Lnk305pn чем заменить
_________________
Если вы недовольны своим уровнем жизни, законами нашей страны, уровнем цен, то вспомните всё это при следующих выборах.
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
Источники питания для автомобильной электроники, включая маяки, GPS/ГЛОНАСС-трекеры и охранную сигнализацию, должны обеспечивать бесперебойное питание и безопасность, а также быть устойчивыми к вибрации и исправно работать при низких температурах. Батарейки FANSO EVE Energy обладают всеми необходимыми параметрами для надежной работы оборудования современного автомобиля.
_________________
Если вы недовольны своим уровнем жизни, законами нашей страны, уровнем цен, то вспомните всё это при следующих выборах.
На складе КОМПЭЛ доступны сетевые адаптеры (внешние блоки питания) производства MEAN WELL, представленные семействами GS, GST и GSM различного конструктивного исполнения: в розетку и настольные. Адаптеры GS и GST предназначены для питания различных промышленных и бытовых приборов, а семейство GSM может применяться для питания устройств медицинского назначения, поскольку соответствует требованиям EN 60601-1 и 60601-1-11. При этом они характеризуются малым потреблением энергии на холостом ходу.
Модуль Whirlpool домино, замена микросхемы lnk 304 pn на lnk 305 pn
Работа с tinyxml ошибки LNK 2019 и LNK 2001
всем привет! скачал архив tinyxml, разархивировал в папку проекта затем написал следующий код: .
Ошибки LNK 2005, LNK 1169
Не могу найти ошибку в проге: functions.h ———— #include <iostream> #include <iomanip>.
Ошибка при загрузке .\thumbs.lnk Не найден указанный модуль
Когда пытаюсь открыть диск С: или любой другой выходит сообщение "Ошибка при загрузке .\thumbs.lnk.
Сообщение от Андрий
Андрей, привыкайте пользоваться редактором, уж очень много ошибок в тексте.
По теме — возврат не из-за микросхемы, а из-за проблем в модуле которые Вы не устранили.
Сообщение от Андрий
Сообщение от Андрий
Сообщение от Alexzz
Ошибка при загрузке \Thumbs.lnk не найден указанный модуль. что делать?
Всем привет) Подскажи пожалуста что делать. Вставлял в ской компьютер жесткий с другого.
lnk
с помощью какого компонента можно отображать и использовать на форме ярлыки? Если можно, вместе с.
расширение .lnk
У меня проблема.Случайно открыл ярлык хромом, теперь все ярлыки в этом формате .LNK. Как вернуть.
LNK 2001
Здрасьте, помогите быдлокодеру разобраться В общем у меня вроде все файлы проекта друг к другу.
Как проверить микроконтроллер на работоспособность
Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.
Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:
- Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
- Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
- Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.
Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.
Влияние разновидности микросхем
Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.
Например:
- Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
- Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
- Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.
Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.
Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.
Работоспособность транзисторов
Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:
- Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
- Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
- Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.
Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.
Конденсаторы, резисторы и диоды
Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.
Где выпаять
К157УД2 можно выпаять из старой советской аппаратуры, где она широко применялась вплоть до 1995 года. Считается, что устройства до 1991 года более высокого качества и устойчивей в работе, при этом их шумовые характеристики лучше (не менее -80 дБ). А на модели выпущенные после 1992 года предостаточно негативных отзывов. Именно последние версии бывают бракованные, часто выходят из строя и являются наиболее шумными (-48…- 75 дБ).
Три варианта действий
Проверка микросхем – достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:
- внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
- проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
- проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.
Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.
Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.
Лучшие ответы
A:
Подать питание на 11 и 4 вывод, на 9 и 13 подключить через 10мкф наушники, например, — и прикоснутся к 5,6 и 3,2 ножкам -если мс рабочая в наушниках будет фон 50Гц . Так я проверял эту мс лет 20 назад-самый простой способ, наверно.
эль кункин:
заменой только—————панельку впаяй и втыкай микруху————ну или если есть генератор осцильник мозги тогда проще
Георгий Глурджидзе:
Технарь:
Андрей Нечаев:
Можно тестер скидать для проверки ОУ . Можно Усилитель для наушников собрать на макетке . R1 R2 усиление усилителя .
Применение специального тестера
Для более сложных проверок нужно пользоваться специальным тестером микросхем, который можно приобрести или сделать своими руками. При прозвонке отдельных узлов микросхемы на экран дисплея будут выводиться данные, анализируя которые можно прийти к выводу об исправности или неисправности элемента.
Стоит не забывать, что для полноценной проверки микросхемы нужно полностью смоделировать ее нормальный режим работы, то есть обеспечить подачу напряжения нужного уровня. Для этого проверку стоит проводить на специальной проверочной плате.
Зачастую, осуществить проверку микросхемы, не выпаивая элементы, оказывается невозможным, и каждый из них должен прозваниваться отдельно. О том, как прозвонить отдельные элементы микросхемы после выпаивания будет рассказано далее.
Особенности транзисторов
Сегодня, существует довольно много разновидностей транзисторов. Для каждого из этих типов есть своя инструкция как проверить транзистор. Среди них можно встретить и самые простые биполярные, и различные сложные составные (состоящие из нескольких деталей) приборы.
Выводы, соответственно, у различных типов транзисторов, тоже называются по-разному. Так, у биполярных это «эмиттер», «база» и «коллектор», а у униполярных, или полевых транзисторов, они именуются «исток», «затвор» и «сток».
Также есть и так называемый «IGBT» транзистор, Это биполярный транзистор с изолированным затвором. Этот прибор, сочетает в себе некоторые свойства полевых и биполярных транзисторов.
- Биполярный;
- Биполярный с изолированным затвором;
- Составной;
- Однопереходный;
- Полевой (униполярный);
- Полевой с изолированным индуцированным затвором;
- Полевой с изолированным затвором в виде p-n перехода;
Полевые транзисторы с изолированным затвором, ещё называют металл-оксид-полупроводниковыми (МОП-транзисторами).
- Естественно что каждая разновидность транзисторов имеет свои особенности конструкции и, как следствие, характерное применение.
- Каждый транзистор имеет свою методику проверки.
- Естественно, те типы транзисторов, которые применяются наиболее часто, наиболее часто, приходится проверять на исправность.
Конденсаторы, резисторы и диоды
Исправность конденсатора проверяется путем подключения щупов мультиметра к его выводам. В течение секунды сопротивление вырастет от единиц Ом до бесконечности. Если поменять местами щупы, то эффект повторится.
Чтобы убедиться в исправности резистора, достаточно замерить его сопротивление. Если оно отлично от нуля и меньше бесконечности, значит, резистор исправен.
Проверка диодов из микросхемы достаточно проста. Измерив сопротивление между анодом и катодом в прямой и обратной последовательности (меняя местами щупы мультиметра), убеждаемся, что в одном случае одно находится на уровне нескольких десятков-сотен Ом, а в другом – стремится к бесконечности (единица в режиме «прозвонки» на дисплее).
Индуктивность и тиристоры
Проверка катушки на обрыв осуществляется замером ее сопротивления мультиметром. Элемент считается исправным, если сопротивление меньше бесконечности. Надо заметить, что не все мультиметры способны проверять индуктивность.
Проверка тиристора происходит следующим образом. Прикладываем красный щуп к аноду, а черный – к катоду. В окошке мультиметра должно отобразиться бесконечное сопротивление.
После этого управляющий электрод соединяем с анодом, наблюдая за падением сопротивления на дисплее мультиметра до сотен Ом. Управляющий электрод открепляем от анода – сопротивление тиристора не должно измениться. Так ведет себя полностью исправный тиристор.
Стабилитроны, шлейфы/разъемы
Для тестирования стабилитрона понадобится блок питания, резистор и мультиметр. Соединяем резистор с анодом стабилитрона, через блок питания подаем напряжение на резистор и катод стабилитрона, плавно поднимая его.
На дисплее мультиметра, подключенного к выводам стабилитрона, мы можем наблюдать плавный рост уровня напряжение. В определенный момент напряжение перестает расти, независимо от того, увеличиваем ли мы его блоком питания. Такой стабилитрон считается исправным.
Для проверки шлейфов необходимо прозвонить контакты мультиметром. Каждый контакт с одной стороны должен звониться с контактом с другой стороны в режиме «прозвонки». В случае если один и тот же контакт звонится сразу с несколькими – в шлейфе/разъеме короткое замыкание. Если не звонится ни с одним – обрыв.
Иногда неисправность элементов можно определить визуально. Для этого придется внимательно осмотреть микросхему под лупой. Наличие трещин, потемнений, нарушений контактов может говорить о поломке.
Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.
Признаки неисправности, их устранение
Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.
Остановка сразу после запуска
Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе.
Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.
Импульсный модулятор не стартует
Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме.
Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.
Проблемы с напряжением
Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера.
Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.
Отключение блока питания защитой
При запуске широтно-импульсного модулятора, блок питания отключается защитой. При проверке ключевых транзисторов короткое замыкание не обнаруживается. Такие симптомы могут свидетельствовать о неисправности ШИМ контроллера или драйвера ключей.
В этом случае нужно произвести замер сопротивлений между затвором и истоком ключей в каждой фазе. Заниженное значение сопротивления может указывать на неисправность драйвера. При необходимости делается замена драйверов.
Микросхемы LNK304-306 предназначены для работы в маломощных сетевых источниках питания без гальванической развязки, практически являются более современной заменой блокам питания с линейным стабилизатором напряжения с гасящей избыток напряжения емкостью.
Особенностями ИМС LNK304-306 является: минимальное количество навесных компонентов; мягкий запуск; работа на частоте 66 кГц; точное ограничение выходного тока; встроенная модуляция частоты генерации; низкое потребление; возможность работы без нагрузки.
Микросхемы выпускаются в корпусах: DIP8 и SMD8 без 6-го вывода (рис.1). Структурная схема микросхем показана на рис.2. Она содержит N-канальный МОП- транзистор и контроллер управления этим Стабилизация выходного напряжения осуществляется за счет запрещения включения транзистора микросхемы на некоторое время, т.е. осуществляется пропуск одного или нескольких циклов работы преобразователя. В этом существенное отличие преобразователей на микросхемах Link Switch-TN от аналогичных устройств, использующих широтно-импульсную модуляцию.
Заявленные производителем возможности источников питания на основе микросхем LNK304-306:
- Выгодная замена линейных/емкостных источников питания.
- Минимальная стоимость и число компонентов.
- Встроенные схемы защиты от короткого замыкания с автоматическим перезапуском, перегрева и защиты от обрыва цепи обратной связи.
- Работа на частоте 66 кГц с точным порогом тока, что позволяет использовать недорогую индуктивность 1 мГн при токах нагрузки до 120 мА.
- Высокая температурная стабильность
- Высокое напряжение пробоя 700В.
- Широкий частотный диапазон.
- Работа схемы ограничения тока с подавлением пульсаций.
- Широкий диапазон входного напряжения (-85…265В).
- Более высокий КПД. по сравнению с пассивными схемами.
- Поддержка SMD-технологии
- Собственное потребление не более 50/80 мВт при входном переменном напряжении 115/230В без нагрузки.
На рисунке 3 показана схема блока питания на основе ИМС LNK304, обеспечивающий стабильное выходное напряжение 5,07 В при токе до 120 мА.
Переменное напряжение от электросети поступает на однополупериодный выпрямитель, состоящий из диодов D3, D4, конденсаторов С4, С5 и дросселя L2. Резистор RF1 является одновременно предохранителем и средством снижения зарядного тока через С4 и С5 при включении схемы в электросеть.
Чтобы схема могла работать и без нагрузки используется резистор R4.
Стабилизация организована подачей напряжения с выхода на вывод РВ через делитель, так чтобы при номинальном выходном напряжении на выводе РВ было 1,65В. Зависимость выходного напряжения от резисторов R1 и R3:
Uвых = 1,65(1 +R1/R3)
На рисунке 4 пример монтажной схемы (показано без соблюдения масштаба).
Автор: Каравкин В.
Возможно, вам это будет интересно:
Постоянная ссылка на это сообщение: https://meandr.org/archives/32571
Способы проверки
Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.
Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:
- Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
- Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
- Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.
Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.
Влияние разновидности микросхем
Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.
Например:
- Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
- Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
- Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.
Основные параметры
Если внимательно посмотреть на электрические характеристики К157УД2, то можно заметить, что по быстродействию данная микросхема не для использования в аудиоустройствах. Так, наибольшая скорость нарастания напряжения на её выходе 0,5 В/мкс, что сопоставимо выходному сигналу на уровне примерно до 10 В/8 кГц. В реальной жизни он будет еще ниже. Но для своего времени это был тоже неплохой показатель.
Максимальные значения
Приведём основные предельные значения параметров:
- максимальное питание (Uпит) до ±18 В;
- выходное напряжение (Uвых макс.) до ± 13 В (при Uпит = ± 15 В);
- напряжение смещения нуля (U см) до ± 13 В;
- ток потребления (I пот) до 7 мА;
- ток короткого замыкания (I кз) до 45 мА;
- частота среза (f срз) от 1 МГц;
- коэффициент усиления (KуU): не менее 50000 (при f =0… 50 Гц) и 800 (при f =20 кГц);
- скорость нарастания на выходе (VUвых) не менее 0,5 В/мкс.
Превышение предельно допустимых значений может привести к выходу устройства из строя.
Типовая величина напряжения шумов, используемых на входе данного ОУ (в диапазоне частот от 20 до 20000 Гц) составляет не более 1,6 мкВ.
Аналоги
Считается, что импортный аналог у К157УД2 — это LM301. Но, во первых, у данной микросхемы 8 выводов, вместо 14. Поэтому для замены придётся искать два таких устройства. Во вторых, их будет очень трудно найти в наших магазинах.
Чем еще можно заменить К157УД2 ? Хорошей альтернативой для этого устройства можно cчитать новые микросхемы серии LME49XXX. Если точнее, то в большинстве случаев подойдут: LME49720, LME49860 и LM4562. Они очень похожи по своим характеристикам с рассматриваемой, имеют неплохую линейность и полосу пропускания (до 90 Гц), не только при коэффициенте усиления 1, но и значительно более высоком (1000 и выше).
Типовое напряжение шумов в диапазоне частот от 20 до 20000 Гц находится в пределах 0,4 мкВ. Отечественные аналоги: КР1434УД1А и обновленная модификация К157У Д3. Проблема в том, что сейчас их трудно найти на российских прилавках и они более дорогие.
Бестрансформаторный источник питания
В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания.
В некоторых случаях это целесообразно.
Микросхемы Link Switch — TN применяются в источниках питания без гальванической развязки с током нагрузки до 360 мА .
LNK302 – LNK306 , выпускаемые компанией Power Integrationws.
Это преобразователи напряжения, которые позволяют построить бестрансформаторные блоки питания с широким диапазоном входного напряжения и минимальными габаритами и массой.
Особенности данной схемы:
— Эффективная замена линейным стабилизаторам напряжения с сетевым входом и сетевым блокам питания с емкостным балластом.
— Малочисленная обвязка компонентов в схеме понижающего преобразователя
— Мягкий запуск
— Схемы защиты от короткого замыкания с автоматическим перезапуском и защиты от обрыва цепи обратной связи, что уменьшает количество внешних компонентов
— Работа на частоте 66 кГц с точным порогом тока, что позволяет использовать недорогую индуктивность 1 мГн при токах нагрузки до 120 мА
— Встроенная модуляция частоты генерации
— Высокое напряжение пробоя 700В обеспечивает превосходную стойкость к выбросам на входе
— Точное ограничение выходного тока и термозащита с гистерезисом
— Защиты от перегрева, короткого замыкания выхода и обрыва обратной связи
— Широкий частотный диапазон обеспечивает быстроту включения без перерегулирования
— Работа схемы ограничения тока подавляет пульсации
— Универсальный входной диапазон напряжения (
85…265В)
— Более высокий КПД. по сравнению с пассивными решениями
— Выпускаются в корпусах: DIP8 и SMD8
— Незначительное собственное потребление энергии
— Возможность работы без нагрузки
Для увеличения электрической прочности в корпусах используются 7 выводов.
Структура микросхемы содержит N- канальный МОП-транзистор и контроллер управления этим транзистором.
Работа преобразователя по схеме импульсного понижающего стабилизатора, роль ключа в котором выполняет микросхема LNK304 .
Входная цепь — резистор RF1 , выпрямительные диоды D3 , D4 , емкости С4 , С5 и дроссель L2 .
Дроссель L1 обеспечивает непрерывный режим работы преобразователя, при котором в течение каждого периода ток через дроссель не прерывается.
Напряжение обратной связи снимается с дросселя L1 , выпрямляется диодом D2 , сглаживается фильтром С3 , и через делитель R1R3 подается на вывод FB ( 4 ) микросхемы.
Напряжение на нагрузке соответствует напряжению на дросселе L1 во время обратного хода преобразователя с точностью до падения напряжения на диоде D1 .
В результате при равенстве падений напряжений на диодах D1 и D2 напряжение соответствует выходному и его стабильность может быть очень высокой.
Конденсатор С2 сглаживает пульсации, а резистор R4 служит начальной нагрузкой преобразователя.
Стабилизация выходного напряжения осуществляется за счет запрещения включения транзистора микросхемы на некоторое время,
т.е. осуществляется пропуск одного или нескольких циклов работы преобразователя.
В этом существенное отличие преобразователей на микросхемах Link Switch-TN от аналоговых устройств, использующих широтно-импульсную модуляцию.
Такой преобразователь может быть использован для питания бытовой техники, светодиодных устройств, ЖК индикаторов, счетчиков электроэнергии и других приборов, где не требуется гальваническая развязка по сети.