Lm239n схема включения как работает
These comparators are designed for use in level detection, low−level sensing and memory applications in consumer, automotive, and industrial electronic applications.
Features
• Single or Split Supply Operation
• Low Input Bias Current: 25 nA (Typ)
• Low Input Offset Current: ±5.0 nA (Typ)
• Low Input Offset Voltage
• Input Common Mode Voltage Range to GND
• Low Output Saturation Voltage: 130 mV (Typ) @ 4.0 mA
• TTL and CMOS Compatible
• ESD Clamps on the Inputs Increase Reliability without Affecting Device Operation
• NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
• Pb−Free Packages are Available
Записки программиста
Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.
Крайне наглядная картинка, объясняющая работу компаратора, была найдена в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:
Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.
Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.
В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:
На практике компараторы чаще всего используют одним из следующих образов:
Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.
В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.
Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.
Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.
На следующем фото изображена первая схема, собранная на макетной плате:
Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.
Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.
Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂
Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:
- Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
- Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;
Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.
Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.
Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве И. Отсюда несложно получить ИЛИ, по форуме x || y = !(!x && !y) , ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.
А какие безумные варианты использования компараторов приходят вам на ум?
Вы можете прислать свой комментарий мне на почту, или воспользоваться комментариями в Telegram-группе.
Описание LM239, LM2901, LM339
LM339/LM339A, LM239A, LM2901 состоит из четырех независимых компараторов напряжения предназначены для работы от одного источника питания в широком диапазоне напряжений.
LM239, LM2901, LM339 особенности
- Один или два напряжение питания
- Широкий диапазон напряжения питания
- LM2901, LM339/LM339A, LM239A: 2
Lm393n схема включения как работает
Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.
УГО отображение компаратора выглядите следующим образом:
Фото – УГО компаратора
Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.
Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.
Фото – Компаратор
Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.
Фото – схема компаратора
В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.
Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.
Фото – простой компаратор
Но у компараторного усилителя существует несколько существенных недостатков:
- Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
- Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
- Компаратор не имеет внутреннего гистерезиса.
Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.
Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.
Фото – аналоговый компаратор
Видео: компараторы
Поделки своими руками для автолюбителей
Всем привет, конструируя всевозможные, низковольтные конструкции, иногда возникает необходимость использования специальных узлов, которые защищают схему при превышении или понижении питающего напряжения.
Приведённая схема является очень универсальной и может быть использована например для контроля заряда на аккумуляторе, для защиты источников питания, в частности преобразователей напряжения от повышенного или пониженного входного напряжения.
Схему можно использовать, как в качестве датчика оповещения, так и внедрить в реальную конструкцию, например в преобразователь напряжения, который отключиться если питающее напряжение выше или ниже нормы.
Рассмотрим простой пример, у вас есть повышающий преобразователь на вход, которого нельзя подавать выше 16 вольт и ниже 9. Если подаваемое напряжение выше 16 вольт, может нарушиться работа определенных узлов, также это приводит к нарушению расчетного напряжения на обмотках трансформатора.
При низком же входном напряжении, менее 9 вольт, а такое может быть если аккумулятор разряжен, управляющее напряжение на затворах силовых ключей будет менее 9 вольт, что приведет к неполному отпиранию ключей, как следствие сопротивление открытого канала увеличивается, в итоге повышенный нагрев, а при большой нагрузке выход из строя силовых транзисторов.
Также, инвертор не снабжённой такой защитой, может разрядить аккумулятор в хлам и стать причиной выхода его из строя, из-за глубокого разряда. Любой серьёзный инвертор имеет защиту от повышенного и пониженного входного питания.
Рассмотрим схему и принцип её работы.
Имеем компаратор LM339 — это четыре отдельных компаратора в едином корпусе,
в нашей схеме я задействовал всего два канала, на остальных двух можно построить например защиту от коротких замыканий и перегрева.
Кстати компаратор LM339 можно найти на платах некоторых компьютерных блоков питания, микросхема стоит рядом с шин-контроллером.
Первая часть схемы обеспечивает защиту от повышенного питания,
выход компараторов дополнен транзистором, для управления нагрузкой, также данный транзистор является инвертором.
В коллекторную цепь транзистора подключается нагрузка,
звуковой индикатор, светодиод,
обмотка реле или полевой транзистор,
для управления более мощными нагрузками, если это необходимо.
Имеется источник опорного напряжения в лице стабилитрона ZD1, опорное напряжение через делитель в виде подстроечного многооборотного резистора R3 подаётся на неинвертирующий вход компаратора (7), на инвертирующий вход (6), через делитель подано часть напряжения, которое нужно мониторить.
Введите электронную почту и получайте письма с новыми поделками.
Компаратор отслеживает это напряжение, если оно по каким-то причинам становится больше, увеличивается и напряжение на инверсном входе, компаратор понимает, что между его входами напряжение изменилась и моментально выдаёт на выходе низкий уровень сигнала или массу питания.
Почему массу? Если посмотреть на внутреннюю структуру компаратора,
то всё становится ясно, внутренний выходной транзистор, обратной проводимости, подключён эмиттером к массе, при его отпирании на выходе получим массу питания.
Именно поэтому на выходе схемы я добавил дополнительный транзистор прямой проводимости, он сработает при наличие отрицательного сигнала на базе, а на его коллекторе мы получим плюс питания, то есть транзистор инвертирует сигнал и это нужно например для управления мощным N-канальным силовым мосфетом.
Вторая схема устроена и работает точно таким же образом,
только входы подключены наоборот, в данном случае компаратор сработает, если входное напряжение ниже выставленного порога.
По поводу порога срабатывания, его можно выставить путём вращения подстроечного резистора, по факту он меняет опорное напряжение.
Пример использования — защита от повышенного напряжения для отключения аккумулятора при полном заряде, если у вас есть не автоматическое зарядное устройство, оно может перезарядить аккумулятор, что может привести к плачевным последствиям.
Если устройство дополнить такой схемой, то достаточно выставить порог срабатывания равным напряжению полностью заряженного аккумулятора и устройство автоматически отключится, когда аккумулятор заряжен.
Приведенная схема может работать в достаточно широком диапазоне входных напряжений от пяти до тридцати пяти вольт, ограничено напряжением питания компаратора и токо-гасящим резистором для стабилитрона R1. Именно этот вариант с указанными компонентами рассчитан для работы в диапазоне напряжений, где-то от 6 до 20 вольт, я планировал использовать её для защиты мощного преобразователя напряжения.
Ток покоя схемы всего 10 миллиампер, срабатывает схема очень четко и мгновенно, порог срабатывания можно выставить с точностью до 100 милливольт.
Архив проекта с печатной платой — .
Автор; АКА Касьян
Популярное;
- Простой и точный индикатор заряда-разряда АКБ
- Автоматическое отключение аккумулятора или приставка к ЗУ
- Универсальный источник питания 0-30 В с регулировкой тока от 0-3 А
- Индикатор для проверки и контроля уровня зарядки АКБ
- Простой регулятор напряжения на LM317, схема
- Автоотключение любого ЗУ автомобиля при завершении зарядки, схема
- Автоматическое зарядное устройство с автоотключением.
- Схема защиты АКБ от глубокого разряда
Принцип работы
Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.
Фото – схема работы компаратора
Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала. При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить. Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.
Читать также: Что такое шабер слесарный
Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.
Схема включения стабилизатора
Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы. На входе стабилизатора используется дешевый импульсный блок питания 9 В, 3 А.
LM3ХХ — схема принципиальная подключения
К сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.
Назначение
Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.
Фото – компараторы для компьютера
Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.
Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.
Фото – ОУ компаратор
Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.
Программирование и компаратор
Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.
- Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
- Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
- И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.
Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.
50 шт. LM393 DIP Cдвоенный компаратор. US $2.00
В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.
Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)
Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.
Компаратор напряжения — выход с открытым коллектором
Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.
Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.
В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.
Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.
Читать также: Узнать об отключении света
Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:
Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).
Описание выводов
Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.
В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.
Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.
Схема эквивалента компаратора напряжения с однополярным источником питания
Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.
Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.
На что обратить внимание
- Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
- Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
- Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
- В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.
После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.
Полезное: Усилитель Holton 2 х 100 Вт
БП на макетной плате
Схема эквивалента компаратора напряжения с двухполярным источником питания
Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.
При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.
При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».
Принципиальная схема
Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт.
Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке.
Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.
Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.
Описание работы компаратора
Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.
Сигнал на выходе:
- Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
- Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.
Печатная плата и детали сборки
Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:
- резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24) R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм, R5, R8 – 5,1 кОм, R6, R12 – 10 кОм;
- диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
- стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
- светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.
Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.
Входное напряжение смещения компаратора
Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.
В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.
Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.
Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.
Индикатор напряжения на lm339 схемы самоделки
Светодиодный индикатор на универсальных поликомпараторных микросхемах, содержащих в одном корпусе по несколько аналоговых компараторов общего назначения. Микросхема LM339, которая в одном корпусе DIP-14 содержит четыре компаратора с полевыми входами. Используя одну LM339 можно сделать четырехпороговый индикатор постоянного напряжения.
На рисунке 1 показана схема такого индикатора с линейной зависимостью измерения. Инверсные входы всех компараторов соединены вместе, — их общая точка является входом индикатора. На прямые входы подается опорное постоянное напряжение +Uomax через резистивный делитель, обеспечивающий распределение этого напряжения так, чтобы получить необходимый закон измерения. В данном случае резисторы делителя R2-R5 выбраны одинаковыми, поэтому и зависимость линейная.
Максимальная величина измеряемого напряжения (величина порога, при котором включается светодиод HL4) равна напряжению +Uomax (опорное напряжения максимума). Это напряжение желательно стабилизировать хотя-бы обычным параметрическим стабилизатором. Минимальная величина (порог при котором загорается HL1) зависит от сопротивления резистора R5 или от величины опорного напряжения минимума (Uomin).
Например, если нужно производить измерения в каком-то остро зажатом узком интервале напряжений, например, от 10 до 11V, то +Uomax должно быть равно 11V, а Uomin = 10V, при этом сопротивление R5 нужно исключить из схемы. Либо выбрать Uomin равным нулю (как на рисунке 1) и установить R5 такой величины, чтобы напряжение на нем было равно 10V.
Сопротивления R10-R13 нужны для придания компараторным схемам небольшого гистерезиса, улучшающего четкость работы индикатора. Индикаторная шкала состоит из четырех светодиодов HL1-HL4, подключенных к выходам компараторов через токоограничительные резисторы R14-R17.
Чтобы измерять переменное напряжение, например, в схеме индикации аудиосигнала, можно на входе сделать детектор на диодах или операционном усилителе.
Конечно, схема показанная на рисунке 1 несколько сложнее схемы на ВА6884 или другой аналогичной микросхемы, но это усложнение не столь существенно, особенно если нужно получить какую-то специфическую характеристику закона измерения. К тому же в данной схеме можно использовать практически любые доступные в текущий момент аналоговые компараторы или операционные усилители.
Схему, показанную на рисунке 1 можно легко каскадировать чтобы получить практически любое количество порогов измерения. На рисунке 2 показана схема восьмипорогового индикатора на двух микросхемах LM339, то есть, на восьми компараторах.
Входное напряжение смещения и гистерезис
Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.
Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.
Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.
Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).
Читать также: Что такое метчик гаечный
Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…
Автор: Сергей · Опубликовано 27.01.2017 · Обновлено 10.07.2019
Модуль освещенности на LM393, используется для измерения интенсивности света в различных устройствах, таких как, автоматизация света (включении света ночью), роботах (определения дня или ночи) и приборов контролирующих уровень освещенности. Измерения осуществляется с помощью светочувствительного элемента (фоторезистора), который меняет сопротивление в зависимости от освещенности.
Технические параметры
► Напряжение питания: 3.3 В
5.5 В ► Потребляемый ток: 10 мА ► Цифрового выход: TTL (лог 1 или лог 0) ► Аналогового выход: 0 В … Vcc ► Диаметр монтажного отверстия: 2.5 мм ► Выходной ток: 15 мА ► Габариты: 42мм х 15мм х 8мм
Общие сведения
Существует два модуля, визуально отличие только в количестве выводов (3 pin и 4 pin), дополнительный вывод добавлен, для снятие прямых показаний с фоторезистора (аналоговый выход), в статье пойдет речь о четырех контактом варианте модуля. В этих двух модулей, измерение осуществляется с помощью фоторезистора, который изменяет напряжение в цепи в зависимости от количества света, попадающего на него. Чтобы представить, как свет будет влиять на фоторезистор, приведу краткую таблицу.
Модуль освещенности с четырьмя выводами содержит два выходных контакты, аналоговый и цифровой и два контакта для подключения питания. Для считывания аналогово сигнала предусмотрен отдельный вывод «AO», с которого можно считать показания напряжения с 0 В … 3.3 В или 5 В в зависимости от используемого источника питания. Цифровой вывод DO, устанавливается в лог «0» или лог «1», в зависимости от яркости, чувствительность выхода, можно регулировать с помощью поворотного потенциометра. Выходной ток цифрового выхода, способен выдать более 15 мА, что очень упрощает использования модуля и дает возможность использовать его минуя контроллер Arduino и подключая его напрямую ко входу однокональному реле или одному из входов двухконального реле. Принципиальную схему модуля освещенности на LM393 с 3 pin и 4 pin, показана ниже.
Принципиальная схема модуля освещенности на LM393 с 4 pin
Принципиальная схема модуля освещенности на LM393 с 3 pin
Теперь, как же работает схема, фоторезистор показан Foto (IN). Основная микросхема модулей, это компаратор LM393 (U1), который производит сравнение уровней напряжений на входах INA- и INA+. Чувствительность порога срабатывания задается с помощью потенциометром R2 и в результате сравнений на выходе D0 микросхемы U1, формируется лог «0» или лог «2», который поступает на контакт D0 разъема J1.
Назначение J1 (в исполнении 4 pin)► VCC: «+» питание модуля ► GND: «-» питание модуля ► D0: цифровой выход ► A0: аналоговый выход
Назначение J1 (в исполнении 3 pin)► VCC: «+» питание модуля ► GND: «-» питание модуля ► D0: цифровой выход
Подключение модуля освещенности к Arduino
Необходимые детали: ► Arduino UNO R3 x 1 шт. ► Модуль освещенности, LM393, 4 pin x 1 шт. ► Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт. ► Кабель USB 2.0 A-B x 1 шт.
Подключение: В данном примере буду использовать модуль освещенности, LM393, 4 pin и Arduino UNO R3, все данные будут передаваться в «Мониторинг порта». Схема не сложная, необходимо всего четыре провода, сначала подключаем шину A0 в порт A0 (Arduino UNO) и D0 в порт А1 (Arduino UNO), осталось подключить питание GND к GND и VCC к 5V (можно записать и от 3.3В), схема собрана, теперь надо подготовить программную часть.
Запускаем среду разработки и загружаем данный скетч, затем открываем мониторинг порта.
Скачать скетч
В мониторинг порта, можно увидеть все изменения джойстика и нажатия кнопки.
Купить на Aliexpress Контроллер Arduino UNO R3 Комплект проводов DuPont, 2,54 мм, 20 см Модуль освещенности, LM393, 3 pin Модуль освещенности, LM393, 4 pin
Купить в Самаре и области Купить контроллер Arduino UNO R3 Купить провода DuPont, 2,54 мм, 20 см Купить модуль освещенности, LM393, 3 pin Купить модуль освещенности, LM393, 4 pin
Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339
Сейчас вольтметр на приборной панели автомобиля — большая редкость. Все больше лампочки с изображением аккумулятора. Лампочка эта загорается когда нет зарядки аккумулятора. И все же, нужен хотя бы какой-то индикатор, показывающий ориентировочно напряжение.
Здесь приводится схема хорошо проверенного автомобильного индикатора напряжения, который можно применять и для других целей. Схема состоит из четырех компараторов микросхемы LM339. Соответственно, получается четырехпороговое устройство индикации.
Особенность схемы в том, что порог напряжения для каждого светодиода можно установить произвольно, причем делается это очень легко и не требует какого-либо вторжения в схему. Нужно всего-то подать на схему напряжение и покрутить один из подстроечных резисторов так, чтобы при этом напряжение загорался соответствующий светодиод. Практически, можно задать любые пороги для четырех светодиодных индикаторов, и даже в любом порядке.
При этом нижний предел ограничивается напряжением 6V (напряжение, при котором еще хорошо работает ИМС LM339), а верхний зависит от сопротивления R6, величина которого в килоомах должна быть равна верхнему пределу напряжения в вольтах. Еще нужно учесть, что верхнее напряжение не должно быть более 30В (максимум напряжения питания ИМС LM339).
Схема питается от измеряемого напряжения. На прямые входы компараторов поступает напряжение с подстроечных резисторов R2-R5. Для каждого из компараторов можно установить свое опорное напряжение.
Чтобы опорное напряжение не менялось при изменении напряжения питания, оно стабилизировано стабилитроном VD1. Измеряемое напряжение поступает на соединенные вместе инверсные входы компараторов через делитель на резисторах R6 и R7.
Светодиоды можно заменить любыми индикаторными. Если предполагается измерять напряжение более 20V желательно несколько увеличить сопротивления резисторов R8-R11 чтобы не возникало перегрузки по току выходов компараторов. Если требуется большая точность задания порогов нужно чтобы подстроечные резисторы были многооборотными.