Ntc type accepted esd 1307157c что это
Перейти к содержимому

Ntc type accepted esd 1307157c что это

Что такое датчик температуры NTC?

Аббревиатура NTC расшифровывается как Negative Temperature Coefficient, что в переводе на русский язык означает отрицательный температурный коэффициент. При повышении температуры датчика его сопротивление уменьшается, а при понижении температуры сопротивление возрастает.

Датчик температуры также может называться термистором, терморезистором, термическим резистором, термометром сопротивления.

Вынесенный датчик измерения температуры

Вынесенный датчик измерения температуры

Как правило, датчик температуры NTC является полупроводниковым. Это связано с тем, что для полупроводников без примесей температурный коэффициент сопротивления отрицателен.

Датчики температуры для терморегуляторов, представленных в нашем магазине, предназначены для контроля температуры окружающей среды (кабельная стяжка, поверхность нагревательных элементов и т.п.). При монтаже пленочного теплого пола, выносной датчик температуры закладывается в гофротрубу диаметром 16 мм непосредственно под одной из греющих полос ИК пленки в месте наименьшей теплоотдачи (например, под ковриком или мебелью на низких ножках).

Датчики не являются электронными приборами, поскольку не содержат систем предварительной обработки сигнала. В основе работы температурных датчиков NTC лежит нелинейная зависимость сопротивления терморезистора датчика от температуры среды, в которую он помещен. В соответствии с этим меняется напряжение на входе компаратора терморегулятора. Настройка компаратора соответствует температурной характеристике комплектного датчика.

Соотношение температуры и сопротивления датчика пола на 10 кОм:

Температура, °С Сопротивление, Ом
5 22070
10 17960
20 12091
30 8312
40 5827

Достаточно большая крутизна характеристики датчиков и достаточно малые отклонения реальной характеристики отдельного датчика от номинальной обеспечивают приемлемую чувствительность и позволяют выбрать небольшой гистерезис при поддержании заданной температуры.

Как проверить температурный датчик NTC в посудомоечной машине?

NTC-датчики с резисторами, с сопротивлением особо чувствительным к температуре, распространенные из-за простоты, дешевизны, эффективности. Negative Temperature Coefficient означает, что при повышении t° сопротивление сенсора понижается. Изделие ставят везде, где необходимо отследить температуру, в устройствах, зависящих от нее: холодильники, стиралки, бойлеры, теплые полы. Термодатчики используют для самоделок, например на Arduino. Оборудование улавливает сигнал от сенсора НТЦ и срабатывает по настройкам. Рассмотрим принцип работы, виды, характеристики и возможности NTC детекторов и термисторов, где используются, как рассчитать, подобрать.

Датчики NTC

Понятие NTC температурных датчиков

При обычном применении резисторов не нужно, чтобы их сопротивление (R) менялось с изменением температуры. Зависимость минимальная, иначе элемент влиял бы на схему, например, диод не контролировано менял бы интенсивность свечения. Но если требуется, чтобы его яркость была функцией температуры, то применяют термистор — резистор, сопр. которого чувствительное даже к небольшим сдвигам t°. Такое свойство отображается основной характеристикой — кривой графика зависимости R/T.

Negative Temperature Coefficient — «отрицательный (минусовый) коэффициент t°», он же NTC. Это наиболее часто встречающийся тип температурных сенсоров, так как они дешевле всех прочих, с хорошей эффективностью, достаточной для большинства приборов.

Расшифровка обозначений на датчиках NTC

Преимущества, сравнение с иными термодатчиками

  • значительная крутизна кривой R/T, малые отклонения от номиналов, что свидетельствует о хорошей сенситивности;
  • минимальное время отклика;
  • значительные величины ТКС, то есть большая чувствительность, увеличенная степень изменения R в зависимости от t° (порядка 2–10 % на Кельвин);
  • сопротивление демонстрирует большое, точное, прогнозируемое уменьшение по мере роста рабочих температур на ядре резистора;
  • чрезвычайная компактность, терморезисторы подойдут на любые платы, даже на пространства, измеряющиеся в мм (есть типоразмеры в виде бусинок), поэтому датчики с ними компактные;
  • лучшая прочность, надежность, стабильность, приспособленность для экстремальных сред, помехоустойчивость в своих рабочих диапазонах;
  • экономичность, менее трудозатратные в обслуживании. Если кривая правильная, то калибровки не потребуется при монтаже и на всем сроке эксплуатации;
  • по кривой легко узнать нужное сопротивление при конкретной температуре.

Датчики NTC с характеристиками

Преимущества и недостатки:

По сравнению с RTD По сравнению с термопарами
Недостатки Достоинства Достоинства Недостатки
менее точные (но не намного)диапазон по t° меньше, чем у RTD отклик быстрее точность аналогичная при наличии иных плюсов Меньший диапазон, термопары работают с t° выше (+600° C)
большая сенситивность, стабильность, корректность в своих рабочих рамках;
простая эксплуатация, что снижает цену, не требуются усилители, интерпретаторы и прочее
меньший, удобный размер
низкая стоимость (один их главных плюсов)
стойкость к ударам, вибрациям выше

Коэффициенты параметров, токоограничивающие свойства лучше в несколько раз, чем у термодатчиков из Si. На порядок выше (от 10 раз), чем у RTD (металлические термодетекторы).

Если сравнивать с RTD (платиновыми), то линия R/T более крутая, что отображает лучшую сенситивность. Но все-таки первые наиболее точные (±0.5 % от замеряемой t°) и они лучшие для границ −200…+800° C, что шире, чем у NTC, но преимущество последних в дешевизне и простоте.

Код программы для Arduino

Код снабжен большим количеством комментариев, чтобы помочь вам понять логику программы.

В основном он измеряет напряжение на делителе, вычисляет температуру, а затем показывает ее в терминале последовательного порта.

Для забавы добавлены также некоторые операторы «if…else», чтобы показать, как вы можете действовать в зависимости от диапазона температур.

//=============================================================================== // Константы //=============================================================================== // Связанные с термистором: /* Здесь у нас несколько констант, которые упрощают редактирование кода. Пройдемся по ним. Чтение из АЦП может дать одно значение при одной выборке, а затем немного отличающееся значение при следующей выборке. Чтобы избежать влияния шумов, мы можем считывать значения с вывода АЦП несколько раз, а затем усреднять значения, чтобы получить более постоянное значение. Эта константа используется в функции readThermistor. */ const int SAMPLE_NUMBER = 10; /* Чтобы использовать бета уравнение, мы должны знать номинал второго резистора в нашем делителе. Если вы используете резистор с большим допуском, например, 5% или даже 1%, измерьте его и поместите результат в омах сюда. */ const double BALANCE_RESISTOR = 9710.0; // Это помогает вычислять сопротивление термистора (подробности смотрите в статье). const double MAX_ADC = 1023.0; /* Эта константа зависит от термистора и должна быть в техническом описании, или смотрите статью, как рассчитать ее, используя бета-уравнение. */ const double BETA = 3974.0; /* Необходима для уравнения преобразования в качестве «типовой» комнатной температуры. */ const double ROOM_TEMP = 298.15; // комнатная температура в Кельвинах /* Термисторы обладают типовым сопротивлением при комнатной температуре, укажем его здесь. Опять же, необходимо для уравнения преобразования. */ const double RESISTOR_ROOM_TEMP = 10000.0; //=============================================================================== // Переменные //=============================================================================== // Здесь мы будем хранить текущую температуру double currentTemperature = 0; //=============================================================================== // Объявления выводов //=============================================================================== // Входы: int thermistorPin = 0; // Вход АЦП, выход делителя напряжения //=============================================================================== // Инициализация //=============================================================================== void setup() < // Установить скорость порта для отправки сообщений Serial.begin(9600); >//=============================================================================== // Основной цикл //=============================================================================== void loop() < /* Основной цикл довольно прост, он печатает температуру в монитор последовательного порта. Сердце программы находится в функции readThermistor. */ currentTemperature = readThermistor(); delay(3000); /* Здесь описываем, что делать, если температура слишком высока, слишком низка или идеально подходит. */ if (currentTemperature > 21.0 && currentTemperature < 24.0) < Serial.print(«It is «); Serial.print(currentTemperature); Serial.println(«C. Ahhh, very nice temperature.»); >else if (currentTemperature >= 24.0) < Serial.print(«It is «); Serial.print(currentTemperature); Serial.println(«C. I feel like a hot tamale!»); >else < Serial.print(«It is «); Serial.print(currentTemperature); Serial.println(«C. Brrrrrr, it’s COLD!»); >> //=============================================================================== // Функции //=============================================================================== ///////////////////////////// ////// readThermistor /////// ///////////////////////////// /* Эта функция считывает значения с аналогового вывода, как показано ниже. Преобразует входное напряжение в цифровое представление с помощью аналого-цифрового преобразования. Однако, это выполняется несколько раз, чтобы мы могли усреднить значение, чтобы избежать ошибок измерения. Это усредненное значение затем используется для расчета сопротивления термистора. После этого сопротивление используется для расчета температуры термистора. Наконец, температура преобразуется в градусы Цельсия. */ double readThermistor() < // переменные double rThermistor = 0; // Хранит значение сопротивления термистора double tKelvin = 0; // Хранит рассчитанную температуру double tCelsius = 0; // Хранит температуру в градусах Цельсия double adcAverage = 0; // Хранит среднее значение напряжения int adcSamples[SAMPLE_NUMBER]; // Массив для хранения отдельных результатов // измерений напряжения /* Рассчитать среднее сопротивление термистора: Как упоминалось выше, мы будем считывать значения АЦП несколько раз, чтобы получить массив выборок. Небольшая задержка используется для корректной работы функции analogRead. */ for (int i = 0; i < SAMPLE_NUMBER; i++) < adcSamples
= analogRead(thermistorPin); // прочитать значение на выводе и сохранить delay(10); // ждем 10 миллисекунд > /* Затем мы просто усредняем все эти выборки для «сглаживания» измерений. */ for (int i = 0; i < SAMPLE_NUMBER; i++) < adcAverage += adcSamples; // складываем все выборки . . . > adcAverage /= SAMPLE_NUMBER; // . . . усредняем их с помощью деления /* Здесь мы рассчитываем сопротивление термистора, используя уравнение, описываемое в статье. */ rThermistor = BALANCE_RESISTOR * ( (MAX_ADC / adcAverage) — 1); /* Здесь используется бета-уравнение, но оно отличается от того, что описывалось в статье. Не беспокойтесь! Оно было перестроено, чтобы получить более «красивую» формулу. Попробуйте сами упростить уравнение, чтобы поупражняться в алгебре. Или просто используйте показанное здесь или то, что приведено в статье. В любом случае всё будет работать! */ tKelvin = (BETA * ROOM_TEMP) / (BETA + (ROOM_TEMP * log(rThermistor / RESISTOR_ROOM_TEMP))); /* Я буду использовать градусы Цельсия для отображения температуры. Я сделал это, чтобы увидеть типовую комнатную температуру, которая составляет 25 градусов Цельсия. */ tCelsius = tKelvin — 273.15; // преобразовать кельвины в цельсии return tCelsius; // вернуть температуру в градусах Цельсия >

Принцип работы

ДТОЖ с описанием

Сплав датчика изменяет токопроводимость при различной t°. Сопротивление при ее росте падает, при понижении — растет. Меняются электропараметры, что и регистрирует схема.

Устройство датчика температуры

Микроконтроллер обслуживаемого прибора на основе полученных данных, учитывая спецификацию детектора, вычисляет сдвиги t°. Затем подает сигнал исполнительному узлу (реле, системе нагревателя, охлаждения) для действий при том или ином уровне t°.

Схема управления с использованием ДТОЖ

Пример: учитывая описанный алгоритм на входе компаратора термостата, настроенного по температурной характеристике, происходит управление напряжением, оно претерпевает изменения.

График изменения параметров в зависимости от среды

Сами по себе датчик NTC не электронное устройство, он только фиксирует. В основе — нелинейная зависимость сопр. резистора от t° среды. Схема работы может быть и проще: простой вывод на табло значений или реле может реагировать сразу.

Сенсоры чувствительные к электромагнитным излучениям, полям, поэтому их экранируют или монтируют на отдалении от источников таких явлений (силовые провода).

Техника премиум-класса

Посудомоечные машины и другие устройства изготавливаются в Германии с использованием высококачественных материалов и передовых технологий. На нашем сайте вы найдете огромное количество встраиваемых и отдельностоящих решений для кухни и дома. Все приборы оснащаются Wi-Fi модулем для объединения в домашнюю сеть (технология [email protected]). Вы сможете управлять их работой удаленно, с ноутбука или смартфона.

Надежная техника с современным дизайном как нельзя лучше подчеркнет высокий социальный статус и безупречное чувство стиля своего владельца. Официальная гарантия на всю продукцию «Миле», заказанную в фирменном интернет-магазине, составляет 24 месяца. Осуществляется доставка товаров по Москве, Московской области (курьерской службой) и другим регионам России (транспортными компаниями).

Чем отличаются от термопар

Не надо путать NTC c термопарами: хотя задачи схожие и есть связь с электропараметрами, принцип разный. У первых основывается на изменении сопротивления чувствительной части, у вторых — на изменяющейся при трансформациях температуры разности потенциалов, создающейся двумя сегментами из разных сплавов с разными электросвойствами.

Сравнение NTC с термопарами

Сенсор NTC из одного цельного кусочка сплава, а термопара — из двух металлов, и измерения базируются именно на трансформациях его сопротивления, а не на разности потенциалов.

Устройство термодатчиков и терморезисторов NTC

Датчик NTC

Другие названия — датчики резистивные, термисторы, термические или терморезисторы, датчики НТЦ (NTC) температуры или термометры сопротивления (но именно с NTC термистором, не путать с RTD и изделиями с другими чувствительными частями).

RTD детали

Сенсор NTC состоит из резистивного (чувствительного) сегмента — терморезистора и проводков (ножек) для подачи тока на него.

Датчик температуры и его устройство

Термистор изготавливается порошковым способом, запеканием.

Термистор

Материалы: оксиды, галогениды, халькогениды. Используются полупроводники (часто полимерные), они сами по себе с ТКС «−». Для корпуса, наружного покрытия — керамика, стекло, эпоксидка.

Типоразмеры

Типоразмеры самих термисторов: стержни, трубочки, диски, бусинки, пластинки, капли, таблетки. Размеры 1–10 мкм до нескольких мм и 1 см.

Термисторы с характеристиками

Есть также SMD форматы, микропрямоугольнички.

Сразу различим именно датчики как готовые к применению изделия и сами «голые» терморезисторы.

Разобранный датчик

Датчики как приборы могут выполняться в любых формах, корпусах по решению производителя, например, щупы, зонды, «фишки» с разъемами, в водостойком корпусе, с резьбой, на длинном кабеле.

Датчики как готовые приборы

Автомобильные NTC датчики

Накладные. На поверхность конструкций. Примеры: T2C-NTC 10K для −50…+150° C; ALTF02 S+S для снятия данных с твердых объектов (труб).

Накладные датчики

Канальные, погружные. Для полостей. T3-NTC 10K с кабелем 30 см, для +50…−50° C; T2I-NTC 10K, 6.5 см, −50…+150° C; TF43T и TM54 для жидкостей в трубах, емкостях.

Погружные датчики

Наружные. Для погодно-зависимых комплексов, на внешние стены (ATF01 S+S Regeltechnic).

Наружные датчики

Комнатные. Для внутренних помещений, квартир, офисов.

Комнатные датчики

Многофункциональные. Совмещают иные сенсоры, Исследуют не только температуру, но и давление, плотность и прочее.

Бусинковые

Датчики в виде бусинок

Бисер, шарик, капля, Ø 0.075 до 5 мм. Из свинцовых проводков, сплава с платиной, спекаемых в керамической, стеклокерамической оболочке. Лучший отклик и стабильность, их рабочие температуры выше, чем у дисковых вариантов и чипов.

Датчик капля

Минусы: хрупкость выше, нет взаимозаменяемости, требуют индивидуальных градуировок. Нет точных стандартов для их номиналов по отношению R/T.

Диски, пластинки, чипы, трубки

Датчик пластинка

Изделия в форме диска с поверхностными контактами. Форма габаритнее, реакция медленнее, чем у шариков. Но из-за увеличенных габаритов обладают хорошей диссипацией (мощностью для роста t° на 1 градус). Так как рассеиваемая энергия пропорциональная к квадрату тока, лучше работают с высокими токами, чем шарики.

Датчик в форме диска MF

Дисковые изготовляются прессовкой порошкоподобных оксидов в круглую матрицу, затем спекаются. Чипы — литьем под давлением, суспензия распределяется толстым шаром, затем производят сушку, разрезание. Габариты Ø 0.25…25 мм.

Заготовка датчика для диска

Взаимозаменяемые, но есть погрешности, минимально допустимым отклонением считается не менее 0.05° C в рамках 0…+70 °C. Стандартный термистор на 10 кОм в границах 0…+100 обладает коэффициентами близкими к таким:

Термистор в виде трубки:

Трубчатые термисторы

Инкапсулированные

Инкапсулированные напоминают пластинки, таблетки, могут быть схожие с иными типами. Особенность в их покрытии — оно особо герметичное, воздухонепроницаемое (пузырь, капсула, контейнер), из стекловолокна. Для высоких температур, от +150° C, для плат, где требуется особая прочность. Такое исполнение увеличивает стабильность, защиту, Ø 0.4…10 мм.

Температурные детекторы NTC и PTC

Основные параметры температурных NTC

Есть два типа термисторов: отличается направление зависимости R от температуры, механизм ТКС. Слово перед сокращением фразы «Temperature Coefficient» отображает данный нюанс:

  • Negative. NTC, рассматриваемые нами. С отрицательным t° коэфф. С ростом температуры падает сопр.;
  • Positive, PTC. Второе название позисторы. С положительным t° коэфф. R увеличивается.

Разница между NTC и PTC

Для NTC терморезисторов используют смеси многокристаллических оксидов переходных металлов (MnO, СoOx, NiO и CuO), полупроводников определенных типов (A, B), и стеклоподобных (Ge и Si). А PTC (позисторы) состоят из твердых веществ, основанных на BaTiO₃, данный сплав имеет именно позитивную реакцию (ТКС). Но отличия в работе в основном лишь в направлении зависимости R/T.

Наиболее популярные температурные детекторы NTC среднего диапазона: ТКС −2.4…-8.4 %/К, с широкими границами сопр. (1…106 Ом). Если говорить о PTC, то эти цифры 0.5…0.7 %/К, часто они из кремния, их сопротивление, в отличие от NTC, приближается к линейному.

Разница материалов и обозначений NTC и PTC

PTC используются на оборудовании охлаждения, температурной стабилизации в радиоэлектронных схемах, как саморегулирующиеся нагревательные детали. Их R увеличивается по мере роста их же нагрева (PTC нагреватели), такая запчасть никогда не перегреется, всегда выдает устойчивые тепломощности при значительном диапазоне напряжений.

Сферы чрезвычайно схожие, а принцип в основе аналогичный — все зависит от того, что требуется, негативный или положительный ТКС:

  • NTC следит за понижением температуры;
  • PTC — за повышением.

Параметры термисторов

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа. Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей.

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Виды термисторов NTC

По диапазону значений обслуживаемой среды NTC бывают:

  • низкотемпературные. Для ниже 170 К (Кельвины, может быть в Цельсиях);
  • средне, 170…510 К;
  • высоко, от 510 К;
  • сверхвысоко, 900…1300 К.

Отдельной разновидностью являются комбинированные, с косвенным нагревом. Совмещают резистор и «гальванически развязанный» от него элемент нагрева, задающий температуру и, соответственно, сопротивление. Применяются как переменные резисторы, управляемые напряжением, подаваемым на их нагревательную часть.

Спецификация NTC

Модельный ряд посудомоек Miele

Немецкий бренд предлагает вашему вниманию многофункциональные посудомоечные машины, рассчитанные на загрузку от 9 до 14 комплектов посуды. В ассортименте представлены встраиваемые и отдельностоящие (например, Miele PG8130) модели. Приборы могут встраиваться в мебельный гарнитур частично (G7310 SCi) или полностью (G7150 SCVi). Выпускаются узкие и полноразмерные посудомойки (шириной 45 и 60 см соответственно).

Интуитивно-понятный интерфейс с дисплеем открывает доступ к большому количеству автоматических программ мойки (до 13) и другим востребованным опциям. Машины отличаются продуманным внутренним зонированием, низким потреблением воды и бытовой химии. Посудомойки «Миле» работают тихо и экономично, класс энергоэффективности многих моделей даже превосходит A+++.

Расчет, подбор термисторов NTC

Определяют, какой именно терморезистор подходит по кривым R/T, по создаваемым графикам и таблицам значений R-T, по формулам. Процедура сложная, есть целые брошюры и отдельные статьи, поэтому укажем лишь основы.

Таблица сопротивлений

Лучшей, хотя и сложной, из формул расчетов является таковая «Стейнхарта (Штейнхарта) — Харта»:

Исчисления обычно делают фанаты радиоэлектроники и специалисты, особенно для самоделок. Проще будет подобрать элемент с аналогичной спецификацией, а также воспользоваться уже готовыми рекомендациями специалистов, информация есть в сети на спецсайтах. Модификаций термисторов насчитываются сотни, соответственно, таблицы спецификаций очень габаритные. Часто конкретная партия аналогичных серий термисторов имеет свои данные.

Параметры MF72

Есть сотни спецификаций NTC термисторов:

Разные спецификации NTC термисторов

Но все-таки исчисления в большинстве случаев крайне желательные, даже если есть данные от производителя о параметрах и рекомендации, так как термисторы с высокой нелинейностью свойств. Разные экземпляры одинаковой спецификации даже, например, при тех же величинах B25/100 (чувствительности, рассмотрим ниже) могут иметь разные сдвиги R. Поэтому формулы для указанного параметра дают лишь приблизительную оценку. Точные результаты требуют сложных вычислений.

Виды NTC110

Датчики для бытовых или иных приборов в заводских типоразмерах — это уже полностью готовые к применению устройства в корпусе и так далее, все необходимые расчеты сделаны производителями.

Расчитанные термисторы

Параметры для подбора (обычно отображаются графиками, диаграммами):

  • ВАХ;
  • кривая соотношение темп./сопр.;
  • теплоемкость, константа рассеяния;
  • величины R;
  • допуски;
  • температурный диапазон. Именно в своих границах сенсоры NTC могут работать лучше всех подобных изделий;
  • временная постоянная: срок для перехода от одной величины t° к другой. Это период в секундах, требуемый для достижения 63.2 % разницы t° от начального показания до финишного;
  • чувствительность: уровень реагирования на сдвиги температуры;
  • стабильность контроллера при поддерживании постоянной температуры посредством обратной связи с сенсором.

Приближение первого порядка

Зависимость t°/Ом (график R-T) имеет значительную нелинейность, поэтому для практических схем применяют для расчета так называемые приближения. Пример такового «первого порядка»:

Уравнение справедливо только для небольшого температурного диапазона и для t°, когда k почти постоянная на его разных значениях.

Бета-формула

Есть также бета-уравнение (содержит константу «бета», β). Это самая простая формула из существующих, часто для самоделок, например, на Arduino используют именно ее. Дает результат с точностью ±1 °C. Охватывает диапазон 0…+100° C. Последний зависимый от единственной постоянной материала β, получаемой путем измерений (указывается в спецификации термистора).

Тут нет необходимости в линеаризации реакции сенсора. Формула требует 2-точечной калибровки, стандартно не больше чем ±5 на всем полезном диапазоне.

Уравнение Штейнхарта-Харта

Алгоритм Штейнхарта-Харта — это наилучшее, но более сложное уравнение. Чтобы избежать сложностей, обычно применяют предыдущий метод, но для пользователей со знаниями алгебры и опытом вычислений этот лучший способ. Это общая формула, чтобы подогнать кривую термистора:

Алгоритм Штейнхарта-Харта

Константы A, B, C обычно публикуются производителями, поставщиками как часть таблиц с данными спецификации термисторов. Отклонения по описываемой формуле составляет около ±0.15° C в рамках −50…+150° С, что является отличным показателем. Если требуется высокая корректность, то границы должны быть сужены. Точность ±0,01° C и лучше наблюдается в рамках 0…+100° C.

Какую формулу выбрать

Подбор подходящего исчисления для определения температуры из замеров сопротивления основывается на доступности вычислительных мощностей, а главное, на требованиях допуска. Для некоторых приложений приближение 1-го порядка достаточно, для иных случаев потребуется метод Штейнхарта-Харта, а сенсор должен калиброваться в процессе большого числа измерений по созданной таблице поиска.

Измерение сопротивления с помощью Arduino

Теперь, когда мы выбрали метод построения кривой, мы должны выяснить, как реально измерить сопротивление с помощью Arduino, прежде чем мы сможем передать информацию о сопротивлении в β-уравнение. Мы можем сделать это используя делитель напряжения:


Делитель напряжения для измерения сопротивления термистора

Это будет наша схема взаимодействия с термистором. Когда термистор определит изменение температуры, это отразится на выходном напряжении.

Теперь, как обычно, мы используем формулу для делителя напряжения.

Но нам неинтересно выходное напряжение Vвыход, нас интересует сопротивление термистора Rтермистор. Поэтому мы выразим его:

Это намного лучше, но нам необходимо измерить наше выходное напряжение, а также напряжение питания. Так как мы используем встроенный АЦП Arduino, то можем представить напряжение, как числовое значение на определенной шкале. Итак, конечный вид нашего уравнения показан ниже:

Это работает потому, что не имеет значения, как мы представляем напряжение (в вольтах или в цифровых единицах), эти единицы сокращаются в числителе и знаменателе дроби, оставляя безразмерное значение. Затем мы умножаем его на сопротивление, чтобы получить результат в омах.

Dmax у нас будет равно 1023, так как это самое большое число, которое может выдать наш 10-разрядный АЦП. Dизмеренное – это измеренное значение аналого-цифровым преобразователем, которое может быть в диапазоне от нуля до 1023.

Всё! Теперь можно приступить к сборке!

Характеристики NTC терморезисторов

Опишем главные позиции и инструменты для определения подходящих термисторов.

Соотношение t°/Ом (кривая R-T)

Большинство NTC детекторов подходят для температурного диапазона −55…+200° C, там они наиболее точные. Но есть и спецсемейство для t° близких к абс. нулю (−273.15 °C), а также для значений выше +200.

График зависимости сопротивления от температуры

На рисунке показана общая тенденция, конкретные цифры зависят от спецификации, номинала. Кривая четко показывает особенность типа NTC: t° растет, сопр. снижается. В позисторах (PTC) наоборот, и они имеют нюанс: обладают своеобразной точкой перелома, при которой сильно изменяют сопр. при некоторых значениях, поэтому работать с ними сложнее. Это одна из причин, по которой большинство не особо дорогих и сравнительно простых приборов снабжаются именно НТЦ детекторами.

Чувствительность по температуре выражена как изменение в % на 1 градус Цельсия. Типичные величины чувствительности находятся в рамках −3…−6 % на 1°.

Соотношение температуры и сопротивления датчика пола

Теплоемкость и самонагрев

Самонагрев возникает, когда ток течет через терморезистор. Поскольку это резистор, то происходит рассеивание энергии в виде тепла, что влияет на точность замеров. Уровень данного явления зависит от силы тока, среды, а также от ТКС, количества деталей на сегменте. Тот факт, что, нагрев влияет на сопротивление, пропускную способность по току детектора, зависит от окружающих условий, делает деталь незаменимой для использования в резервуарах, содержащих жидкость.

Под теплоемкостью подразумевают количество тепла, требуемого для увеличения температуры сенсора на 1° C, выражена в мДж/° C. Параметр чрезвычайно важен при применении термосенсора как ограничителя пусковых реле, так как ним определяется оперативность отклика этого элемента.

Чувствительность

Охарактеризуем чувствительность выдержкой из специализированного сайта:

Коэффициент температурной чувствительности

ВАХ, режимы работы и их применение

Также подбор осуществляется по вольт-амперной характеристике (ВАХ), которая зависима от прилагаемой к прибору с НТЦ датчиком температуре и от конструкции такового.

NTC сенсоры с рабочей отметкой на нисходящем сегменте ВАХ используются как реле (пусковые, временные) в оснащении, где производятся замеры и контроль мощности электромагнитных излучений сверхвысоких частот. А также для систем теплоконтроля, пожарной сигнализации, на установках, управляющих расходом жидкости, сыпучих веществ.

Графики для термистора

Краткая характеристика устройств


Датчики данного типа представляют собой компактные высокочувствительные элементы, которые применяются для поддержания заданных температурных режимов. Передача сигналов осуществляется через компенсационные кабели, соединенные с термостатами, контрольными панелями или другими устройствами. Стандартная длина проводов для большинства моделей термисторов составляет 1-1,5 м и при необходимости может быть увеличена.

Термодатчики NTC, отличаются высоким быстродействием и широким диапазоном рабочих температур. Применение современных технологий при их производстве позволяет значительно уменьшить погрешность сопротивления: как правило, допуск не превышает 1%.

Где именно применяются датчики температуры NTC

Конкретизируем, где именно применяются NTC датчики.

NTC датчик температуры

Наиболее характерные сферы:

  • все возможные температурные датчики;
  • холодильные, отопительные, нагревательные системы, где не допускается понижение температуры;
  • системы вентиляции, кондиционирования;
  • контроль за степенью охлаждения в трубах, на открытых локациях;
  • теплые полы, бойлеры (водонагреватели), котлы;
  • обнаружение отсутствия или наличия жидкости;
  • ограничители тока;
  • мониторинг t° в автомобилях и прочих агрегатах.

Если обобщить, то это такие направления по температуре:

  • измерение;
  • контроль, управление, связанные с t°;
  • компенсационные процессы.

Датчик NTC в газовом котле

Примеры применения на практике:

  • различные терморегуляторы, термостаты для окружающей среды в холодильниках, бойлерах, для кабельных стяжек, поверхностей нагревательных конструкций;
  • термометры различных сред (жидкости, газы), включая воздух в комнатах;
  • нагреватели устройств 3D печати (для контроля рабочих площадок, чтобы материал не прилипал к ним);
  • автодвигатели, моторы различного типа, включая электрические (предотвращение перегрева);
  • печи (предотвращение пригорания, сжигания готовящейся еды).

NTC в газовом котле

При установке пленочных теплых полов выносные сенсоры NTC закладывают в гофротрубу, например, стандартно Ø 16 мм, прямо под одной из нагревательных ИК полос на сегменте наименьшей теплоотдачи (под ковриками, мебелью на коротких ножках).

Датчик NTC стиральной машины

Детекторы NTC можно разделить на 3 группы в зависимости от того, какая их электрохарактеристика важная для определенных целей.

Для каких целей значимы определенные характеристики

Характеристика Где используется
Сопротивление-температура Для приложений, приборов, для работы которых значимо соотношение температура/сопротивление. Это устройства для замеров t°, контроля, управления и компенсации, некоторых других связанных физических процессов. На термисторе поддерживают как можно более низкий ток, чтобы максимально уменьшить самонагрев такого зонда.
Текущая временная Приборы с временной задержкой, ограничением пусковых токов, предупреждение перегрузок, перенапряжений и прочего. Характеристика, связанная с теплоемкостью, диссипацией датчика ntc. Схема полагается на терморезистор, нагревается из-за тока на ней, в определенный момент появляются изменения.
По напряжению Для устройств, базирующихся на характеристиках напряжения, тока термических резисторов. Это приборы мониторинга условий окружающей среды, параметров на схеме, которые инициируют изменения рабочей отметки на заданной кривой цепи. Также для ограничения токов, температурной компенсации, измерений t°.

Симптомы поломки термистора

Терморезисторы обычно находятся в поддоне посудомойки. Многие пользователи задаются вопросом: какие признаки указывают на проблему с температурным датчиком? Самые распространенные симптомы — полное отсутствие нагрева или наоборот, чрезмерный подогрев воды. Вне зависимости от выбранного температурного режима, вода может нагреваться даже до кипения.

Температура корпуса машинки также возрастает, при открывании дверцы из нее идет горячий пар. В данном случае датчик NTC по какой-то причине не срабатывает, поэтому электронная плата вовремя не отключает ТЭН.

Современная бытовая техника поддерживает функцию автоматической диагностики поломок. К примеру, в посудомоечных машинах Miele на неисправность датчика температуры указывают ошибки F01 и F02 на дисплее.

Обозначение на схеме

Обозначение на схеме NTC и PTC

На схемах NTC обозначается прямоугольником (пустым) перечеркнутым косой линией внизу с горизонтальной ножкой, также есть значок «t°» с минусом. У позисторов «+».

Другой вариант обозначения — схематическое изображение спирали (наподобие зубчиков кардиограммы), перечеркнутое косой линией с тем же значком температуры:

Схемы, подключение

Схемы применяются для самоделок и сборок. Данный вопрос, как и исчисления при подборе, — отдельная большая тема, поэтому опишем лишь основы, чтобы сориентировать читателя.

Схемы подключения термистора

Схема для ATmega и Arduino (потребуется также программирование):

Схема подключения NTC для Arduino

В сборке ниже использован термистор TH10K и резистор 10 кОм в качестве R(баланс):

Схема с термисторов TH10K

Проверка, замена температурных датчиков NTC

Сама установка элементарная — датчик втыкается в посадочные гнездо, подсоединяются жилы его кабеля на клеммы, также проводки можно соединить скруткой, пайкой, обжимкой. Обычно проводки питания заходят на плату терморегулятора, термостата.

Ниже на фото замена датчика для измерения температуры в комнате с 5-метровым кабелем для котла отопления. Управление и настройка осуществляется терморегулятором, он может быть в комплекте агрегата или докупается отдельно.

Замена датчика температуры котла отопления

Поломки, диагностика, ремонт

Проверка NTC мультиметром

Датчики NTC обычно ломаются из-за влияний среды, например, в котлах, бойлерах на них налипает накипь, внутрь попадает теплоноситель.

Проверка состоит в замере мультиметром сопротивления при определенной температуре и в сравнении результата со спецификацией. В нашем случае 2 тестируемые датчики на фото ниже исправные, R около 10 кОм, что соответствует примерно +25° C (температура помещения, где находятся изделия).

Замер сопротивлений NTC

Датчик положили на металлическую гирьку для охлаждения, видим, что сопр. при понижении t° растет (показатель на фото соответствует около +21). На втором фото сенсор сняли с охлаждения — R падает при повышении t°.

Замер сопротивлений NTC

Итак, для проверки потребуется термометр, мультиметр и таблица зависимости температуры, которую можно скачать в сети для конкретных моделей датчиков для имеющейся марки котла, холодильника и прочего, пример (правая графа — Омы, левая — °C):

Зависимость температуры и сопротивления NTC в холодильнике

Разновидности симптомов поломки:

  • если на датчике нет никакого сопротивления, это означает обрыв;
  • если R сильно отличается от спецификации — внутренняя поломка самого термистора;
  • сопр. соответствует температуре, но в каком-то интервале детектор начинает врать или вообще перестает измерять. Тогда котел тоже уходит в аварийный режим.

График сопротивления и температуры NTC

Признаки поломки элемента на котле (подобные и на всех бытовых приборах):

  • сразу (неск. сек.) после включения, активации помпы уходит в аварийный режим;
  • после сброса ошибки все повторяется;
  • после открытия крана горячей воды котел выдает ошибку. Скорее всего, сломан сенсор на патрубке для теплой жидкости;
  • внезапная остановка;
  • несоответствие выдаваемой температуры настроенным значениям, прибор может постоянно нагревать (пока не сработает ограничение, предохранение от перегрева);
  • скачки t° или вообще нет нагрева/охлаждения.

Как подключить датчик для замера

NTС датчик, а тем более его терморезистор, не ремонтируется — надо заменить на аналогичный. Исключение составляют случаи, когда закисли контакты, появилась накипь, и это причина поломки, тогда ножки элементов зачищаются.

Для приборов и оборудования (холодильники, стиралки, котлы, автомобили) такие изделия продаются в спецмагазинах, сервисных центрах.

Желательно иметь в запасе заведомо исправную деталь, чтобы провести диагностику со 100 % точностью. Потребуется всего лишь подключить новый термистор и посмотреть, как будет работать агрегат.

Почти всегда, когда котел, бойлер, пол включается, то есть сама электросистема исправная, но наблюдаются странности, некорректности по работе, связанной с температурой причина в термодатчике. Его проверяют в первую очередь, тем более, что процедура простая. Есть также приборы с самодиагностикой — выдают на дисплее, светодиодами, звуком код ошибки, тогда определить неисправность сенсора еще легче.

Возможные следующие шаги

Всё в данной статье показывает довольно простой способ измерения температуры с помощью дешевого термистора. Есть еще пара способов улучшить схему:

  • добавить небольшой конденсатор параллельно выходу делителя. Это стабилизирует напряжение и может даже устранить необходимость усреднения большого количества выборок (как было сделано в коде) – или, по крайней мере, мы сможете усреднять меньшее количество выборок;
  • использовать прецизионные резисторы (допуск меньше 1%), чтобы получить более предсказуемые измерения. Если вам критична точность измерений, имейте в виду, что самонагревание термистора может повлиять на измерения; в данной статье самонагрев не компенсируется.

Конечно, термисторы – это только один из датчиков, используемых для измерения температуры. Другой популярный выбор – это микросхемы датчиков (пример работы с одной из них описан здесь). В этом случае вам не придется иметь дело с линеаризацией и сложными уравнениями. Два других варианта – это термопара и инфракрасный тип датчика; последний может измерять температуру без физического контакта, но он уже не так дешев.

Как проверить температурный датчик NTC в посудомоечной машине?

Как проверить датчик температуры NTC в посудомоечной машине?

Современные посудомоечные машины оснащены электронным управлением с дисплеем и сетью чувствительных датчиков. Это позволяет добиться высокой эффективности мойки при рациональном использовании ресурсов (воды, электроэнергии, моющих средств). Посудомойке можно доверить даже изделия из стекла, фарфора, керамики и других хрупких материалов. К несчастью, даже качественная техника со временем может сломаться. Проблемы с нагревом воды — распространенная причина обращения в сервисные центры.

Виды термостатов

Эти устройства служат для поддержания постоянной температуры окружающей среды (воды или воздуха). Термостаты повсеместно используются в бытовой технике, включая посудомоечные машины. Они необходимы для контроля температуры нагревания воды на разных режимах мойки. Различают 3 вида температурных датчиков: газонаполненные, биметаллические и термисторы (терморезисторы). Газонаполненные термостаты включают в себя чувствительный сенсор, баллон с трубкой, заполненной фреоном, и управляющее устройство. Когда повышается температура воды, хладагент расширяется и давит на пластину, которая размыкает контакты и выключает трубчатый электронагреватель.

Принцип работы биметаллических датчиков основан на замыкании (размыкании) контакта в процессе нагрева и остывания пластины, сделанной из 2 металлов с разным температурным коэффициентом расширения. Однако в большинстве современных посудомоек используются термисторы. Материал этих датчиков при повышении температуры измеряемого вещества меняет удельное сопротивление, подавая сигнал на модуль управления. Электронная плата, в свою очередь, отключает ТЭН. Конструктивно терморезисторы гораздо надежнее аналогов, поскольку лишены механической схемы.

Чем отличаются датчики температуры NTC и PTC?

Оба вида термисторов используются для контроля температуры, их работа основана на изменении удельного сопротивления материала при нагревании. Но реагируют на изменение внешних условий они по-разному. Сопротивление датчика NTC (Negative Temperature Coefficient) уменьшается при повышении температуры, а при понижении — увеличивается. Поэтому терморезистор NTC также называют «термометром сопротивления» с отрицательным температурным коэффициентом.

Датчик PTC (Positive Temperature Coefficient) действует наоборот: увеличивает сопротивление при повышении температуры, а при понижении оно уменьшается. Технология PTC используется в приборах, где требуется поддержание отрицательной температуры без размораживания (авторефрижераторы и промышленные морозильники). Датчики NTC намного более распространены, они устанавливаются в стиральных и посудомоечных машинах, кухонных плитах, сушильных шкафах и других устройствах.

Как проверить датчик температуры NTC в посудомоечной машине?

Симптомы поломки термистора

Терморезисторы обычно находятся в поддоне посудомойки. Многие пользователи задаются вопросом: какие признаки указывают на проблему с температурным датчиком? Самые распространенные симптомы — полное отсутствие нагрева или наоборот, чрезмерный подогрев воды. Вне зависимости от выбранного температурного режима, вода может нагреваться даже до кипения.

Температура корпуса машинки также возрастает, при открывании дверцы из нее идет горячий пар. В данном случае датчик NTC по какой-то причине не срабатывает, поэтому электронная плата вовремя не отключает ТЭН.

Современная бытовая техника поддерживает функцию автоматической диагностики поломок. К примеру, в посудомоечных машинах Miele на неисправность датчика температуры указывают ошибки F01 и F02 на дисплее.

Как проверить датчик NTC?

Для этого вам потребуются инструменты для разборки посудомойки (и мебели, если техника встроенная), цифровой мультиметр с функцией термометра и емкость для горячей воды. Датчик NTC проверяется на изменение сопротивления при понижении и повышении температуры (при нагреве удельное сопротивление должно уменьшаться). Для диагностики термистора к нему присоединяются щупы мультиметра и измеряется сопротивление при разных температурах. Нормальные значения составляют: около 6000 Ом при +20 градусах, 1350 Ом при +50 градусах и примерно 1200 Ом при +60 градусах. Не следует забывать, что у всех терморезисторов есть поле допуска (в районе 5-10 %). То есть небольшие отклонения от указанных параметров являются нормой.

Для определения работоспособности датчика NTC необходимо выполнить всего 2 замера сопротивления: первый при комнатной температуре (около 20 градусов), а второй — при нагреве примерно до 50-60 градусов (для этого термистор помещают в емкость с горячей водой). Помните, что датчик не мгновенно достигает температуры воды, для этого должно пройти определенной время (примерно 4-5 минут). Если сопротивление падает с увеличением температуры, то все в порядке.

Если сопротивления на терморезисторе вообще нет, это означает, что он перегорел и нуждается в замене. Датчики NTC отличаются надежностью и довольно редко выходят из строя. Причиной поломки может быть заводской брак, механическое повреждение или естественный износ материалов в процессе эксплуатации.

Замена термистора

В случае неисправности датчика NTC посудомойка Miele сразу отреагирует на это, оповестив пользователя. Когда нагрев невозможен из-за проблем с терморезистором (F01), будут заблокированы функции подогрева воды и ополаскивания, а в конце мойки на дисплее загорится код F01 и в течение 2 минут прозвучит звуковой сигнал. Если вода не нагревается из-за отсутствия сигнала в цепи термодатчика, машина пропустит этапы нагрева и полоскания, по завершению программы выдаст ошибку F01 и акустический сигнал.

Последовательность работ по замене термистора выглядит следующим образом. Посудомойка отключается от электросети и перекрывается подача воды, после чего сливаются остатки жидкости из поддона. Встроенную модель необходимо предварительно вытащить из мебели. Затем откручиваем винты и снимаем нижнюю панель, чтобы добраться до ТЭНа (датчик обычно встроен в его основание). После этого с помощью ключа ослабляем крепление ТЭНа, предварительно сфотографировав схему подключения проводов. На следующем этапе снимаем терморезистор и измеряем сопротивление.

Если датчик неисправен, устанавливаем на его место новую деталь и подключаем провода. Затем собираем машинку и проверяем, работает ли нагрев с новым термистором. В случае, когда термодатчик и ТЭН исправны, а нагрев воды не происходит, причина может быть в модуле управления. Ремонтом электронного блока должен заниматься квалифицированный специалист. Если вы не уверены в своих силах, логичным решение будет обратиться за помощью в авторизованный сервисный центр.

Как проверить датчик температуры NTC в посудомоечной машине?

Модельный ряд посудомоек Miele

Немецкий бренд предлагает вашему вниманию многофункциональные посудомоечные машины, рассчитанные на загрузку от 9 до 14 комплектов посуды. В ассортименте представлены встраиваемые и отдельностоящие (например, Miele PG8130) модели. Приборы могут встраиваться в мебельный гарнитур частично (G7310 SCi) или полностью (G7150 SCVi). Выпускаются узкие и полноразмерные посудомойки (шириной 45 и 60 см соответственно).

Интуитивно-понятный интерфейс с дисплеем открывает доступ к большому количеству автоматических программ мойки (до 13) и другим востребованным опциям. Машины отличаются продуманным внутренним зонированием, низким потреблением воды и бытовой химии. Посудомойки «Миле» работают тихо и экономично, класс энергоэффективности многих моделей даже превосходит A+++.

Техника премиум-класса

Посудомоечные машины и другие устройства изготавливаются в Германии с использованием высококачественных материалов и передовых технологий. На нашем сайте вы найдете огромное количество встраиваемых и отдельностоящих решений для кухни и дома. Все приборы оснащаются Wi-Fi модулем для объединения в домашнюю сеть (технология Miele@home). Вы сможете управлять их работой удаленно, с ноутбука или смартфона.

Надежная техника с современным дизайном как нельзя лучше подчеркнет высокий социальный статус и безупречное чувство стиля своего владельца. Официальная гарантия на всю продукцию «Миле», заказанную в фирменном интернет-магазине, составляет 24 месяца. Осуществляется доставка товаров по Москве, Московской области (курьерской службой) и другим регионам России (транспортными компаниями).

Посудомоечная машина Miele G7590 SCVi K2O

Что такое NTC термисторы

Термисторы NTC- это особый тип резистора, который имеет отрицательный температурный коэффициент. Это его основная особенность, которая понятна из самого слова «термо». Его внутреннее сопротивление сокращается по мере роста температуры. Обычно, эти радиодетали используются в температурных датчиках из-за своих токоограничивающих свойств.

Величина этого коэффициента у термистора выше в несколько раз, чем у силисторов – температурных датчиков, изготовленных на кремниевой основе и более чем на порядок выше( то есть в 10 раз), чем у датчиков RTD. Рабочий диапазон термистора лежит в диапазоне от -50 до +200 градусов. В данной статье описаны все особенности и отличия, устройство и схема подключения этой радиодетали, а также как и где их можно применять. Статья также содержит видеоролик и одну научную статью, посвященную рассматриваемому вопросу.

Различные термисторы

Различные термисторы

Характеристики термисторов NTC

В отличие от RTD (температурные детекторы сопротивления), изготовленные из металлов, термисторы NTC обычно изготавливаются из керамики или полимеров. Различные используемые материалы приводят к различным температурным откликам, а также к другим характеристикам. Хотя большинство термисторов NTC обычно подходят для использования в температурном диапазоне от -55 ° C до 200 ° C, где они дают наиболее точные показания, существуют специальные семейства термисторов NTC, которые могут использоваться при температурах, приближающихся к абсолютному нулю (-273,15 ° C), а также те, которые специально предназначены для использования выше 150 ° C. Температурная чувствительность датчика NTC выражается как «процентное изменение на градус C». В зависимости от используемых материалов и особенностей производственного процесса типичные значения чувствительности к температуре колеблются от -3% до -6% на ° С.

Термистор NTC – термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур.

Три различных термистора NTC

Три различных термистора NTC

Характеристическая кривая NTC

Как видно из рисунка, термисторы NTC имеют гораздо более крутой наклон сопротивления-температуры по сравнению с RTD платинового сплава, что приводит к лучшей температурной чувствительности. Тем не менее, RTD остаются наиболее точными датчиками, точность которых составляет ± 0,5% от измеренной температуры, и они полезны в температурном диапазоне от -200 ° C до 800 ° C, что намного шире, чем у датчиков температуры NTC.

Основные критерии NTC термисторов

Таблица основных характеристик NTC термисторов.

Сравнение с другими датчиками температуры

По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами. Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты.

Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.

  • Температурный диапазон:приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.
  • Относительная стоимость:относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.
  • Постоянная времени:приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.
  • Стабильность:способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.
  • Чувствительность:степень реакции на изменение температуры.

Эффект самонагрева

Эффект самонагрева — это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений. Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д. Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.

Теплоемкость

Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.

Выбор и расчет кривой

Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах.

[stextbox зависимость между сопротивлением и температурой (кривая R-T) сильно нелинейна, в практических схемах системы должны использоваться определенные приближения.[/stextbox]

Приближение первого порядка

Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что:

формула приближения первого порядка: dR = k * dT

Где k — отрицательный температурный коэффициент, ΔT — разность температур, ΔR — изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур.

Другое уравнение дает удовлетворительные результаты с точностью ± 1 ° C в диапазоне от 0 ° C до + 100 ° C. Он зависит от единственной константы материала β, которая может быть получена путем измерений. Уравнение можно записать в виде:

Бета-уравнение: R (T) = R (T0) * exp (бета * (1 / T-1 / T0))

Где R (T) — сопротивление при температуре T в Кельвине, R (T0) является точкой отсчета при температуре T0. Бета-формула требует двухточечной калибровки и обычно не более чем ± 5 ° C по всему полезному диапазону термистора NTC.

Наилучшим приближением, известным на сегодняшний день, является формула Штейнхарта-Харта, опубликованная в 1968 году:

Уравнение Штейнхарта для точного приближения: 1 / T = A + B * (ln (R)) + C * (ln (R)) ^ 3.

Где ln R — естественный логарифм сопротивления при температуре T в Кельвине, а A, B и C — коэффициенты, полученные из экспериментальных измерений. Эти коэффициенты обычно публикуются поставщиками термисторов в составе таблицы данных. Формула Штейнхарта-Харта, как правило, составляет около ± 0,15 ° С в диапазоне от -50 ° С до + 150 ° С, что является большим для большинства применений. Если требуется высокая точность, диапазон температур должен быть уменьшен, а точность лучше, чем ± 0,01 ° C в диапазоне от 0 ° C до + 100 ° C.

Термисторы

Термисторы

Выбор правильного приближения

Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.

Конструкция и свойства термисторов NTC

Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.

Терморезисторы

Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус. Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие. Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.

Термисторы с различными техническими характеристиками

Термисторы с различными техническими характеристиками

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от +.

Термистор на схеме

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры. Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения.

[stextbox более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.[/stextbox]

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Терморезисторы NTC с инкапсулированным покрытием

Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.

Типичные области применения

Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.

Характеристика сопротивления-температуры

Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения

Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

Одинаковые термисторы

Одинаковые термисторы

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа. Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей.

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *