свою добычу — грызунов в их подземных норах. Хотя у этих змей имеется высокоразвитое обоняние, которое они также используют для поиска добычи, их смертоносный бросок направляется теплочувствительными ямками и дополнительными терморецепторами, расположенными внутри пасти.
Хотя инфракрасное чутье у других групп змей изучено хуже, известно, что удавы и питоны также имеют термочувствительные органы. Вместо ямок эти змеи имеют более 13 пар терморецепторов, расположенных вокруг губ.
Видение в красном свете
В глубинах океана царит мрак. Туда не доходит свет солнца, и там мерцает только свет, испускаемый глубоководными обитателями моря. Как светлячки на суше, эти создания снабжены органами, генерирующими свет.
Обладающий огромной пастью черный малакост (Malacosteus niger) живет в полной темноте на глубинах от 915 до 1830 м и является хищником. Как же он может охотиться в полной темноте? Малакост способен видеть так называемый дальний красный свет. Световые волны в красной части так называемого видимого спектра имеют наибольшую длину волны, около 0,73-0,8 микрометра. Хотя этот свет невидим для человеческого глаза, его видят некоторые рыбы, в том числе черный малакост. По бокам глаз малакоста находится пара биолюминесцентных органов, испускающих сине-зеленый свет.
Большинство других биолюминесцируюших создании в этом царстве тьмы также испускают голубоватый свет и имеют глаза, чувствительные к волнам голубой области видимого спектра.
Вторая пара биолюминесцентных органов черного малакоста расположена ниже его глаз и дает дальний красный свет, который невидим остальным, живущим в глубинах океана. Эти органы дают черному малакосту преимущество перед соперниками, так как испускаемый им свет помогает ему увидеть добычу и позволяет поддерживать связь с другими особями своего вида, не выдавая своего присутствия.
Есть, чтобы видеть
Но каким же образом черный малакост видит дальний красный свет? Согласно поговорке «Ты есть то, что ты ешь», он действительно получает эту возможность, поедая крошечных веслоногих рачков — копеиод, которые, в свою очередь, питаются бактериями, поглощающими дальний красный свет. В 1998 году группой ученых из Великобритании, в состав которой входили доктор Джулиан Партридж и доктор Рои Дуглас, было обнаружено, что сетчатка глаз черного малакоста содержит модифицированный вариант бактериального хлорофилла — фотопигмента, способного улавливать лучи дальнего красного света.
Зрение в темноте
Благодаря дальнему красному свету некоторые рыбы могут видеть в воде, которая нам показалась бы мерной. Кровожадная пиранья в мутных водах Амазонки, например, воспринимает воду как темно-красную, цвет более проницаемый, чем черный. Вода выглядит красной из-за частиц растительности красного цвета, которые поглощают лучи видимою спектра. Только лучи дальнего красного света проходят сквозь мутную воду, и их может видеть пиранья. Инфракрасные лучи позволяют ей видеть добычу, даже если она охотится в полной темноте.
Так же как у пираньи, у карасей в их естественных местах обитания пресная вода часто бывает мутной, переполненной растительностью. И они адаптируются к этому, имея способность различать дальний красный свет. Действительно, их визуальный ряд (уровень) превышает таковой пираньи, так как они могут видеть не только в дальнем красном, но и в настоящем инфракрасном свете. Так что ваша любимая домашняя золотая рыбка может разглядеть гораздо больше, чем вы думаете, включая «невидимые» инфракрасные лучи, испускаемые обычными бытовыми электронными приспособлениями, такими, как телевизионный пульт и пучок лучей охранной сигнальной системы.
6 чувств, которые есть у животных, но не у людей
Инфракрасный свет имеет Infrared Vision / National Geographic Society более длинные волны, чем видимый спектр, поэтому его нельзя уловить человеческим глазом. Но комары и постельные клопы, лягушки и некоторые рыбы, летучие мыши-вампиры и многие виды змей могут Animals That Can See Infrared Light / Sciencing использовать инфракрасные волны для поиска источников тепла, исходящего от добычи.
Дело в том, что нагретые объекты светятся K. Huang. Statistical Mechanics . Реально хорошо накалённые предметы излучают видимый людям свет, поэтому куски расплавленного металла кажутся нам красными. А вот тела животных испускают свет инфракрасный, и его улавливают животные.
К примеру, змеи пользуются нормальным зрением днём и инфракрасным ночью. У тех же удавов есть углубления у челюстей, устланные чувствительными к теплу клетками, которые работают даже в полной темноте. Если вы хотите представить себе, как они видят, вспомните инопланетного охотника из фильма «Хищник».
2. Ультрафиолетовое зрение
Пчёлам, к примеру, это помогает находить нектар в цветах. Птицам позволяет I. C. Cuthill, J. C. Partridge. Ultraviolet Vision in Birds / Advances in the Study of Behavior замечать мелкую добычу на большом расстоянии и маневрировать на высоких скоростях.
А северные олени используют эту часть спектра Reindeer gained UV vision after moving to the Arctic / New Scientist , чтобы находить пищу. Лишайники поглощают ультрафиолет, поэтому становятся заметнее, кажутся чёрными на снегу.
Ещё суперзрение помогает издалека видеть мех, а в него, как известно, часто бывают завёрнуты волки.
Кроме того, олени способны Reindeer see a weird and wonderful world of ultraviolet light / ScienceDaily различать пятна мочи там, где мы, люди, ничего не углядим. Моча тоже поглощает УФ-излучение, поэтому бросается в глаза и помогает парнокопытным избегать волков и собратьев, которые не любят, когда чужак заходит на их территорию.
3. Магниторецепция
Как известно, у Земли мощное магнитное поле, которое защищает нас от космической радиации и солнечного излучения. Но некоторые животные научились Unravelling the enigma of bird magnetoreception / Nature использовать его ещё и для ориентации в пространстве. Черепахи, омары, акулы и множество видов перелётных птиц имеют встроенные компасы, благодаря которым они не могут заблудиться.
Иногда живые организмы не чувствительны Animals magnetic sixth sense may come from bacteria: The question is one that has been unresolved despite 50 years of research / ScienceDaily к магнитным полям сами по себе, но находятся в симбиозе с живущими в их телах бактериями рода Magnetobacterium. Эти микроорганизмы буквально дают своим носителям суперспособности, как в комиксах. Такие есть у ряда пингвинов, морских черепах, летучих мышей, а также большинства китов.
Это, кстати, не всегда полезная способность.
Учёные полагают Solar storms may interfere with the ability of whales to navigate / New Scientist , что из-за бурь на Солнце у китов иногда сбоит «компас» и поэтому они выбрасываются на берег. Ну, по крайней мере это одна из причин.
У человека тоже есть органы, способные взаимодействовать Magnetic bones in human sinuses / Nature с магнитным полем — клиновидная пазуха и решётчатый лабиринт в носу. Видимо, в прошлом наш вид был способен ориентироваться таким образом, но позже необходимость в этом отпала.
4. Электрическое чутьё
Некоторые существа, например электрические угри Electric eel / Britannica , сомы Malapterurus electricus (African Electric Catfish) / Red List , а также акулы и скаты, умеют чувствовать электрические поля. Помогает им в этом специальный орган — так называемые ампулы Лоренцини.
Дело в том, что тела живых существ создают электрические импульсы, и обладатели ампул Лоренцини улавливают их в воде. Это помогает Study Shows How Skates, Rays and Sharks Sense Electrical Fields / UC San Francisco им находить добычу.
Поэтому те же акулы способны атаковать жертву, даже не видя её.
Не только рыбы могут чувствовать электричество, но и млекопитающие. Гвианские дельфины тоже ищут Dolphins’ ‘Sixth Sense’ Helps Them Feel Electric Fields / Live Science себе пищу, улавливая токи, исходящие от рыбы. Полезно это чутьё не только во время охоты, но и просто для навигации в океане.
Только вместо ампул Лоренцини дельфины применяют свои волосяные фолликулы. Да, таковые у них сохранились, пусть и в редуцированном виде, с тех времён, когда дельфины были волосатыми, бегали по суше и назывались пакицетами.
Садовый паук. Изображение: Dev Leigh / Unsplash
Пауки тоже способны How electricity helps spider webs snatch prey and pollutants / ScienceDaily улавливать электричество. Но поскольку живут они не в воде, им приходится создавать проводники для тока. Некоторые виды членистоногих покрывают свою паутину специальным электростатическим составом.
Во-первых, по изменениям напряжения хозяин сети понимает, где искать угодившую в ловушку муху. Во-вторых, наэлектризованная сеть лучше захватывает разные летающие в воздухе частицы и насекомых. И в-третьих, последние тоже чувствуют электрические поля — это им важно для навигации в воздухе.
А паутина создаёт помехи, и сбитые с толку летуны отправляются посмотреть, что там такое интересное висит. А оно вон как выходит.
И кстати, электричество используют Floral signs go electric / University of Bristol ещё и опылители, такие как шмели. Они накапливают небольшой положительный заряд, когда машут крыльями. А большинство растений заряжены отрицательно. Когда насекомое садится на цветок, то чувствует небольшой электрический разряд и по нему определяет, были ли здесь другие опылители и стоит ли тратить время. Если же цветок уже опылён, он… меняет свой заряд, предупреждая садящихся на него пчёл, что им тут ловить нечего.
5. Эхолокация
Эхолокация — это способность ориентироваться в пространстве на слух, улавливая звуки, отражённые от поверхности окружающих объектов. Например, летучие мыши умеют S. Lima. Do predators influence the behaviour of bats? / Biological Reviews в полёте издавать гортанью ультразвуковой Echolocation — Bats / U.S. National Park Service , неслышимый для человека писк. Затем они улавливают эхо этого писка и по нему определяют расстояния до предметов и добычи.
Эта суперспособность необходима мышам, чтобы не натыкаться на препятствия, когда носишься в воздухе как сумасшедший.
Кроме летучих мышей, ультразвуковую эхолокацию применяют J. Fjeldså, N. Krabbe. Birds of the High Andes жирные (это название вида, а не характеристика внешности) козодои и стрижи. Ею пользуются также ослепшие лабораторные крысы.
Незрячие люди, кстати, тоже могут обучиться эхолокации. Но, естественно, она у них не настолько продвинутая, как у летучих мышей, и издавать и воспринимать ультразвук люди неспособны.
Дельфины же настолько хорошо объединяют в своём мозгу зрительную и акустическую информацию, что способны буквально «видеть» данные своего эхолокатора. Наверное, выглядит это примерно как изображение с экрана аппарата УЗИ. Учёные даже считают Dolphins May ‘See’ Pregnant Women’s Fetuses / Live Science , что эта способность позволяет дельфинам отличать беременных женщин от небеременных. Не особенно полезно для дельфинов, но всё-таки.
6. Инфраслух
Кроме ультразвуковой, есть M. Viglino. Hearing from the ocean and into the river: the evolution of the inner ear of Platanistoidea (Cetacea: Odontoceti) / Paleobiology ещё инфразвуковая эхолокация. Низкочастотным звукам отдают предпочтение, например, усатые киты вроде горбатого или синего.
Инфразвук распространяется в воде гораздо дальше всех прочих волн, и с его помощью киты, например, общаются и заводят полезные знакомства. Соберутся в стаю и поют хором.
Слышать инфразвук умеют Infrasonic calls of the Asian elephant (Elephas maximus) / SpringerLink не только морские создания, но и наземные, например слоны и аллигаторы. Правда, ориентироваться с его помощью в воздушной среде они не могут, зато способны Horny Male Alligators Bellow With Their Back Spikes / WIRED подавать друг другу сигналы.