Pt6985 d как проверить
Перейти к содержимому

Pt6985 d как проверить

Энциклопедия электроники L7805CV

В данном разделе представлены различные электрические схемы.

LED драйвер ЭПРА для LPU-eco ПРИЗМА 36W350mA применяется для питания светодиодных светильников (панелей) для потолка. Драйвер является блоком питания с регулированием тока. Гальваническая развязка цепей отсутствует. Номинальная мощность 36 Вт, выходной ток 350 мА, диапазон выходного напряжения 65. 150 В. Из двух попавших в ремонт драйверов все были исправны, неисправными оказались светодиоды в светильниках.

На печатной плате имеется маркировка: DS-196 и XH-6985. В схеме применена специализированная микросхема PT6985-D.

Lpu призма pro 36вт схема блока питания

В данном разделе представлены различные электрические схемы.

LED драйвер ЭПРА для LPU-eco ПРИЗМА 36W350mA применяется для питания светодиодных светильников (панелей) для потолка. Драйвер является блоком питания с регулированием тока. Гальваническая развязка цепей отсутствует. Номинальная мощность 36 Вт, выходной ток 350 мА, диапазон выходного напряжения 65. 150 В. Из двух попавших в ремонт драйверов все были исправны, неисправными оказались светодиоды в светильниках.

На печатной плате имеется маркировка: DS-196 и XH-6985. В схеме применена специализированная микросхема PT6985-D.

На наших глазах быстро и почти незаметно произошла революция среди источников света. Переворот совершили полупроводниковые кристаллы, а точнее, светодиоды.

Сегодня уже нет сомнений, что в самом ближайшем будущем светодиодные светильники вытеснят все остальные типы осветительных приборов, благодаря превосходству по четырём основным показателям.

Первый из основных показателей источника света – это энергетическая эффективность. Современная лампа накаливания способна создавать световой поток 15 люмен на каждый ватт потребляемой мощности. Это значит, что всего лишь 2 % электрической энергии преобразуются в свет. Люминесцентные лампы выдают в пять раз больший поток – 80 люмен на ватт. Их КПД достигает 10 – 12 %. КПД компактных люминесцентных ламп (энергосберегаек) заметно ниже и находится в пределах 8%, при световой эффективности 60 люмен/ватт.

Светодиодные источники света перешагнули сегодня уровнь 200 люмен на ватт (КПД 30 %), а лучшие экспериментальные образцы вплотную приближаются к теоретическому идеалу ЛЕД светильника в 300 лм/ватт.

Второй показатель – длительность функционирования при сохранении заявленных технических параметров. Нихромовая спираль редко выдерживает более 2000 часов работы. Люминесцентные лампы способны продержаться 10 000 часов, реальный срок жизни сберегаек 5000 – 6000 часов. Но самыми долгоживущими источниками света, конечно, являются светодиодные кристаллы. Их ресурс достигает 30 000 – 50 000 часов. Это более 10 лет работы в режиме офиса или частного дома.

Третий показатель – стоимость устройства, обеспечивающего световой поток в 1000 люмен. Долгое время самыми дешёвыми светильниками оставались лампы накаливания. Цена такой лампы в 1000 люмен находится на уровне пол доллара. Люминесцентный источник стоит втрое больше. До недавнего времени ЛЕД лампы были самыми дорогими – порядка пяти долларов за 1000 люмен. Однако, огромные тиражи полупроводниковых светильников сделали своё доброе дело – цена 1000 люмен в ЛЕД исполнении теперь упала ниже двух долларов и стремительно движется к заветной цифре в один доллар.

И, наконец, четвёртый показатель – экологическая безопасность источника света. В этом аспекте светодиоды вне конкуренции. Взамен огромной опасности паров ртути и паров натрия в люминесцентных лампах, ЛЕД светильники чисты, как сама природа. Небольшое тепловыделение, которое можно трактовать, как тепловое “загрязнение”, не идёт ни в какое сравнение с тепловыделением ламп накаливания.

Казалось бы, новые светодиодные светильники достигли идеала. Они дешевы, долговечны, экономичны и экологически чисты. Как говорится, сказка стала былью.

Но вот беда – купленная в магазине ЛЕД лампа или ЛЕД светильник, иногда внезапно выходят из строя уже через год, а то и через полгода своей службы. В чём же причина таких досадных отказов ?

Мы попробуем разобраться в этой актуальной проблеме на примере внезапно перегоревшего потолочного офисного светильника модели “Армстронг” (см. видеоролик).

Светильник содержит 112 светодиодов типа SMD 2835 объединённых в четыре диодные ленты по 28 кристаллов в каждой ленте.

Заводом изготовителем числится компания ЭРА, но на этикетке честно прописано, что родиной светильника является Китай.

Нередко китайские производители электроники грешат упрощениями, снижающими качество и укорачивающими жизненный цикл изделия, но ещё хуже, когда разработчик изделия грубо нарушает незыблемые устои, вольно или невольно закладывая мину замедленного действия в создаваемую им продукцию.

Вообще говоря, в светильнике с большим количеством светоизлучающих элементов, очень важно обеспечить равные условия для каждого элемента, а это не так-то легко сделать, учитывая высокую зависимость электрической проводимости светодиода от температуры. Неравные условия теплообмена могут спровоцировать повышенную проводимость одних кристаллов в ущерб другим. Не менее важно добиться стабильности светового потока, сводя пульсацию яркости матрицы диодов к минимуму. В случае со светильниками на основе ЛЕД кристаллов снижение пульсации может быть достигнуто высококачественной стабилизацией тока, протекающего через каждый диод.

Сами по себе светодиодные ленты успешно выпускаются уже более пятнадцати лет. Большинство лент, рассчитаны на низковольтное напряжение 12 В и 24 В. Обычно в такого типа ЛЕД лентах применяется последовательно–параллельное соединение диодов.

Каждая последовательная цепочка из трех светодиодов дополняется балластным резистором и подключается к шине 12 вольт. Сопротивление резистора зависит от выбранной модели светодиода. Например, для диодов SMD 3528 используются резисторы с сопротивлением 100 Ом.

Балластные резисторы обеспечивают протекание равного тока по каждой из диодных цепочек. Параллельное соединение диодов без использования резисторов недопустимо, поскольку малейшее

превышение тока в одной из диодных цепочек, вызванное худшими условиями теплоотвода, может привести к нарастанию тока и, как следствие, к перегреву и деградации диодов данной цепочки.

ЛЕД ленты на 24 В отличаются от 12 вольтовых удвоенным количеством диодов в каждой цепочке.

Электрическая схема нашего сгоревшего светильника (SPO-2) весьма неожиданна. В ней применено параллельное соединение нескольких p-n кристаллов без использования балластных резисторов.

Фактически разработчик данного светильника обрёк светодиодную матрицу на внезапную кончину от случайного фактора – неравномерного теплоотвода в разных участках светодиодной ленты.

Рассматриваемый нами светильник исправно проработал полгода в мастерской и неожиданно “погас”. После его демонтажа выяснилось, что блок питания светильника исправен. Причина потери работоспособности – четыре перегоревшие светодиода, которые легко выявить “прозвонкой”.

Стоило слегка перегреться одному из светодиодов в какой-то из 28 секций, как тут же произошло перераспределение тока, проходящего через диоды одной секции. У самого нагретого диода несколько понизилось сопротивление, что привело к увеличению тока, а у трёх других диодов ток уменьшился. Увеличенный ток дополнительно подогрел “случайный” светодиод, что еще более увеличило протекающий через него ток. В результате наш диод перешёл в режим с заметным превышением номинального тока и с превышением допустимой температуры кристалла. Как следствие – ускоренная деградация полупроводникового элемента и, в конце концов, полное выгорание одного диода в одной секции. При этом светильник ещё продолжает работать некоторое время, но дни его сочтены, поскольку ток, рассчитанный на 4 диода, теперь протекает по оставшимся трём.

Вскоре участь первого сгоревшего диода повторяет один из уцелевшей троицы, и ток, проходящий по двум оставшимся в живых диодах, становится двойным по отношению к номиналу. Разумеется, такой большой ток очень быстро выжигает один, а потом и другой диод. Именно в этот момент светильник гаснет, так как электрическая цепь оказывается разорванной.

Простейший ремонт вышедшего из строя светильника может сводится к запаиванию перемычки на место секции сгоревших диодов или к запаиванию новых SMD диодов на место сгоревших.

На видеоролике мы продемонстрировали оба варианта ремонта.

Разумеется, такого рода ремонт неисправного светильника не устраняет его главный недостаток – параллельное подключение полупроводниковых кристаллов без выравнивающих резисторов. Для полного восстановления идеального образа светодиодного светильника необходимо изменить схему самих диодных лент и схему их соединения в светильнике. Один из возможных вариантов представлен на рисунке:

Матрица ЛЕД светильника может состоять из нескольких параллельно соединённых диодных лент, каждая из которых содержит по два балластных резистора – один в начале ленты, а другой на её конце. Номиналы резисторов зависят от типа используемых светодиодов. Например, для SMD 2835 подойдут резисторы с сопротивлением 10 Ом.

Блок питания для такого рода ЛЕД матрицы должен обеспечивать стабилизированный ток, в расчете 60 мA на каждую диодную ленту. Если принять, что требуемая номинальная мощность светильника равна 36 Вт, то ЛЕД матрица должна содержать 180 светодиодов (4 ленты по 45 кристаллов, или 6 лент по 30 кристаллов). Штатный блок питания, используемый в SPO-2, способен успешно справиться с такой задачей.

В отремонтированном нами светильнике SPO-2 установлено только 112 диодов SMD 2835 с номинальной мощностью 0,2 Вт каждый. Для достижения мощности 36 Вт, разработчики светильника пошли на явный перегруз используемых светодиодов по току, подняв рабочий ток с рекомендуемых 60 mA до 95 mA. Такого рода экономия в количестве диодов, достигнутая неоправданным форсированием их мощности, сослужила плохую службу – светильник потерял шанс на обеспечение обещанной долговечности в 50 000 часов.

Как видим, потенциальная идеальность светодиодного освещения далеко не всегда успешно реализуется на практике. Светодиодные кристаллы, как огня, боятся двух факторов. Первый – перегрев выше 60 градусов Цельсия, второй – перегруз по току выше номинала.

Можно очень эффективно охлаждать светодиод, поддерживая его температуру на уровне комнатной, но это не спасёт кристалл от деградации из-за токового перегруза. Поэтому разработчикам светодиодных светильников не стоит экономить на количестве используемых ЛЕД кристаллов, перегружая их по току. Более разумно оставаться в рамках номинальной мощности конкретного светодиода, используя то их количество, которое соответствует поставленной задаче освещения. Для заявленной мощности в 36 Вт, диодная матрица светильника должна состоять из 180 элементов SMD-2835.

Хотелось бы сказать несколько добрых слов в адрес разработчиков блока питания светильника SPO-2, но эта информация будет более уместна в приложении к данной статье.

ПРИЛОЖЕНИЕ (к статье «Спасение идеального светильника»)

В светильнике SPO-2 компании ЭРА используется блок питания (БП) на базе микросхемы PT6985-D с двумя встроенными токовыми ключами. По сути, БП выполняет функцию стабилизации выходного тока, вне зависимости от входного напряжения.

Из принципиальной схема БП видно, что стабилизатор тока выполнен очень лаконично с минимальной обвязкой. Входной диодный мост выпрямляет сетевое напряжение 220 В. Затем три диода (D2, D3, D4) в союзе с двумя электролитическими конденсаторами (С1, С2) компенсируют конденсаторный характер нагрузки БП, обеспечивая коэффициент мощности на уровне 0,9. Оба конденсатора рассчитаны на напряжение 250 В, что гарантирует их долгую жизнь, поскольку каждый конденсатор находится под напряжением вдвое меньше сетевого.

В выходном каскаде БП дроссель Т1 и электролитический конденсатор С3 обеспечивают сглаживание пульсаций выходного тока до уровня 1 %. Благодаря этому светодиодная матрица выдаёт абсолютно ровный световой поток. Изменяя номиналы резисторов R2 и R3, можно отрегулировать БП на требуемый выходной ток.

В процессе работы БП практически не греется, что гарантирует срок его службы в 50 000 часов.

ЛЕД ДРАЙВЕР РТ6985

По вопросам патентования изобретений обращайтесь
к патентному поверенному РФ, рег. № 358
евразийскому патентному поверенному, рег. № 303
Надежде Станиславовне Ковальчук:

В данной статье мы рассмотрим простой вариант импульсного блока питания. Балласт от ЛДС в наше время стоит копейки, как и электронный трансформатор (ЭТ) от галогенных ламп. Мы знаем про основные недостатки ИБП для галогенок – работает слишком не стабильно, выходное напряжение может отклонятся в ту или иную сторону, не имеет сетевого фильтра.

Но все эти недостатки ничто, по сравнению с двумя основными – при даже секундном КЗ на выходе, схема буквально взрывается. Другой основной недостаток заключается в том, что устройство работает только под нагрузкой, то есть, если мы на выходе подключим светодиод с ограничительным резистором, то он светится не будет, что делает данный ИБП очень неудобным, для иных целей.

Балласт от ЛДС – по сравнению с блоками ЭТ они более стабильны, встречаются балласты с сетевыми фильтрами. Даже в дешевых блоках мы можем наблюдать дроссель, термистор и электролиты по питанию, предохранитель в них ставят почти всегда. Все это делает балласт долговечным и надежным.

Но давайте вспомним, что выходное напряжение балласта пригодно только для питания ЛДС. В моем случае был использован балласт ЛДС на 40 ватт.
Я решил объединить две эти схемы, для получения нового вида ИБП.

Китайский электронный трансформатор на 105 ватт был разобран, с платы был выпаян импульсный трансформатор.

Особых переделок делать не нужно, просто высокое напряжение от балласта подается на первичную обмотку импульсного трансформатора. Питание подается через конденсатор 3кВ 6800пФ (как емкость, так и напряжение конденсатора могут отклонятся в ту или иную сторону на 30-40%)
На вторичной обмотке трансформатора мы получаем как раз 12 вольт.

Мощность такого блока питания невелика, но вполне хватает для создания маломощных лабораторных ИБП. Дополнив схему выпрямителем, мы получим ИБП, который может использоваться как зарядное устройство или блок питания для усилителей мощности, область применения достаточно широка, ведь без блока питания не будет работать ни одна конструкция.

При дополнении диодным выпрямителем нужно использовать импульсные диоды, поскольку рабочая частота устройства 15-30кГц и более ( частота зависит от схемы устройства, ее мощности и производителя, у всех по-разному).

Также, следует учесть, что выходной ток может достигать до 3,5-4А, следовательно, диоды нужны мощные. Очень удобно использовать диодные сборки из компьютерных БП, из отечественного интерьера отлично подойдет КД213А.

Переделка LED 36W светодиодных светильников на пониженный ток PT6985-D

Чтобы увеличить срок службы, нужно уменьшить ток через светодиоды с 360 до 330-300 мА. В драйвере микросхема PT6985-D. Путем замены одного или двух из трёх параллельных резисторов 1R6 на 2R2. Напряжение на каждой линейке упадёт до 22,6 В..

Далее, нужно снять светодиодные полоски (защелки сзади сжать) взять термоклей или термопасту и промазать стеклотекстолит, улучшить теплоотвод от светодиодов.

Далее РЕМОНТ светильника:

Ремонт светильника Feron AL2115 112 LED 2500Lm 36W 4000K 230V/50Hz 21078 EAN 4627110520943 16RU-JC-FER05 02.2017.

Срок службы оказался не 6 лет, а 8 месяцев (5760 часов). Выход из строя 3-х из 4-х линеек светодиодов. В линейке 7 последовательно на 4 параллельно 3.2В 90mA = 28 светодиодов, 23В, 0.36А, всего 28*4=112шт 23*4=92В, 0.36А

Микросхема U1 smd 6pin ZT6PA (хз чо такое, кто знает, отпишитесь в комментах), два резистора R17 и R16 R500 и 1R6 (это 0.38 Ома) поменял на три: 1R6, 1R6 и 1R0 в параллель (0.44 Ома), ток упал с 370 мА до 308 мА. Силовой транзистор — полевик SIF4N60D, за ним два трансформатора в параллель. Конденсатор на 100В стоит на выходе схемы, нет кондёра большой ёмкости на входе..

Удалось восстановить только полторы линейки 2835 светодиодов, остальные померли (Подавал 3.2В с бп на четвёрку светодиодов, выпаивал те, что грелись и не светили. После выпаивания мёртвых, которые грелись, забирали напряжение на себя, напряжение проседало и до 0.5В, некоторые оставшиеся восставали из мёртвых. Часть четвёрок полностью была в обрыве). Полторы линейки, это только 23*1.4=32 Вольта, для запуска драйвера не хватало. Добавил 3 аккумулятора по 14.4 вольта, это 43 вольта и в итоге 75В — драйвер запустился (рабочее напряжение драйвера 92В, и на двух аккумуляторах вольтодобавки 32+28=60В драйвер не запускался, мигал).

Как сильно понизить напряжение запуска, если же померло более одной линейки светодиодов? Сначала разорвал вторичные обмотки трансформаторов (с параллели сделал последовательно), чтобы поднять питающее напряжение микросхемы U1 (9В не хватало), перестало заводится, потом увеличил R21 с 9 кОм до 18 кОм — обратная связь позволила запустится драйверу в режиме (40В, 0.3А), но вольтажа потребления оставшихся рабочих светодиодов (32В) не хватало для запуска. Добавил два резистора 24 Ома балласта, каждый поднял напряжение на 7.2В, и запустилось при 45В!

Также, отключал часть схемы: микросхему smd JWC7 A01H 6pin — а с ней и транзистор CS630 — переключил питание светодиодов на C23 — а то эта часть схемы устраивала моргание.. (Без этой части схемы светодиодный светильник сильно мерцает, если смотреть через фотоаппарат, глазами не видно).

Feron AL2115 112 LED 2500Lm 36W 6500K 230V/50Hz 07.2017 21083 EAN 4627110525047 17RU-JC-FER07 микросхема надпись ZT7AC, вторая микросхема 1221 502С. R16 R500 R17 2R0 поменял R17 на 4R2, ток упал с 363 до 324 мА.

Тоже самое тут, нужно снять светодиодные полоски (вытащить распираторы), взять термоклей или термопасту и промазать стеклотекстолит точками под каждым светодиодом, то бишь улучшить теплоотвод от светодиодов.

На приклейку 4 полосок — 112 светодиодов уходит 0.5 гр (если экономить, или 1 гр от души) термоклея — ссылка на Али термоклей

Ремонт эпра pt6985 d как проверить

Итак, если предыдущие шаги выполнены, а светильник по-прежнему не работает, нужно начинать проверку всех узлов схемы осветительного прибора, т. е. непосредственно приниматься за ремонт люминесцентных ламп.


Схема последовательного подключения люминесцентных ламп

Много чего может сказать визуальный осмотр, иногда невооруженным взглядом видны пробои, вмятины и другие причины того, почему лампа не загорается.

Как и в любом ремонте, сначала необходимо проверить элементарное. Имеет смысл поменять стартер на заведомо рабочий, после этого лампа должна загореться, и тогда эту неисправность люминесцентного светильника можно будет исключить. Однако не всегда под рукой может оказаться подходящий по параметрам стартер, а проверить тот, что есть, как-то нужно, вдруг причина не в нем?

Все достаточно просто. Потребуется обычный светильник с лампочкой накаливания. Питание на нее нужно подать так – в разрыв одного из проводов включить последовательно проверяемый стартер, второй же оставить целым. Если лампа загорелась или заморгала, то прибор работоспособен и проблема не в нем.

Далее проверяем входное и выходное напряжение на дросселе. У работающего тестер должен показать ток на выходе. При необходимости этот узел схемы нужно заменить.

Если же и после этого светильник не загорится, тогда придется прозвонить на целостность все провода лампы, а также проверить напряжение на контактах патронов.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления.

При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом.

Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.

Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.

Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции.

На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны.

При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.

Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci.

Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.

Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить.

Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования.

На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.

Проверяем ЭПРА

Всем привет! Это уже не актуально, но возможно кому-нибудь и пригодиться не сложный метод проверки работоспособности ЭПРА без подключения к нему люминисцентных ламп. Особенно если у вас на обслуживании несколько сотен светильников, то не всегда удобно на рабочем столе держать арматуру (так иногда называют корпус люминисцентного светильника) для проверки ЭПРА. Её можно проверить на работоспособность (например после ремонта или просто проверить на работоспособность),при помощи небольшого трансформатора и лампы накаливания 12В на 10 Вт.

Не забывайте, что эта работа по проверке работоспособности выполняется при подключении ЭПРА к сети 220 В и все элементы находятся под потенциалом сети, так как не имеют гальванической развязки! Соблюдайте технику безопасности и в качестве предохранителя используйте лампу накаливания 220В 95 Вт включенную в разрыв сетевого провода!

Это не убережёт вас от поражения эл.током, но предотвратит красочное фаер-шоу! Вероятнее всего со сгоревшими пробками или выбитыми автоматами, под радостные возгласы (точнее нецензурную брань в ваш адрес….) негодования от семьи…

Сделать это не сложно: Для начала желательно найти схему именно вашего проверяемого ЭПРА, что бы лучше понимать, что куда припаять и что подсоединить для проверки самого дросселя ЭПРА…

Возможно у вас ЭПРА самая распространённая и схема будет приблизительно такая


Задача проверить ЭПРА, значит: 1- Ни чего ни куда не подключаете! 2- Делаете визуальный осмотр на предмет сгоревших, оторванных дорожек от ног элементов и наличие всех деталей на своих местах. 3- Проверяете мультиметром исправность предохранителя и позистора(если есть!). Дальше — всех полупроводниковых деталей: диодов, транзисторов и единственная сложность возникнет при проверке динистора DB3, он мультиметром не прозванивается от слова совсем! Но как правило он очень редко сгорает!. Затем проверяете резисторы, очень часто в моей практике был в обрыве резистор R1 470 кОм — 1 МоМ в цепи запуска на динисторе DB3. 4- Проверяете электролитические конденсатор(ы) C2 на предмет потери ёмкости, это обычно выражается их вздутием, но некоторые подлые кондёры высыхают и при этом визуально ни чем себя не выдают.. Затем проверяете плёночные высоковольтные C9, C11 (обычно от 630В до 1200В) в цепи запуска ламп. Они часто бывают в коротком замыкании. Остальные конденсаторы как правило остаются живые, но их тоже желательно проверить хотя бы на короткое замыкание. 5- Если обмотка дросселя явно подгорела, то как правило в ней межвитковое замыкание и этот дроссель нужно заменить или перемотать — для любителей садомазохизма….. После проверки деталей и замены сгоревших нужно изготовить трансформатор. Проще всего это сделать из дросселя от подобных ЭПРА. Нужно найти дроссель с максимально свободным местом между обмоткой и сердечником. Разбираете его (можно нагреть феном градусов до 150 и аккуратно, в перчатках, его разобрать.) и изолируете I обмотку, например термоскотчем. Дальше наматываете II обмотку 10-20 витков эмалированного провода диаметром примерно 0,5мм и ещё раз изолируете. Собираете обратно, сердечник можно склеить. Я просто чёрной тряпочной изолентой обматывал половинки феррита, что бы не рассыпались, для проверки вполне хватает. Затем припаиваете I обмотку согласно схеме, показано красным цветом! Ко вторичной обмотке припаиваете лампу накаливания 12В 10Вт. Смотрите на наличие отсутствия соплей припоя на плате и ошибок в монтаже. Вспомнив про меры безопасности подаёте питание 220 В на ЭПРА обязательно через включенную лампу 220В на 95 Вт в разрыв сетевого провода. Выделено красным.

Если всё исправно, то лампа 220В не горит вообще, а лампа 12В светится примерно 2\3 от максимальной яркости. Это подбирается количеством витков вторичной обмотки. Значит в этом случае автогенератор работает, осталось проверить на межвитковое замыкание дроссель(я)… Для этого нужно дроссель а если их два, то каждый дроссель по очереди (сначала подключаете один, проверили — отключаете! Затем подключаете второй, проверили — отключаете!). Подключаете проверяемый дроссель ЭПРА параллельно I обмотке трансформатора, показано синим цветом. Если дроссель исправен, то лампа 12В должна загореться в полтора раза ярче, а лампа на 220В гореть не должна. Если в дросселе межвитковое замыкание, то лампа 12В погаснет а лампа 220В загорится либо в 2\3 накала, либо в полный накал. В этом случае дроссель с межвитковым замыканием и его нужно заменить. После того, как вы убедились в работоспособности ЭПРА, его можно ставить в светильник. Как показала практика в 99 случаях из 100, проверенные таким образом ЭПРА гарантированно будут рабочими. Некоторые сложности возникают при проверке ЭПРА марки FINTAR.


Они заточены для работы одновременно с двумя лампами и самодельный трансформатор не может обеспечить необходимую нагрузку для уверенно запуска автогенератора. Необходимо в цепи запуска динистора D14 параллельно диоду D13 припаять резистор 470 кОм. На схеме выделено красным


Тем самым обеспечим запуск автогенератора, но возможно лампа 12В будет немного мерцать. Для проверки работоспособности этого вполне хватает.

А дросселя проверяем по тому же принципу, как описано выше. На схеме выделено синим цветом.
Я не утверждаю, что данный метод единственно верный и правильный. Просто это возможный вариант проверки ЭПРА после ремонта прямо на столе без установки его в светильник. Мне так удобнее и я решил поделится со всеми желающими.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

ЭПРА

ЭПРА

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

Неисправности в электронном балласте

В современных ЛЛ больше применяется электронная пускорегулирующая аппаратура (ЭПРА). Для ее проверки берется такое же заведомо исправное устройство с аналогичными параметрами и подключается с соблюдением схемы к проверяемой лампе. Если светильник нормально заработал, то причина неисправности в блоке.

Не стоит спешить выбрасывать старый блок. Вполне возможно, что всего лишь перегорел предохранитель (рисунок ниже – цифра 1). Он заменяется на аналогичный, с одинаковым диаметром, плавкой проволочки или вставки.

При исправном предохранителе мультиметром проверяются все резисторы, конденсаторы и прочие детали в схеме.

Когда нити накала еле светятся, это связано чаще всего с пробоем конденсатора между ними (цифра 2 на рисунке). Его меняют на аналогичный, но с рабочим напряжением около 2 кВ. На дешевых балластах часто выходят из строя конденсаторы всего на 250-400 В.

Могут выйти из строя транзисторы (цифра 3 на рисунке) из-за скачков напряжения. При работе сварочного аппарата или другой мощной нагрузке ЛЛ лучше выключать. Замену легко найти по аналогу, обозначение которого находится по таблицам или взять отработанный балластник.

Расшифровка первых букв иностранных производителей носит рекламный характер, что создает трудности в определении взаимозаменяемости ламп.

Балластник энергосберегающей лампы

После замены каждой радиодетали проверяется работоспособность электронного балласта путем последовательного включения с лампой накаливания мощностью 40 Вт.

Без нагрузки импульсное устройство ЭПРА быстро выходит из строя

Поэтому в схемах с электронным балластом особое внимание следует уделять отсутствию нарушений контактов

Поэтому перед включением ЛЛ надо обеспечить надежность контактов электрической цепи.

Импульсный блок питания отработанной энергосберегающей лампы вполне может подойти даже для большой ЛЛ. Нужно снять пластиковый цоколь и правильно подключить контакты колбы к нитям накала трубки.

При установке ЭПРА от другой лампы мощность блоков питания должна быть близкой по величине.

Не всегда удается найти для замены блока питания такое же устройство к встроенным потолочным светильникам на 4 лампы.

Потолочный светильник на 4 лампы

Провода нового ЭПРА нужно соединять с патронами ЛЛ по его схеме. Схему контактных соединений придется переделать. Сначала она собирается на скрутке с обычной изоляцией. При этом на один из концов следует предварительно надеть кусок термоусадочного провода – кембрика. После того как все лампы начнут загораться, изоляция убирается, провода протравливаются паяльной кислотой с последующей пайкой. При аккуратном и точном выполнении ничего сложного в такой работе нет.

Особенно электронный балласт боится, когда путают фазу и ноль.

Это интересно: Выбери энергосберегающую лампу — изучаем по пунктам

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Подключение двух люминесцентных ламп через один дроссель.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света (ЛДС).

Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в 5-7 раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.

В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Принцип работы люминесцентных ламп

Глядя на вышеприведенную схему можно удивиться: зачем такие сложности, чтобы включить обычную лампочку? Но удивление проходит сразу после знакомства с принципом работы ЛДС. Все дело в том, что лампочка-то не совсем обычная, свет в ней излучает не раскаленная нить, как в лампе накаливания, а тлеющий разряд в газовой атмосфере. Люминесцентная лампа представляет собой трубку из кварцевого стекла, покрытую слоем люминофора (вещество, преобразующее поглощаемую им энергию в свет). Лампа заполнена смесью паров ртути и инертного газа. С торцов ее смонтированы катоды, представляющие собой нити накала (разогрев нитей происходит при запуске лампы). В момент запуска, нити разогреваются, излучая свободные электроны, под воздействием которых в лампе возникает тлеющий разряд, вызывающий свечение люминофора (рис. 8).


Рис.8 Запуск электронного балласта изнутри

На рисунке мы видим общее устройство лампы и поведение ее в момент запуска через электронный балласт. Теперь, узнав, как работает сама лампа, балласт, и для чего этот балласт нужен, стоит рассмотреть вопрос как быть, если лампа вдруг перестала работать. Скажу сразу – отремонтировать можно, как балласт, так и саму лампу. Скажу более – такую лампу можно запустить даже если она перегорела. Способы ремонта мы сейчас как раз и рассмотрим.

Неполадки и их устранение

Определить перегорание люминесцентной лампы можно по нескольким факторам:

  • лампа не включается при подаче напряжения;
  • при запуске наблюдаются кратковременные мерцания, постепенно переходящие в равномерное свечение;
  • прибор долго мерцает, но не может разгореться в полную силу;
  • при работе слышен сильный гул;
  • лампочка работает, однако во время свечения наблюдаются мерцания и пульсации.

Лампа в момент пульсации.

Полный отказ от включения повод проверить прибор. Но при мерцании пользователи откладывают диагностику и ремонт на неопределенный срок. Делать этого не рекомендуется, т.к. пульсирующее свечение некомфортно и негативно действует на зрение.

Перед началом проверки убедитесь, что проблема в лампе, а не в светильнике. Для проверки подключите к светильнику заведомо исправную колбу.

Если дело в патроне, почистите контакты спиртовой жидкостью, зачистите шкуркой и в случае необходимости измените их положение относительно колбы. Возможно, проблема в слабом контакте между компонентами системы.

Если светильник исправен, проблема в лампе.

Как проверить лампу дневного света

Целостность спиралей электродов

Первый этап проверки колбы это измерение сопротивления в контактах системы мультиметром. Установите режим проверки сопротивления, выбирая минимальный диапазон значений. Щупы приложите к контактам лампы с обеих сторон.

Нулевое сопротивление свидетельствует о разрыве нити между электродами во внутренней части колбы. На исправном устройстве показатель сопротивления будет находиться в диапазоне от 3 до 16 Ом в зависимости от характеристик модели.

Неисправности в электронном балласте

В современных осветительных приборах для стабилизации напряжения используется электронная пускорегулирующая аппаратура. Рекомендуется сначала попробовать заменить балласт на рабочий и проверить исправность системы. Если причина в нем, можно приступать к самостоятельной починке устройства.

Первым делом меняется предохранитель. Слабое свечение электродов свидетельствует о пробитом конденсаторе. Его можно заменить, но лучше сразу подбирать конденсатор с рабочим напряжением 2 кВ. Это даст запас надежности, поскольку в подавляющем большинстве дешевых ЭПРА применяются конденсаторы с показателями не более 400 В. Такие элементы плохо переносят нагрузки и быстро сгорают.

Проверять балласт после ремонта нужно только с подключенной нагрузкой, поскольку работа вхолостую быстро приведет к поломке.

Как проверить дроссель

Неисправность дросселя обычно выражается гудением светильника, темнеющими краями колбы, перегревом, сильным мерцанием во время работы. Если хоть один из этих признаков имеет место, надо проверить элемент сопротивления.

Проверка включает шаги:

  1. Из светильника вытаскивается стартер.
  2. Контакты в патроне замыкаются накоротко.
  3. Колба вытаскивается из паза, контакты в патронах закорачиваются.
  4. Включается мультиметр в режиме измерения сопротивления.
  5. Щупы подсоединяются к контактам в патроне лампы. Бесконечное сопротивление говорит об обрыве обмотки, малое значение в области нуля — о межвитковом замыкании.

Как проверить стартер

Если лампа мерцает, но не загорается в полную силу, надо проверить стартер. Проверка возможна только при последовательном подключении лампочки на 60 Вт и стартера к сети.

Как проверить емкость конденсатора тестером

Проблема с конденсатором может оказать существенное влияние на всю систему, снизив КПД с 90% до 40%. Конденсатор подбирается по мощности конкретной лампы. К примеру, для 40 Вт оптимальный конденсатор емкостью 4,5 мкФ.

Проверка конденсатора тестером.

Емкость проверяется мультиметром или тестером.

Проверка мультиметром

Мультиметр очень полезный инструмент для эффективной проверки узлов лампы. Переключите его в режим прозвонки или измерение сопротивления в минимальном диапазоне.

Если при подключении щупов к контактам колбы на дисплее мультиметра появляется конкретное значение, лампа исправна. Отсутствие сигналов говорит об обрыве нити. Проверка других узлов осуществляется так же. Нужно лишь заранее ознакомиться с номинальными значениями сопротивлений на контактах и прозвонить их. Даже минимальное отклонение может стать причиной поломки.

Проверка ЛЛ мультиметром.

Ремонт люминесцентных ламп

В предыдущей своей статье Я рассказывал про принципы работы и различные схемы подключения люминесцентных ламп. Эта статья является ее продолжением. В ней Я подробно остановлюсь на устройстве и самостоятельном ремонте перегоревших ламп трубчатой конструкции или дневного света.

Как отремонтировать своими руками компактные люминесцентные лампы (КЛЛ) под обычный патрон Я уже рассказывал в этой статье.

Сразу скажу в отличии от КЛЛ, которые достаточно дорогие и легко восстанавливаются- лампы дневного света Я не ремонтирую, потому что стоят новые дешево, да, если честно они после восстановления их работы с применением специальной схемы- обладают целым рядом недостатков. Но об этом в конце статьи.

Как проверить люминесцентную лампу

Ее легко проверить с использованием мультиметра или тестера. Для проверки установите переключатель прибора в положение измерения минимального сопротивления, а лучше при наличии, в режим прозвонки. После этого прикоснитесь концами щупов к выводам цоколя с одной стороны, а затем- с противоположной. Если Вы услышите звуковой индикатор и увидите не большое сопротивление нити на экране- значит лампа цела. При обрыве- сопротивление будет очень большим до бесконечности.

Более подробно читайте в нашей статье: Как пользоваться прозвонкой.

Схема подключения перегоревших люминесцентных ламп

Представляю вашему вниманию схему, которая исключает из работы ненадежный и гудящий дроссель, а так же часто требующий замены стартер. Кроме того по этой схеме работает перегоревшая люминесцентная лампа дневного света.

Никогда не используйте исправные лампы в этой схеме.

Для нормальной работы конденсаторов С1, С4 необходимо выбирать бумажные модели на 300-350 Вольт, а для С2, С3 лучше всего подойдут слюдяные.

Резистор R1 в обязательном порядке должен быть проволочным, по мощности лампы необходимо подбирать все необходимые компоненты руководствуясь таблицей снизу.

Мощность лампы C1-C4 С2-С3 Д1-Д4 R1
30 Ватт 4 мкФ 3300 пФ Д226Б 60 Ом
40 Ватт 10 мкФ 6800 мкФ Д226Б 60 Ом
80 Ватт 20 мкФ 6800 пФ Д205 30 Ом

Принцип работы. Диоды Д2, Д3 вместе с конденсаторами С1, C4 образуют двухполупериодный выпрямитель с увеличением вдвое напряжения. В момент включения лампы напряжение в точках а и б достигает величины в 600 Вольт на электродах лампы (Л1). После розжига она перейдет в нормальный рабочий режим, напряжение уменьшается в указанных точках до необходимой величины для оптимальной работы лампы.

Чем больше Емкости конденсаторов C1 и C4, тем выше рабочее напряжение лампы. Конденсаторы С2, С3 служат для подавления радиопомех.

Но Я эту схему использовал только в экспериментальных целях и не рекомендую для применения в домах, квартирах, гаражах и т. д., потому что:

  1. Через 9-12 часов из-за работы на постоянном токе происходит смещение светящейся области в сторону одного из концов лампы. Для восстановления работы необходимо поменять местами концы лампы в светильнике.
  2. Из-за почернения со временем люминофора, уменьшается световой поток, а значит и энергоэффективность.

Рекомендую покупать и менять на новые лампы дневного света, потому что на них не так кусается цена, как на КЛЛ.

Параметры балласта

Параметры балласта важны при выборе оптимальной схемы освещения аквариума и, особенно, в случае, когда схема собирается самостоятельно. Ниже рассмотрены некоторые параметры балласта, многие из которых указаны на самом балласте или в каталоге.

Мощность (power)- мощность балласта должна соответсвовать мощности лампы. Нельзя использовать балласт для лампы с мощностью отличной от номинальной. Это приведет либо к выходу лампы из строя, либо к пониженной ее светоотдаче. Некоторые балласты специально предназначены для работы с пониженной мощностью, например, в тех случаях, когда долгий срок работы лампы более важен. Такие балласты называются экономичными (не надо путать их с экономичными лампами (), которые потребляют меньше мощности и дают меньше света при включении в обычный балласт)

Коэффициент мощности (power factor) — еще называется косинусом угла. Дает представление о том, насколько хорошо используется ток и напряжение сети. У обычного магнитного дросселя. без корректирующего конденсатора, коэффициент мощности около 0.5 (low power factor ballast). Балласт с низким коэффициентом мощности приведет к возрастанию тока в цепи. Большинство современных балластов имеют коэффициент мощности близкий к 0.95-0.97 (high power factor ballast)

Входное напряжение (voltage) — многие современные балласты имеют возможность подключения к сети с различным напряжением. Также надо следить за выбором корректирующего конденсатора для сети с частотой 50 и 60Гц. Современные балласты, особенно электронные, могут компенсировать изменение напряжения питающей сети. В противном случае, световой поток будет резко изменятся и при уменьшении напряжения ниже 80-85% номинального лампа может погаснуть.

Потери мощности в балласте (power losses) — характеризует мощность, рассеянную в балласте, т.е. на нагревание балласта. Типичные потери в электромагнитном балласте — 5-10Вт (в электронном в несколько раз меньше). Потери мощности означают повышенный расход энергии, более высокую температуру ламп (если они расположены близко к балласту). что приводит к уменьшению светоотдачи и сокращению срока службы ламп.

Балласт-коэффициент (ballast-factor) — один из наиболее важных параметров. Показывает количество света, производимое лампой при использовании балласта, относительно значений в каталоге, т.е. при использовании лабораторного балласта. Например, балласт-коэффициент 0.9 означает, что лампа, с каталожным значением 2000 Лм, излучает только 1800 Лм. Многие имеют коэффициент больший единицы (это не значит, что они нарушают закон сохранения энергии, поскольку это не КПД), т.е. при использовании балласта с коэффициентом 1.15 данная лампа будет производить 2300 Лм. Однако, не следует использовать балласты с коэффициентами большими 1.1-1.15, поскольку это укорачивает срок службы лампы.

Температура (case temperature) — указывается на корпусе балласта. Надо следить, чтобы она не превышала указанного значения. Для магнитных балластов обычно 120-130C, для электронных 70-75C

Пиковый ток (inrush current, crest factor) — характеризует скачок тока в сети во время зажигания лампы. Чем он меньше, чем лучше для электрической цепи.

Нелинейные гармонические искажения (total harmonic distortion)- некоторые балласты, особенно электронные, могут вызывать нежелательные эффекты в электрической цепи. В современных балластах они не превышают 10-20%

Шум (audible noise) — балласты делятся по производимому ими шуму на несколько категорий. Постарайтесь не использовать в жилой комнате балласт, предназначенный для использования в гараже (в USA следует использовать класс А по шуму). Высокочастотные балласты практически бесшумны.

Количество подключаемых ламп — многие балласты предназначны для использования в схеме с 2-4 лампами. В подоюном случае балласт используется более эффективно, потери на лампу меньше, чем в схеме, когда каждая лампа питается своим балластом. Традиционные балласты (, ) используют обычно последовательное подключение ламп, т.е. при отключении одной лампы, отключаются и все остальные. балласт мгновенного старта () и многие электронные рассчитаны на параллельное подключение ламп, т.е. при этом выключение одной лампы не приводит к выключению остальных.

назад к оглавлению

Хитрые значки на балласте

Помимо разных электрических параметров, рассмотренных выше, на балласте можно встретить разные обозначения — FCC, CE, и т.д.

Устройство и принцип работы ламп дневного света

Масса достоинств ЛДС обусловлена тем, что они представляют собой приборы газоразрядного типа, в которых ультрафиолетовое излучение формируется благодаря электрическим разрядам в испарениях ртути.
Особенность здесь одна – видимое освещение от лампы возникает только после того, как ультрафиолетовое излучение модифицируется. Такое преобразование возможно лишь при применении тех соединений, в которых содержится галофосфат кальция или иные составы с наличием люминофоров.

По принципу функционирования ЛДС можно приравнять к источникам освещения газоразрядного типа. В колбу из стекла помещают инертный газ, предварительно откачав из неё воздух, а после добавляют в газ 30 мг ртути. В оба края сосуда устанавливаются спиралевидные электроды, схожие с нитью накаливания. Они с каждой стороны припаиваются к 2 контактным ножкам, которые помещаются в пластины диэлектрического типа. Внутреннюю поверхность трубки покрывает слой люминофора.

Включается дневной светильник при помощи пускорегулирующего устройства – электромагнитного или электронного типа. Электромагнитное устройство включает в себя основной элемент – дроссель. Это сопротивление балластного типа в форме индуктивной катушки с сердечником из металла, которое последовательно соединено с люминесцентной лампой.

Почему перегорают люминесцентные лампы?

Сама лампа представляет собой стеклянную колбу различной геометрической формы, изготовленную из хрупкого кварцевого стекла. Ее внутренние стенки покрыты люминофором – материалом, способным преобразовывать спектр излучения ультрафиолетовых длин волн в видимую часть излучения – дневную. Кварц со временем теряет свою прозрачность.

Внешние механические воздействия на колбу могут привести к появлению в ее структуре микротрещин, следствием которых может быть попадание в герметичную полость воздуха. Это приводит к перегоранию ЛДС. Для свечения необходим тлеющий разряд внутри корпуса, который обеспечивают катоды устройства, представляющие собой вольфрамовые нити накаливания в виде разогреваемых электрическим током спиралей.

Они покрыты слоем щелочного металла для продления срока службы лампы, который при частом ее включении-выключении осыпается. Это, в свою очередь, приводит к перегреву катода и выходу его из строя. Со временем уменьшается эмиссия электрода или его способность испускать электроны со своей поверхности. Их количество уже не способно поддержать тлеющий разряд.

Основные причины выхода из строя

Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.

Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.

Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока. Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя. Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.

Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.

Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается. Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость. При необходимости контактные пластинки подгибаются или полностью меняются.

Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 50С и ниже, а также при перепадах напряжения свыше 7%. Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник. Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.

Как проверить балласт люминесцентной лампы?

Для начала необходимо представить схему электронного балласта люминесцентной лампы и внести в ее конструкцию контрольную лампочку (обозначенная красными линиями).

Схемы большинства светильников практически идентичны друг другу, отличаются лишь небольшими изменениями.

В общих словах, перед тем, как проверять электронный балласт для люминесцентных ламп, необходимо снять трубку, затем закоротить выводы нитей накала, а дальше между ними подключить обычную лампочку накала на 220 В небольшой мощности.

Внимание! Для избегания выходя из строя электронных компонентов балласта, не рекомендуется включать в сеть схему без нагрузки, т.е. без лампочки.

Для простых светильников очень удобно применять скрепку, она надежно замыкает контакты, идущие к трубке.

После всех манипуляций такую конструкцию можно включать в сеть. Рабочий балласт сможет подать напряжение на лампочку, и как видно из фото она будет светиться.

Если производился ремонт балласта своими руками, и необходимо проверять его работоспособность, лучше всего последовательно со светильником подключить еще одну лампочку. При допущенных в работе ошибках, или коротком замыкании эта лампочка будет светиться ярко, а компоненты схемы не выйдут из строя.


Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?

Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.

Вот так она выглядит в разрезе.

В схемах балласт нужен для трех функций:

    контроля тока, чтобы он не превышал номинала
    образование за счет индуктивности кратковременного импульса повышенного напряжения
    сглаживания возможных пульсаций в сети 220В

Подключается он последовательно, а параллельно ему монтируется стартер.

Стартер необходим для поджига лампы.


Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.

Из-за нагрева форма электрода меняется и происходит его замыкание.

В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.

У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.

От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:

    подача 220В из розетки и замыкание контактов стартера
    разогрев спиралей электродов
    размыкание контактов стартера
    подача высоковольтного импульса от дросселя
    образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы


Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:

При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.

Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.

О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.

Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.

В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.

Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Мультиметром

Стартер является наиболее часто ломающимся элементом состава люминесцентных ламп. Происходит это по причине постоянной работы стартера в условиях серьезных перепадов температур.

Для проверки стартера, его корпус необходимо разобрать, после чего осмотреть конденсатор и лампу. Конденсатор не должен иметь на своей поверхности вздутий. Лампа не должна иметь заметных почернений. Если лампа и конденсатор не имеют вышеуказанных повреждений, то можно подключать стартер к мультиметру.

Для этого мультиметр необходимо перевести в режим омметра с наибольшим пределом измерения сопротивления. Если измерения показывают сопротивление в размере менее 2Мом, то это означает, что конденсатор стартера имеет большую утечку тока. Если мультиметр показывает неисправность стартера, то его необходимо заменить. В таком случае проблема неисправности светильника будет решена.

Как проверить лампу дневного света

Рекомендации: как проверить лампу дневного света

Если не работает лампа дневного света светильника, то первое что следует сделать – это выкрутить и заменить лампочку. Первый признак что требуется замена, что сгорели нити накаливания лампы – темные участки у её цоколей (в данном случае лучше прозвонить исправность нитей накаливания изделия). Если восстановить горение после смены лампы не получилось, это означает что вышел из строя ПРА. Здесь два варианта. Первый – устаревший вариант: электромагнитный балласт и неоновый стартер. Второй – электронный балласт. Так или иначе, если захотеть можно легко разобраться каковы причины неисправности светоприбора.

Если светоприбор в офисе или квартире оборудован электронным балластом, то перегорают лампочки из-за него.

Делать ремонт электронного балласта – бессмысленно. Проще приобрести новый прибор и выполнить замену. Это несложно. Всего-то 6-ть проводов. 4-е на лампу и 2 – электросеть. Всё четко прописано на корпусе или в инструкции прибора. В случае с неисправностью настольной лампы или другого светоприбора с электромагнитным балластом, после замены лампы необходимо провести проверку неонового стартера.

Для этого:

  • Стартер необходимо достать, выкрутив против часовой стрелки;
  • Включить светоприбор в электросеть;
  • При помощи заизолированной проволочной перемычки с оголенными концами (примерно 1 см), на короткое время замкнуть контакты коннектора неонового стартера.

Если лампочка 18w 2×36 или другая загорится – причина в стартере. Если исправность не наступила, значит надо менять электромагнитный дроссель. Ещё проще выполнить демонтаж электромагнитного дросселя и стартера и монтировать электронный балласт. Вместо электронного балласта подойдет электроника от энергосберегающих лампочек. Electronic Wall Lamp Model 36w hld133d 4х18 или 2х36 считаются хорошим вариантом для дома и офиса.

Простейший способ

Самый простой способ диагностики подходит как для лампочек накаливания, так и для люминесцентных и светодиодных ламп. Он предполагает вкрутить подозрительную лампочку в другой светильник и включить его. К сожалению, это не всегда возможно. Иногда резьбовая часть цоколя изготовлена с отклонением от стандартного размера и при вкручивании в патрон не замыкает оба электрических контакта. Или в доме больше нет светильников с точно таким же патроном.

Покупая лампочку в магазине электротоваров, многие обращали внимание на то, как продавец проверяет её с помощью тестера. В корпусе тестера есть несколько разъёмов, предназначенных для диагностики лампочек разного типа: накаливания, люминесцентных и галогенных

Его задача – проверить целостность проводников внутри лампы, о чём свидетельствует звуковой сигнал. Эту же самую операцию можно проделать в домашних условиях, воспользовавшись мультиметром или многофункциональной индикаторной отвёрткой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *