Pb free что это
Перейти к содержимому

Pb free что это

SamsPcbGuide, часть 10: Технологии — пайка бессвинцовых компонентов

Данная статья – первая статья о технологиях сборки печатных плат. Последний семинар от PCB SOFT был посвящён проектированию, обеспечивающему технологичность изготовления печатной платы (англ. DFM, design for manufacture). Был поднят вопрос о целесообразности реболлинга бессвинцовых BGA-компонентов для высоконадёжных применений. И организаторы семинара, и участники уверенно говорили о том, что эту трудоёмкую операцию никто не выполняет и с проблемами никогда не сталкивался. В данной статье я критически рассмотрю этот вопрос и постараюсь показать опасность таких «общепринятых в отрасли» мнений и о пользе метода универсального сомнения старины Рене Декарта.

В 2006 году была принята директива RoHS, ограничивающая применение свинца и других признанных вредными элементов в потребительской и промышленной электронике. Это привело к тому, что большинство производителей электронных компонентов перешло на бессвинцовые корпуса, а заказ компонентов в исполнении со свинцовосодержащими выводами не всегда доступен. При этом технология пайки с применением припоев с высоким содержанием свинца никуда не делась (в ГОСТ Р 56427-2015 она, к слову, названа традиционной). Выбор припоя и/или паяльной пасты остаётся за разработчиком печатной платы, поэтому, если выбор сделан в пользу свинцовосодержащего припоя, возникает проблема пайки бессвинцовых компонентов (англ. mixed-alloy process), особенно в корпусах BGA-типа (соразмерность долей припоев). Основной вопрос заключается во влиянии смешения припоев на надёжность соединения. Вышеуказанный ГОСТ даёт однозначный ответ:

Для РЭС класса С по ГОСТ Р МЭК 61191-1-2010 недопустим отказ, аппаратура должна функционировать в любое время включения, в том числе в жёстких условиях. Эти требования относятся не только в аппаратуре военного и космического применения, надёжными должны быть, например, и ответственные промышленные системы.

Откуда в ГОСТе возникло такое требование? Это вопрос к разработчикам стандарта, которые, скорее всего, перевели зарубежный стандарт, которому, вероятно, уже 5-10 лет, а откуда требование возникло там, вообще не разобраться. И при этом участники семинара, о котором я писал в начале, представляющие срез отечественной электроники именно ответственного применения, отрицательно качали головой головой при слове «реболлинг». Возможно, у них есть положительный опыт, я не спорю, я просто против обобщений и уверенности, базирующихся на невежстве. Кто их них (и из вас, читатели) читал стандарт? А те, кто следуют стандарту, уверены, что данная операция в техпроцессе обязательна в их конкретном случае? Сама операция не снижает надёжность? Кто проводил экспериментальное исследование надёжности используемой технологии поверхностного монтажа? Потому что всё дело в эксперименте, в правильно поставленном эксперименте. Другой источник информации – анализ доступных данных от сторонних исследователей. Ниже я приведу обобщение нескольких статей на тему надёжности пайки бессвинцовых компонентов.

Температура плавления (ликвидус, TL) бессвинцовых припоев на 30-40 o C выше, чем свинцовосодержащих, поэтому, в зависимости от термопрофиля пайки и распределения теплового поля на печатной плате, можно получить различную степень смешивания в паяном соединении (рис. 1). Наличие зон концентрации и неоднородностей как самих металлов, так и интерметаллидов в припойном соединении (рис. 2) снижает его долговременную надёжность, так как такие макроструктуры являются наиболее вероятными местами образования и распространения трещин (особенно при низких температурах). Хотя в большинстве статей из списка литературы приводится анализ микрофотографий сечения соединений, единой теории причины образования трещин не прослеживается.

В таблице 1 представлены сводные результаты исследовательских работ, в основе которых лежал следующий типовой эксперимент: для фиксированного сочетания припоев BGA-компоненты (в некоторых экспериментах это нефункциональный макет компонента, в котором есть только межсоединения выводов для построения последовательной цепи), запаянные при различных термопрофилях, термоциклировались до возникновения функционального сбоя или неконтактирования. Также исследовалась зависимость от размера корпуса, в ряде работ изучалось влияние расположения компонента на печатной плате, влияние адгезива типа «underfill», финишного покрытия печатной платы и др.

В статьях нет явных указаний, выполнялся ли реболлинг BGA-компонентов для получения свинцовосодержащих шариков, но пониженные значения надёжности для этих случаев позволяет предположить, что реболлинг может приводить к снижению надёжности. В статье, посвящённой реболлингу [8], сообщается о положительных результатах термоциклирования, однако заявленная продолжительность эксперимента в 24 часа не могла обеспечить достаточного количества циклов. Поэтому вопрос снижения надёжности в результате реболлинга остаётся открытым, а в качестве базового сценария рекомендуется смешанная пайка с экспериментальным подбором термопрофиля.

Призываю отнестись к представленным данным с универсальным сомнением и поделиться в комментариях своим экспериментальным опытом.

Особенности применения электронных компонентов без содержания свинца (Pb-free) (Часть 2.)

Прежде всего, следует развеять наиболее часто встречающееся среди разработчиков и производителей электронной техники заблуждение, что компоненты, не содержащие свинца, требуют специальных припоев и технологий пайки. В данном вопросе все ведущие производители единодушны – большинство Pb-free компонентов полностью совместимы со стандартными технологиями пайки оловянно-свинцовыми припоями. Исключения из этого правила – микросхемы в корпусах Ball Grid Array (BGA) и с редко встречающимися покрытиями выводов с использованием висмута (материал покрытия выводов конкретного электронного компонента, как правило, указан на сайте производителя). Более того – совместимость с требованиями RoHS, равно как и знак Pb-free вообще не означают, что элемент можно паять бессвинцовыми припоями, т.к. большинство из них имеют повышенную температуру плавления. Этот факт отдельно оговаривается в документации на элемент (см. максимально допустимую температуру пайки). Использовать технологии пайки, не использующие свинцово-содержащие припои, вам однозначно придётся лишь в том случае, если продукция должна соответствовать требованиям директивы RoHS. В таблице 2 приведены различные комбинации материалов выводов и технологий пайки с указанием возможных проблем и несовместимостей.

Таблица 2. Комбинации материалов выводов и технологий пайки и их совместимость

Тип корпуса Технология пайки 1 Покрытие выводов Возможные проблемы
С выводами Традиционная, оловянно-свинцовый припой Олово/свинец Нет
Чистое олово (Pb-free) Нет
Золото- палладий- никель (Au-Pd-Ni) (Pb-free) Нет
Сплав олова и висмута (Pb-free) Плохое качество пайки из-за реакции со свинцом
Высокотемпературная, бессвинцовый припой Олово/свинец Присутствие висмута (Bi) в паяльной пасте может вызвать реакцию со свинцом, что приведёт к плохому качеству пайки. Вероятность расслоения под воздействием высоких температур.
Чистое олово (Pb-free) Нет
Золото- палладий- никель (Au-Pd-Ni) (Pb-free) Нет
Сплав олова и висмута (Pb-free) Нет
BGA
CSP
Традиционная, оловянно-свинцовый припой Олово/свинец Нет
Сплав SnAgCu (Pb-free) Требуется повышение температуры пайки, возможно преждевременное старение паек и непропай
Высокотемпературная, бессвинцовый припой Олово/свинец Вероятны дефекты
Сплав SnAgCu (Pb-free) Нет
Примечание: 1 Стандартные температурные «профили» для традиционной технологии и высокотемпературной технологии с использованием бессвинцовых припоев приведены в стандарте JEDEC [4]. Ещё раз обращаем ваше внимание – совместимость со стандартом Pb-free не означает совместимости с высокотемпературной технологией пайки!

Как видно из таблицы, традиционная технология пайки с использованием оловянно-свинцовых припоев полностью совместима с новыми Pb-free компонентами (за исключением интегральных микросхем в корпусах BGA и редко используемых покрытий с использованием висмута). Интегральные микросхемы с многослойным покрытием выводов золотом, палладием и никелем (Au-Pd-Ni) (этот материал выбран в качестве основного, к примеру, фирмами Texas Instruments и ST Microelectronics) имеют наименьшую вероятность несовместимости с технологией пайки. В таб. 3 приведен краткий обзор наиболее популярных припоев для традиционной и Pb-free технологий.

Таблица 3. Основные типы припоев, используемых в электронной промышленности и их особенности

Название Состав Особенности
BiSn 58% висмут, 42% олово Низкотемпературный. Точка плавления 138°C; слабая прочность пайки, особенно при термоциклировании; совместим с выводами, покрытыми чистым оловом; сравнительно низкая стоимость
SnPb («традиционный») 60% олово, 40% свинец Общего применения; точка плавления 183°C; совместим с выводами, покрытыми чистым оловом; блестящий; низкая цена
SAC 96.5% олово, 3.0% серебро, 0.5% медь (содержание меди может незначительно отличаться) Наиболее популярный Pb-free припой, совместим с традиционными оловянно-свинцовыми покрытиями и покрытием чистым оловом; точка плавления 219°C; матовый
SnAg 96.5% олово, 3,5% серебро Точка плавления 221°C; совместим с выводами, покрытыми чистым оловом; не совместим с традиционными оловянно-свинцовыми покрытиями
SnCu 99.3% олово, 0.7% медь Совместим с традиционными оловянно-свинцовыми покрытиями и покрытием чистым оловом; точка плавления 227°C; матовый; низкая стоимость; невысокие механические параметры
Sn Олово > 98% Cовместим с традиционными оловянно-свинцовыми покрытиями и покрытием чистым оловом; точка плавления 232°C; блестящий; не переносит эксплуатации при низких температурах
SnPb (высокотемпературный) 5% олово, 95% свинец Cовместим с традиционными оловянно-свинцовыми покрытиями и покрытием чистым оловом; используется для корпусов типа Flip-Chip и BGA; точка плавления ок. 300°C;

К сожалению, практически все припои, имеющие температуру плавления, близкую к 183°C (температура плавления традиционного оловянно-свинцового припоя) имеют серьёзные недостатки. В эту группу входят припои с использованием индия (основной недостаток – высокая цена), цинка (основной недостаток – проблемы с коррозией) и висмута (несовместим со свинцом, низкая прочность). Основываясь на результатах многолетних исследований, крупнейшие ассоциации производителей электронной техники (в частности, INEMI) рекомендуют в качестве альтернативы традиционным припоям сплавы SAC для пайки в печке и SnCu для пайки «волной»[5]. Основной проблемой при переходе на данные типы бессвинцовых припоев является более высокая температура плавления, что, в свою очередь, требует изменения профилей пайки. Стандартные профили пайки для Lead-free технологии приведены в стандарте JEDEC [4].

  • Температуру жала следует повысить до 343°C (по сравнению с 315°C для оловянно-свинцовых припоев)
  • Для защиты жала паяльной станции от окисления следует более тщательно очищать его и, по возможности, держать жало полностью покрытым припоем
  • Использовать разные жала для пайки оловянно-свинцовыми и Lead-free припоями во избежание их смешивания
  • Для соблюдения необходимых температурных профилей следует увеличить время разогрева и скорость охлаждения (жало следует убирать быстрее)

При выполнении этих рекомендаций и достаточной квалификации монтажников, качество ручной пайки Lead-free припоями соответствует наиболее высокому классу III требований IPC [8].

Что касается флюсов, клеев, смывок и других вспомогательных веществ для пайки, подавляющее их большинство может быть использовано как в традиционной технологии, так и при высокотемпературной пайке Lead-free припоями. То же касается и технологического оборудования (для нанесения паяльных паст и т.д.).

Другие аспекты

Важным моментом является тот факт, что повышенная температура пайки приводит к более высокой чувствительности компонентов к влажности. Это связано с тем, что повышение температуры пайки всего на 25°C приводит к примерно 1,5-кратному повышению давления водяного пара внутри компонента, что может вызвать различные механические дефекты. Чувствительность электронных компонентов к влажности стандартизирована [4] и выражается в так называемом уровне чувствительности к влажности (MSL — Moisture Sensitivity Level). При переходе на Lead-free технологии производители стремятся сохранить уровень MSL, однако это получается не всегда. В ряде случаев компоненты, выполненные по новой технологии, имеют более низкий уровень MSL, что приводит к ужесточению требований при их хранении (разумеется, лишь в случае использования высокотемпературных профилей пайки).

Припои, не содержащие свинца, как правило, имеют более высокий коэффициент поверхностного натяжения, что приводит к увеличению числа дефектов типа «tombstone» (поднятие компонента при пайке, см. Рис. 2).


Рис. 2 Дефект типа «поднятие компонента при пайке» (tombstone)

Кроме этого, отмечается ухудшенная смачиваемость выводов припоем при пайке выводных компонентов и увеличение числа дефектов типа «voids» (полости, рис. 3) при пайке микросхем в корпусе BGA, особенно при использовании плохо совместимых комбинаций припоя и материала «шариков».


Рис. 3 Дефект типа «полость» (voids) при пайке микросхем в корпусе BGA

В то же время, при чётком соблюдении требований к профилям пайки, большинством исследователей отмечается в целом более высокое качество пайки при использовании Lead-free технологий. Следует лишь иметь в виду, что характер наиболее часто встречающихся дефектов при переходе на новые технологии может измениться, что потребует адекватных изменений в системе контроля качества. Особенно это касается компонентов, выводы которых имеют покрытие Au-Pd-Ni, визуальный контроль качества пайки которых имеет существенные отличия.

Ещё одним немаловажным аспектом в наших климатических условиях является тот факт, что при температурах, ниже 13°C происходит фазовое превращение олова из b- в a- фракцию, известное, как «оловянная чума». В связи с этим, некоторые производители ограничивают срок хранения компонентов с покрытием из чистого олова при пониженных температурах, также следует учитывать этот эффект при использовании припоев с высоким содержанием олова. Так как «оловянная чума» сильно сказывается лишь при температурах ниже -40°C (при около-нулевых температурах процесс трансформации занимает многие годы) её влияние на Lead-free компоненты на данный момент изучено слабо [6]. Вероятно, это является причиной того, что практически никто из производителей на данный момент не перевёл на Lead-free технологии компоненты военного (Military и Aerospace) исполнения.

Следует также отметить проблему несовместимости некоторых традиционных электронных компонентов с Lead-free технологиями пайки. В первую очередь, это электролитические конденсаторы, большинство из которых имеет максимально допустимую температуру пайки в 225°C. Также следует обращать внимание на максимально допустимую температуру пайки моточных компонентов (дроссели, трансформаторы, реле и т.д.). В таких случаях можно рекомендовать в качестве временного решения ручную пайку термочувствительных элементов после пайки в печке, а в качестве долговременного – переход на более высокотемпературные компоненты (например, танталовые и керамические конденсаторы взамен электролитических).

У компонентов с покрытием чистым оловом существует проблема роста «усов» (tin whiskers) на выводах, теоретически способных вызвать замыкание. На Рис. 4 приведена фотография такого дефекта при увеличении 3000х [7].


Рис. 4 Дефект типа «усы» (tin whiskers)

К счастью, хотя бы этот вопрос производители компонентов взяли под свой контроль – считается, что рост «усов» в большей степени зависит от особенностей технологического процесса покрытия выводов, не зависящего от конечного пользователя.

Выводы

Интегральные микросхемы и пассивные компоненты без содержания свинца (Lead-free, Pb-free) составляют всё больший процент среди электронных компонентов, в дальнейшем следует ожидать полного отказа от свинца в электронной промышленности. Экспортёрам продукции в страны ЕЭС и др. страны в самое ближайшее время придётся соблюдать требования директивы Евросоюза о запрещении использования опасных химических элементов в электронной продукции.

Подавляющее большинство компонентов без использования свинца совместимы со стандартными технологиями пайки оловянно-свинцовыми припоями (за исключением микросхем в корпусах BGA). В то же время, не все компоненты, произведенные по традиционной технологии совместимы с высокотемпературными технологиями пайки Lead-free припоями.

Использование наиболее популярных бессвинцовых припоев (сплав SAC) требует изменения профиля пайки (повышения температуры). Профили пайки стандартизированы JEDEC.

Высокотемпературные Lead-free технологии пайки требуют более жёсткого контроля параметров (температуры и скорости её изменения). В первую очередь, это касается инфракрасных печек, где параметры контролируются не так тщательно, как в конвекционных. Кроме этого, в некоторых случаях требуется модификация систем контроля качества. Также при изменении технологии пайки следует обращать внимание на условия хранения компонентов, в частности, учитывать уровень чувствительности к влажности (MSL). C другой стороны, при использовании Lead-free технологий повышается общее качество пайки, в частности, механические характеристики.

При выполнении ряда рекомендаций ручная пайка высокотемпературными Lead-free припоями обеспечивает все необходимые требования по качеству.

Бессвинцовые припои

Припой без свинца

Ликвидируем безграмотность в таком вопросе, как бессвинцовые припои.

Припои, в составе которых присутствует свинец, называют свинцовыми или свинцовосодержащими.

Стоит отметить тот факт, что соединения свинца вредны для здоровья. В том числе и по этому, в последнее время всё активнее применяются не содержащие свинец припои.

В Европе и США с недавних времён, а точнее с июля 2006 года директивой RoHS принят запрет на использование свинец-содержащих припоев в производстве электроники. Под раздачу также попали такие химические элементы, как кадмий, ртуть, шестивалентный хром и некоторые другие. Их содержание в электронных компонентах строго нормировано.

Наверняка Вы уже наблюдали вот такой логотип на корпусе своего ноутбука или другого электронного устройства (см. фото). Он обозначает, что устройство собрано с применением бессвинцовой технологии.

Эмблема RoHS

Эмблема RoHS на корпусе нетбука

Не считайте, что применение бессвинцовых технологий чем-то улучшает потребительские качества электроники. Возможно это и так. Японцы, например, давно занимаются разработкой и внедрением бессвинцовых технологий в производство и, естественно, добились в этом успехов.

Но для тех производителей, которые впервые столкнулись с ограничениями на применение свинца, возникает вопрос переоснащения производства и, как следствие, это удорожает электронную продукцию.

Стоит отметить тот факт, что бессвинцовая технология пайки требует применения соответствующих радиоэлектронных компонентов, адаптированных для пайки припоями без свинца. По сравнению с обычными свинцовыми припоями, они имеют пониженные характеристики по смачиваемости и текучести, требуют соблюдения дополнительных технологических мер при пайке, так как возникает необходимость в выдержке узкой границы термопрофиля.

Известно, что оптимальной температурой при пайке свинец-содержащими припоями считается температура 180 – 230°C. Температура плавления большинства бессвинцовых припоев лежит в интервале 200 – 250°C. Есть и такие, температура плавления которых ниже 180°C.

Припои, не содержащие свинца, дороже обычного свинцово-оловянного. Также вызывает много споров качество пайки бессвинцовыми припоями.

Итак, перейдём ближе к теории.

Для замены свинца в припое применяются такие металлы, как медь (Cu), серебро (Ag), висмут (Bi), индий (In), цинк (Zn) и даже золото (Au).

В изготовлении электроники хорошо зарекомендовал себя трёхкомпонентный сплав олова, серебра и меди (SnAgCu). Процентное соотношение металлов в сплаве может быть разным – до сих пор нет строгого мнения по этому вопросу. Несмотря на это, большую часть в сплаве занимает олово (95-97%). Температура расплавления данного сплава составляет 217-221°C. Чтобы он был пригоден для пайки волной, в него вводят небольшой процент сурьмы (0,5%).

Сплав SnAgCu с добавлением сурьмы (Sb) применяется в изготовлении особо ответственных узлов в оборонной технике и автономных устройствах.

Сплав Температура плавления, °C
Sn96,5/Ag3/Cu0,5 221
Sn95,5/Ag3,8/Cu0,7 217
Sn96,7/Ag2/Cu0,8/Sb0,5 216 — 222

Хорошими качествами обладают припои, в которых роль свинца выполняет серебро (SnAg).

Сплав Температура плавления, °C
Sn96,5/Ag3,5 221
Sn98/Ag2 221 — 226

Наличие в сплаве серебра улучшает механические свойства пайки. Тестами доказано, что припои, содержащие серебро, делают пайку более прочной, чем аналогичные свинцовосодержащие. Кроме того, серебро обладает хорошей проводимостью. Нередко такие сплавы применяются в профессиональной промышленной электронике и системах связи, где механическая надёжность и качество соединения очень важно.

В сплаве Sn42Bi58 вместо свинца используется висмут (его содержание — 58%). За счёт висмута улучшается легкоплавкость (температура плавления 133-140°C), но ухудшается смачиваемость.

Используется в плавких предохранителях, а также при ступенчатой пайке и монтаже деталей и компонентов, чувствительных к высокой температуре.

Припои с содержанием висмута (Bi), индия (In), цинка (Zn) и серебра (Ag).

Сплав Температура плавления, °C
Sn93,5/Ag3,5/Bi3 206 — 213
Sn90,5/Ag2/Bi7,5 207 — 212
Sn89/Bi3/Zn8 189 — 199
Sn70/Bi20/In10 143 — 193
Bi67/In33 107 — 112

Припои с содержанием висмута и индия обладают высокой стоимостью. На поставки этих металлов есть ограничения. Также их не рекомендуют применять в приборах с высокой температурой эксплуатации.

Высокотемпературные припои на основе сурьмы (Sb) и золота (Au).

Сплав Температура плавления, °C
Sn95/Sb5 232 — 240
Sn20/Au80 (Золотой припой) 280

Припой Sn91Zn9 считается высокотемпературным (91% олова и всего лишь 9% цинка). Температура его плавления составляет 195-200°C. Высокую температуру плавления данному сплаву придаёт практически 100% содержание олова, которое также способствует увеличению прочности.

Припои с содержанием цинка заслужили нелучшую славу. Причина в том, что цинк придаёт сплаву повышенную химическую активность и низкую коррозийную стойкость. В связи с этим, припои на основе цинка требуют использования активных флюсов, а это требует обязательной отмывки после пайки. Припойные пасты с содержанием цинка нельзя долго хранить. А пайку ими рекомендуется вести в среде защитного газа.

Наиболее удачным для замены оловянно-свинцового припоя Sn63Pb37 является близкий по свойствам сплав Sn95,5Ag3,8Cu0,7. Он применяется для пайки оплавлением при поверхностном монтаже элементов.

Двухкомпонентный припой Sn99,3Cu0,7 имеет низкую прочность пайки и довольно высокую температуру расплавления в 227°C. По сравнению с оловянно-медными припоями лучшими качествами, как по смачиваемости, так и по прочности, обладают серебросодержащие. Так припой Sn96,5Ag3,5 успешно применяется при сборке специальной аппаратуры. Тесты показали, что он имеет более высокие показатели надёжности по сравнению с аналогичными свинцовыми припоями.

Как видим, есть припои, в которых свинец отсутствует вовсе, и его нет даже в небольшом процентном отношении. Но так ли плох свинец на самом деле?

Свинец, как в виде сплава, так и в чистом виде известен человечеству давно. Использовался для изготовления даже водопровода в Древнем Риме! Да, именно так, хотя его химические соединения опасны для здоровья, он имеет свойство накапливаться в организме.

Свинец довольно дёшев и обладает свойствами, которые придают припою необходимые характеристики. В связи с этим, с помощью свинца и заменяют олово в припое. Свинец устойчив к действию серной кислоты, применяется для опрессовки кабеля. Без свинца не могло бы быть такого важного направления как ядерная энергетика.

Чистым оловом также можно производить пайку, но оно довольно дорого, обладает высокой температурой плавления (231,9°C) и таким нежелательным, но удивительным свойством, как «оловянная чума».

Самое забавное, что принимаются попытки замены свинца на другие компоненты в таких сферах как производство оружия. Ни для кого не секрет, что пули изготавливают, в том числе, и из свинца.

Так что, возможно, в скором времени можно будет сказать, что для уничтожения себе подобных используются боеприпасы безопасные для экологии и здоровья .

Секреты бессвинцовой пайки

1. Евросоюз принял директиву 2002/95/ЕС RoHS (Restriction of Hazardous Substances – запрет вредных веществ). Согласно этому документу, с 1 июля 2006 года начинают действовать ограничения на использование в промышленной электронной продукции и в новой электронной технике некоторых химических материалов, опасных для здоровья и окружающей среды. Среди прочих, действие директивы распространяется и на соединения свинца. Таким образом, запрещается использование свинцовосодержащих припоев.

Вебинар «Решения MORNSUN для промышленных применений: от микросхем до ИП на DIN-рейку» (02.11.2022)

Бессвинцовая пайка Pb free

Даже несмотря на то, что в электронной промышленности используется менее 1% объема всего используемого в промышленности свинца, более того – многие Pb-free припои гораздо токсичнее оловянно-свинцовых, а так же официальный стандарт Green на данный момент отсутствует, ведущие производители выработали общие критерии и собираются их придерживаться в ближайшем будущем. Аналогичные RoHS директивы приняли Китай, Япония и некоторые штаты США.

2. Прежде всего, эта директива коснется практически всех разработчиков и производителей электронной техники и в первую очередь тех, кто экспортирует продукцию в вышеперечисленные страны. Остается очень мало времени, чтобы полностью перейти на выпуск компонентов, не содержащих свинца. В самое ближайшее время крупные фирмы-производители интегральных микросхем — Texas Instruments, AMD, Fairchild Semiconductor, Philips и прочие планируют полностью перейти на бессвинцовые технологии. Так же поступят и производители дискретных полупроводников и пассивных компонентов (ON Semiconductors, Vishay, Samsung Electro-Mechanic). Компоненты, выполненные по традиционной технологии, будут доступны только под заказ. В связи с этим, использование компонентов, не содержащих свинца во всей выпускаемой продукции – это вопрос ближайшего времени для всех производителей электроники. В обозримом будущем данная проблема рано или поздно коснется и всех остальных.

3. Но в сложившейся ситуации, необходимо понимать следующее — мнение о том, что компоненты, не содержащие свинца, требуют особых технологий ручной пайки, не категорично! Такая точка зрения распространена среди разработчиков, производителей электронной техники и специалистов, занимающихся ремонтом. В данном вопросе все ведущие производители единодушны – большинство Pb-free компонентов полностью совместимы со стандартными технологиями ручной пайки оловянно-свинцовыми припоями. И, как раз, очередное противоречие заключается в том, что совместимость с требованиями RoHS, так же как и знак «Pb-free» не означают, что элемент необходимо паять обязательно бессвинцовым припоем. Ведь в процессе пайки необходимо предотвратить термодиструкцию электронных компонентов. И эта неприятность может возникнуть потому, что большинство из «Pb-free» припоев имеют повышенную температуру плавления, которая несовместима с максимальной температурой пайки выбранных компонентов.

4. Таким образом, если выполнять ряд рекомендаций для ручной пайки, приведенных ниже, качество пайки не пострадает:

  • Когда речь идет о ручной пайке, выбираются паяльные станции, обладающие достаточным запасом мощности, термостабильностью и возможностью поддержания постоянной температуры при работе на более высоких уровнях, необходимых для бессвинцовых материалов.
  • Так как температура плавления бессвинцового припоя выше, чем у свинцовосодержащего, температура жала повышается до 343°C (по сравнению с 315°C). В таком режиме долговечность традиционных паяльных жал резко снижается. Поэтому, в процессе пайки, необходимо использовать насадки, разработанные специально под «Pb-free» пайку.
  • Современные паяльные станции обеспечивают приведенные выше требования, но при работе с бессвинцовыми припоями, для соблюдения необходимых температурных профилей некоторых компонентов, имеет смысл быстрее убирать жало пальника с места пайки.
  • Смачиваемось у бессвинцовых материалов хуже, чем у свинцовосодержащих (и многое другое у них хуже, например: окисляемость во время пайки, образование кристаллических нитей и пр.). Чем меньше окислов, тем легче идет пайка. Здесь два варианта:
    1. Пайка в среде азота. Азот, будучи инертным газом, предохраняет от окисляемости нагреваемые при пайке металлические поверхности. В этом случае требования к флюсу не категоричны, смачиваемость повышается, с припоями легче работать, качество соединений повышается.
    2. Задачу снятия окислов и обеспечения растекаемости припоя, при ручной пайке в условиях несерийного производства в не меньшей степени выполняет флюс. Это серьезная альтернатива пайке в азотной среде.
  • В процессе пайки необходимо следить за состоянием жала паяльной станции во избежание его окисления. Если применяется «Pb-free» припой, следует более тщательно очищать его и, постоянно держать его полностью покрытым припоем.
  • При работе с «Pb-free» компонентами, их монтаже-демонтаже, на плате смешанного типа необходимо тщательно очищать посадочные места компонентов, во избежание смешивания припоев «Pb-free» и традиционных, так как несоблюдение этой рекомендации, в случае смешивания припоев образуется «холодная» пайка. Становится более актуальным использование оловоотсосов, оплетки для удаления припоев и пр.
  • Так же, следуя вышеприведенному пункту, следует использовать разные жала для пайки «Pb-free» и свинцовосодержащими припоями.

5. Не стоит забывать и о микросхемах в корпусах BGA, с ними сложнее, но эта ситуация «на руку» ассортименту компании «ERSA», а именно модернизированным инфракрасным паяльным центрам IR550plus. С точки зрения работы с «Pb-free» микросхем BGA, аргументы неоспоримы:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *