Stu407d как проверить
Перейти к содержимому

Stu407d как проверить

Полевики STU407D в инверторе монитора SAMSUNG 2043BW

Сгорели сборки полевиков STU407D. Не могу нигде найти в продаже (на Украине). Подскажите пожалуйста чем можно заменить или сложить из каких двух можно?

  • 14 Фев 2011
  • 15 Фев 2011
  • 19 Фев 2011

Нашел полевики AP4525GEH, заменил оба. Подсветка загорается, но не всегда. Включаю, не работает, выключай жду несколько минут опять включаю, и так пока не запустится подсветка. Индикатор на панели управлени при этом тоже не загорается, горит только вместе с подсветкой. Посоветуйте пожалуйста что делать?

Добавлено 19-02-2011 13:28

Кстати иногда при включении в сеть, один раз мигнет подсветка и все.

Информация Неисправности мониторов Прошивки мониторов Схемы мониторов Программаторы для мониторов Справочники Маркировка компонентов

Это информационный блок по ремонту мониторов

Блок очень краткий и предназначен для тех, кто случайно попал на эту страницу. В разделах форума размещена следующая информация по ремонту:

  • диагностика;
  • измерение;
  • методы ремонта;
  • схемы;
  • прошивки;
  • замена компонентов;
  • советы и секреты мастеров;

Какие типовые неисправности в мониторах?

Если у вас есть вопрос по устранению неисправности монитора и в определении дефекта, Вы должны создать свою, новую тему. Перед этим ознакомьтесь с наиболее частыми решениями проблем:

  • не включается;
  • ремонт блока питания;
  • нет подсветки;
  • неисправность инвертора;
  • нет изображения;
  • нет сигнала;
  • замена ЖК матрицы;
  • замена компонентов;

Где скачать прошивку монитора ?

Файлы прошивок (дампы памяти) и информация как обновить ПО в мониторах (ЖК, CRT) находятся как непосредственно в вопросных темах, так и в отдельных разделах:

Где скачать схему монитора ?

Схемы (Shematic Diagram) и сервисные мануалы (Service Manual) находятся как в вопросных темах, так и в отдельных разделах по мониторам:

Как прошить монитор?

Наиболее часто это делается с помощью программатора. Programmer (программатор) — устройство для записи (считывания) информации в память или другое устройство. Ниже список наиболее популярных программаторов, которые выбирают мастера при ремонте мониторов:

  • Postal-2,3 — универсальный программатор по протоколам I2C, SPI, MW, IСSP и UART. Подробно — Postal — сборка, настройка
  • TL866 (TL866A, TL866CS) — универсальный программатор через USB интерфейс
  • RT809H — универсальный программатор микросхем EMMC-Nand, FLASH EEPROM памяти через интерфейсы ICSP, I2C, UART, JTAG
  • CH341A — самый дешевый (не дорогой) универсальный программатор через USB интерфейс

Где скачать справочник ?

В процессе ремонта часто возникает необходимость в справочных данных электронных компонентов — распиновка, маркировка, режимы работы, итд. На форуме масса этой информации:

Как определить компонент ?

В первую очередь конечно по маркировке. Marking (маркировка) — обозначение на корпусе электронного компонента (радиодетали). Некоторые темы:

Схема монитора samsung 943n

И так, когда-то очень-очень давно, я покупал пару мониторов Samsung SyncMaster 943n. Мониторы мне эти очень нравились. Хорошее качество, приятная картинка, диагональ 19 дюймов (да-да, когда то это было достаточно круто). Но со временем, у них начали садиться лампы. Один из мониторов я благополучно продал, а другой остался у меня. В какой-то момент я заменил в нём лампы, но все, же около года назад, монитор стал выключать подсветку, сразу после включения.

Конечно, к тому времени необходимости в нём уже особой не было, в работе были уже мониторы 22 дюйма, а старичок остался на память. После года ожидания (всё никак не доходили руки починить), я всё же взялся за старый монитор т. к. мне потребовался какой-нибудь монитор, чтобы отправить его на ПМЖ в сад для родителей.

Так как менять лампы не целесообразно, в мониторе их аж 4, по 2 сверху и снизу, я решил поставить LED подсветку. Так сказать стильно, модно, современно. Да и по цене выходит даже дешевле.

Выбор пал вот на такой драйвер (GYD-9E) с двумя светодиодными планками.

Замена ламп

И так, приступим. Для начала, необходимо выполнить самую кропотливую, как я считаю работу — разобрать экран монитора и заменить старые лампы новыми светодиодными планками.

Далее, после полной разборки монитора, снимаем короба с лампами со стекла. Как видно по фото, у меня лампы вышли из строя из-за оплавления контактов.

Теперь, вынимаем старые лампы и очищаем металлические короба от мусора, остатков ламп и пр. Желательно немного обезжирить поверхность крепления диодных линеек. Я для этого использую изопропиловый спирт.

Далее потребуется подогнать размер линеек под короба. Увы, но подогнать именно ровно по длине не выйдет, т. к. диоды с линеек надо отрезать по 3 шт. Таким образом, примеряем линейки так, чтобы поместилось максимальное количество диодов, но при этом, отрезая от линейки их по 3 шт. Я отрезал по 6 диодов от каждой линейки, у меня вышло вот так.

Ну, а дальше всё обратном порядке. Собираем экран строго в обратной последовательности, внимательно все, проверяя на каждом этапе сборки, защёлкивая все клипсы и крепления, чтобы в дальнейшем не пришлось разбирать всё снова.

Установка драйвера

Ну вот, с экраном разобрались. Теперь займёмся платой монитора и драйвером управления.
Так как блок инвертора на плате нам больше не требуется, я частично демонтировал детали схемы инвертора, тем самым отключив сам инвертор и положив несколько деталей в закрома.

Как видно по фотографии, я снял трансформатор инвертора, выходные ёмкости, предохранитель и прочий мелкий обвес. Тут ничего сложного. Кому ничего этого не требуется, могут просто снять в данной цепи предохранитель и всё.

Теперь переходим к самому интересному — установке драйвера подсветки. При установке драйвера подсветки, основной особенностью работы самого драйвера является регулировка яркости нашей будущей подсветки. Есть несколько нюансов с инвертирование управления и пр. Расскажу несколько подробнее.

Канал регулировки драйвера подсветки можно подключить к одной из 2-х шин на блоке монитора: A-Dim или B-Dim. Отличие сигналов состоит в том, что первый используется для аналоговой регулировки яркости. Сигнал A-Dim формируется микропроцессором монитора и изменяет величину напряжения постоянного тока. Увеличение сигнала A-Dim приводит к увеличению напряжения обратной связи и наоборот. Правда при регулировке яркости с панели управления монитора, значение изменяется только в пределах от 1 до 10 единиц.

Если же вам регулировка по каналу A-Dim покажется недостаточно удобной, то вы можете воспользоваться каналом B-Dim, но тогда вам придётся модифицировать схему драйвера, т. к. при подключении к каналу B-Dim вы получите инвертированное управление. Т. е. при увеличении яркости в меню, подсветка будет становиться тусклее, а при уменьшении яркости — ярче. Если вам это не важно, или подсветка и так вас устраивает, то подключайте к шине A-Dim и не парьтесь. Я поступил именно так. Если изучить вопрос более детально, я рекомендую вам вот эту статью. Всё очень понятно и доходчиво написано, а так же имеются схемы модификации драйвера.

Осталось разобрать, что и куда подключать. У нас имеются следующие провода на драйвере:

  1. VIN — плюс питания DC 10-24V (красный провод)
  2. ENA — отключение/включение подсветки 0 — 3,3V (желтый провод)
  3. DIM — регулировка яркости светодиодов 0,8 — 2,5V (желтый провод)
  4. GND — минус питания (черный провод)

Осталось определиться, куда припаять их на плате монитора.
Тут тоже всё достаточно просто. Внимательно смотрим на плату, там всё подписано. Таким образом, моя схема подключения драйвера выглядит вот так:

  1. VIN2 контакт разъёма монитора.
  2. ENA8 контакт разъёма монитора.
  3. DIM7 контакт разъёма монитора.
  4. GND3 контакт разъёма монитора.

Собираем, проверяем. Всё работает.

Даже на полной яркости работа подсветки меня устраивает. Но работа по такому типу подключения накладывает ограничения, о которых я писал выше, при регулировке яркости, сила подсветки меняется только на первых 10 делениях. Т. е. в меню вся шкала составляет от 0 до 100, яркость изменяется только на этапе от 0 до 10, на этапе от 11 до 100 уже ничего не меняется, яркость находится в максимальном значении. Более понятно я думаю, станет, если вы сами поэкспериментируете и решите для себя, как вам больше подходит. Меня же устроил и такой вариант.

If you get stuck in repairing a defective appliance download this repair information for help. See below.
Good luck to the repair!

Please do not offer the downloaded file for sell only use it for personal usage!

  • If you have any question about repairing write your question to the Message board. For this no need registration.
  • Please take a look at the below related repair forum topics. May be help you to repair.

Warning!
If you are not familiar with electronics, do not attempt to repair!
You could suffer a fatal electrical shock! Instead, contact your nearest service center!

Источники питания и инверторы задней подсветки – это то, что вызывает повышенный интерес у специалистов по ремонту LCD-мониторов. И это вполне объяснимо, ведь данные модули дают наибольший процент отказов. Схемотехника этих модулей не является слишком уж сложной – опытный специалист вполне может разобраться в ней и без принципиальной схемы, а уж при наличии описания на элементную базу и подавно. Тем не менее, принципиальная схема на ремонтируемый узел еще никому и никогда не мешала. Таким образом, схема на блок питания и инвертор является самой ценной частью сервисных руководств. Но многие производители, и среди них Samsung, в своих руководствах по диагностике и ремонту мониторов крайне редко приводят эту, наиболее востребованную информацию, что в значительной степени затрудняет жизнь неавторизованных сервисов. Надеемся, что представленный здесь результат изучения инвертора монитора Samsung SyncMaster 943N, поможет вам в вашей работе.

Как и в большинстве современных мониторов, в Samsung SyncMaster 943N принята концепция, согласно которой в мониторе имеется две печатные платы: плата скалера/микропроцессора и комбинированная плата источников питания, на которой размещен источник питания монитора (Power Supply) и инвертор задней подсветки (Back Light Inverter).

В данном обзоре мы рассматриваем такую, достаточно известную, комбинированную плату инвертора и блока питания для мониторов семейства SyncMaster 943N,

Хотя мониторы этой модели могут оснащаться и другими типами комбинированной платы. Плата PWI1904SJ (она еще получила название McKinley 17″/19″ Normal) претерпела несколько модификаций (ревизий). Мы же рассмотрим плату версии 1.1 (Rev.1.1). Следует отметить, что номер этой платэ по каталогу Samsung – BN44-00123L.

Итак, как уже говорилось, плата состоит из двух, практически независимых, частей. Дадим краткую характеристику каждой из них.

Источник питания

Блок питания обеспечивает формирование двух выходных напряжений постоянного тока: +15В и +5В. Источник питания представляет собой классический однотактный импульсный преобразователь обратноходового типа. В качестве основного элемента этого источника можно выделить ШИМ-контроллер со встроенным силовым ключом – микросхему DM0456R. Именно эта микросхема и определяет схемотехнику всего источника, кстати сказать, очень простую (если не употребить слово примитивную).

Инвертор задней подсветки

Инвертор обеспечивает формирование высокочастотного переменного напряжения 650В на четырех лампах задней подсветки. Величина тока ламп находится на уровне 7.5 мА. В инверторе используется достаточно передовой вариант схемотехники – резонансный преобразователь. Инвертор поддерживает все основные варианты защиты (защиту от превышения напряжения, защиту от обрыва ламп), управление инвертором обеспечивает контроллер FAN7314 (см. предыдущую статью). В качестве питающего напряжения инвертора используется напряжение +15В.

Принципиальная схема платы

PWI1904SJ (М) Rev.1.1 представлена далее. Основные электрические характеристики платы (входные и выходные напряжения, мощность тока) указаны на самой плате. А мы переходим к детальному описанию основных элементов представленной схемы.

Источник питания

Источник питания, являясь импульсным, состоит из стандартного набора узлов, каждый из которых выполняет соответствующую функцию. Мы не будем давать детальное описание каждого узла, ведь, как уже говорилось выше, источник питания построен по классической схеме, а мы не ставим целью данного обзора изучение основ импульсных преобразователей. Остановимся на том, что сопоставим основные узлы источника питания и электронные элементы представленной схемы.

Входные цепи

Входным разъемом, на который подается переменное сетевое напряжение, является разъем IN101. Защита от превышения входного тока обеспечивается предохранителем F101 (3.15 Ампер).

Входной сетевой фильтр образован следующими элементами: конденсаторами Cx101, Сх102, Cx01, Сх02, резисторами R101, R102, R103, дросселем L101, термистором ТН101.

Выпрямление сетевого напряжения обеспечивается интегральным диодным мостом DB101, а сглаживание электролитическим конденсатором С101.

Импульсный преобразователь

Основным элементом преобразователя является ШИМ-контроллер со встроенным силовым ключом – интегральная 5-контактная микросхема на радиаторе, имеющая позиционное обозначение U101. В данной схеме используется очень популярная в последнее время микросхема – DM0465R. Обсуждать этот контроллер мы не будем, так как найти его описание не составляет труда.

Пусковая цепь ШИМ-контроллера DM0465R образована резисторами R104, R106, R106 сопротивлением по 24 кОм каждый.

Цепь питания ШИМ-контроллера DM0465R в установившемся режиме образована резистором R108, диодом D102, конденсаторами С104 и С105. Источником энергии для питания ШИМ-контроллера в рабочем режиме, является обмотка импульсного трансформатора TF101 (конт.1-конт.2). Ограничение питающего напряжения осуществляется стабилитроном ZD101.

Снаббер, обеспечивающий подавление резонансных выбросов напряжения в первичной обмотке импульсного трансформатора TF101 при переключении силового транзистора, состоит из диода D101, резистора R107 и конденсатора С102.

Сигнал обратной связи, позволяющий стабилизировать выходные напряжения источника питания, подается на конт.4 ШИМ-контроллера DM0465R. Величина сигнала обратной связи на конт.4 управляется оптроном РС101.

Вторичные выпрямители

Вторичные выпрямители выполнены по однополупериодной схеме.

Выпрямительные диоды каждого канала состоят из пары параллельно включенных диодов. Это позволяет увеличить токовую нагрузку каналов.

Сглаживание выпрямленных импульсов в канале +15В обеспечивается конденсатором С209 и конденсаторами С206, С207, С31, которые мы отнесли к схеме инвертора.

Сглаживание импульсов в канале +5В обеспечивается конденсаторами С201, С202, С203, а также дросселем L202.

Сигнал обратной связи для обеспечения стабилизации выходных напряжений формируется из напряжения канала +5В с помощью делителя R205/R20S. Полученное этим делителем напряжение, управляет микросхемой U201 типа TL431 (управляемый регулятор). Эта микросхема, в свою очередь, управляет током через светодиод оптрона РС101, что в итоге, изменяет величину сигнала обратной связи на конт.4 ШИМ-контроллера DM0465R.

Инвертор задней подсветки

Нагрузкой инвертора задней подсветки являются четыре лампы CCFL, подключенные к четырем разъемам: CN1, CN2, CN3, CN4. Высоковольтным трансформатором является Т1 с двумя первичными и двумя вторичными повышающими обмотками.

Инвертор выполнен по резонансной схеме. Резонансный контур образован первичными обмотками трансформатора Т1 и двумя параллельными SMD-конденсаторами: С32 и СЗЗ. Таким образом, резонансный контур является последовательным.

Питающим напряжением инвертора является +15В, которое подается на инвертор через предохранитель F201 (3 Ампер). Это напряжение используется и для питания управляющей микросхемы, и для питания силового каскада -резонансного контура.

Колебания в резонансном каскаде обеспечиваются синхронным переключением двух силовых транзисторов в интегральном исполнении (транзисторная сборка типа STU407DH). Транзисторы являются полевыми: один из них Р-канальный (верхний ключ), а другой N-каналъный (нижний ключ). Управление транзисторами осуществляет контроллер задней подсветки FAN7314.

Так как контроллер предназначен для управления мостовым преобразователем, а в данной схеме используется всего два транзистора, а не четыре, то два выхода (OUTC и OUTD) микросхемы не используются (конт.14 и конт.15). Противофазные импульсы формируются на выводах OUTA и OUTB (конт.18 и конт.19). Импульсы следуют с частотой в несколько десятков кГц (но последовательность импульсов прерывается, образуя, так называемые, «пачки» – см. ниже про регулировку яркости). Эта частота задается конденсаторами С5, С24, С25. В зависимости от модификации платы, конденсаторы С24 и С25 могут включаться в разных комбинациях. Для этих целей предусмотрены перемычки. Кроме того, частота внутреннего генератора задается еще и номиналом резистора R5.

Обратная связь по току Для стабилизации тока ламп, т.е. для стабилизации их яркости, в инверторах применяется отрицательная обратная связь по току. Для обеспечения обратной связи по току, последовательно с лампами включается токовой датчик – резистор, сопротивлением от нескольких сотен Ом до 1 кОм. Эти резисторы, традиционно, являются прецизионными (с допуском на отклонение номинала в 1%). С резистора обратной связи снимается напряжение, величина которого прямопропорпионально величине тока, протекающего через лампы, а, значит, пропорционально яркости лампы.

В представленной схеме такими токовыми датчиками являются R16, R17, R18, R19, номиналом по 1 кОм. Сигналы, снимаемые со всех четырех датчиков, сводятся в одну точку, в которой и образуется результирующее напряжение обратной связи. Суммирование сигналов токовых датчиков осуществляется посредством развязывающих диодов диодных сборок D6, D7, D8, D9. Результирующее напряжение обратной связи подается на конт.9 контроллера FAN7314 через цепь согласующих резисторов R15, R9, R8.

К сигналу обратной связи еще добавляется сигнал A-DIM, который является аналоговым сигналом регулировки яркости. Сигнал A-DIM формируется микропроцессором монитора и изменяет свою величину при пользовательской регулировке яркости. Сигнал представляет собой напряжение постоянного тока, увеличение сигнала А-DIM приводит к увеличению напряжения обратной связи, и, как следствие, к уменьшению тока ламп. И наоборот.

Зашита от превышения напряжения

Защита от превышения напряжения на лампах обеспечивается сигналом обратной связи по напряжению. К «горячему» контакту каждого разъема ламп подключен емкостной делитель напряжения (С8/С29, С7/С15, С9/ С30, С10/С14). В средней точке каждого делителя формируется переменное синусоидальное напряжение, пропорциональное напряжению на лампах. Далее все четыре напряжения выпрямляются и суммируются с помощью диодов, диодных сборок D3 и D4. Результирующее напряжение прикладывается к конт.2 (OLR) контроллера FAN7314. Сглаживание суммирующего напряжения обеспечивается конденсатором С16. За счет диодов D3 и D4 на контакте OLR устанавливается напряжение, являющееся максимальным из четырех сигналов обратной связи по напряжению. Другими словами, превышение напряжение на любой из четырех ламп приводит к срабатыванию данной защиты.

Защита от обрыва ламп

Обрыв цепи лампы является опаснейшей ситуацией для инвертора. Это становится причиной выхода из строя силовых ключей инвертора, т.к. инвертор, являющийся импульсным преобразователем, начинает работать в режиме холостого хода без нагрузки. Обрыв ламп в данной схеме, как впрочем, и в большинстве других, определяется по отсутствию напряжения на резисторах токового датчика лампы (R16…R19).

При протекании тока через лампы, на резисторах R16…R19, формируется напряжение, которое сглаживается конденсаторами С17, C16, C19, С20. В результате, на этих конденсаторах устанавливается напряжение, обеспечивающее запирание диодов диодных сборок D10 и D11. Закрытое состояние всех этих четырех диодов обеспечивает открытое состояние транзистора Q1, т.к. база этого транзистора смещена на величину опорного напряжения VREF, вырабатываемого контроллером FAN7314.

Если обрывается хотя бы одна лампа, то тут же открывается один из четырех диодов сборок D10 и D11, т.к. на стороне катода соответствующего диода пропадает запирающее напряжение. Это, в свою очередь, приводит к закрыванию транзистора Q1 и блокировке контроллера FAN7314.

Регулировка яркости

В рассматриваемом инверторе приме няется метод регулировки яркости Burst Dimming (метод прерывистой регулировки), предполагающий, что ток ламп представляет собой «пачки» высокочастотного переменного тока (рис.2). «Пачка» соответствует включенному состоянию лампы, а между пачкам, соответственно, лампа выключается. Ширина этих пачек, т.е. соотношение включенного и выключенного состояния ламп, определяет яркость заднейподсветки. При увеличении яркости, ширина «пачек» увеличивается, а при максимальном уровне яркости, ток в лампах становится, фактически, непрерывным.

Регулировка яркости в данной схеме осуществляется двумя сигналами: A-DIM и B-DIM, формируемыми микропроцессором монитора.

Сигнал B-DIM подается на вход инвертора через конт.1 разъема CN201. Сигнал В-DIM представляет собой низкочастотные импульсы, следующие с частотой примерно 200 Гц. При регулировке яркости, ширина этих импульсов изменяется. Именно ширина этих импульсов определяет ширину «пачек» переменного тока в лампах.

Сигнал A-DIM подается на вход инвертора через конт.7 разъема CN201, и представляет собой напряжение постоянного тока. Этот сигнал подмешивается к сигналу обратной связи, подаваемому на конт.9 микросхемы FAN7314. При регулировках яркости, сигнал A-DIM, практически, не изменяется. Значительное скачкообразное изменение уровня сигнала A-DIM происходит при изменении цветовой палитры через меню Magic Bright, и только при выборе некоторых установок этого меню.

Неисправности инвертора

Для инверторов семейства PWI1904SJ(M) характерны две неисправности:

выход из строя транзисторной сборки STU407DH;

выход из строя трансформатора Т1.

Отказы других элементов схемы являются крайне маловероятными, поэтому говорить о них не имеет смысла, а вот обсудить наиболее вероятные отказы необходимо.

Транзисторная сборка Сборка STU407DH представляет собой пару полевых транзисторов разной проводимости: N-канальный и Р-канальный. Внутренняя архитектура сборки и ее внешний вид представлены на рис.3.

Основные электрические характеристики транзисторов сборки следующие:

напряжение сток-исток: 40В;

напряжение затвор-исток: 20В;

ток стока (для Р-канального): -12А;

ток стока (для N-канального): 16А;

ток стока импульсный: 50А;

прямой ток демпферного диода (для Р-канального транзистора): -6А;

прямой ток демпферного диода (для N-канального транзистора): 8А;

Неисправность сборки заключается в пробое одного или двух транзисторов сборки. Диагностика сборки, естественно, проводится тестером (омметром), и заключается в поочередной проверке двух полевых транзисторов (как проверять полевые транзисторы мы здесь распространяться не будем). Следует также отметить, что аналоги этой транзисторной сборки не известны, поэтому при отказе STU407DH придется приобретать именно ее.

Трансформатор

Тип используемого в данном инверторе трансформатора – TMS92515CT.

Типовая неисправность данного трансформатора заключается в обрыве (или в «подгорании», т.е. в увеличении активного сопротивления) одной из двух вторичных высоковольтных обмоток.

Параметры этих вторичных обмоток исправного трансформатора следующие:

активное сопротивление: 1120…1130 Ом;

индуктивность : 1.93…1.95 Гн.

Исходя из представленных данных. Можно сказать, что диагностика трансформатора – дело весьма посредственное, осуществимое с помощью самого простого тестера. Достаточно лишь измерить сопротивление вторичных высоковольтных обмоток. Но хотелось бы отметить, что значение сопротивления обмотки может быть и другим, поэтому при проверке трансформатора лучше сравнить сопротивление его двух высоковольтных обмоток. Если сопротивления одинаковы, то трансформатор исправен. А если сопротивления различаются на 100 Ом и более, то можно говорить о неисправности трансформатора, причем неисправной обмоткой следует считать ту, у которой сопротивление больше.

Что же делать, если одна из обмоток в обрыве, или ее сопротивление увеличилось ?

Первое решение. Самым простым решением является замена трансформатора. Его приобретение в настоящий момент времени не должно составить особого труда. На рынке широко представлены «совместимые» трансформаторы с аналогичными характеристиками. Однако, следует иметь в виду, что при покупке «совместимого» трансформатора вполне можно столкнуться с ситуацией, когда при замененном трансформаторе инвертор не работает совсем, или через некоторое время срабатывает зашита.

Второе решение. Другим решением проблемы неисправного трансформатора является переделка схемы инвертора на работу с двумя лампами.

Для этого придется проделать следующее:

удалить неисправную высоковольтную обмотку;

заблокировать защиту от обрыва ламп;

выпаять резистор R31.

Неисправную обмотку придется полностью удалить (рис.4). Отключение нагрузки с неисправной обмотки (т.е. двух ламп), результата не дает, и при работе на холостом ходу (при заблокированной защите) трансформатор очень сильно нагревается. Защита от обрыва ламп, как указывалось ранее, организована посредством двух диодных сборок: D10 и D11. Поэтому блокировка защиты предполагает выпаивание одной диодной сборки, соответствующей тому «плечу» инвертора, в котором была удалена высоковольтная обмотка. Далее для надежности запуска инвертора, удаляем из схемы резистор R31.

После этого схему можно запускать, и к оставшейся обмотке нужно подключить две лампы. Для обеспечения равномерности засветки экрана, желательно сделать так, чтобы к оставшейся обмотке была подключена одна верхняя лампа и одна нижняя. Длина соединительных проводов ламп в мониторах с инвертором PWI1904SJ(M), позволяет проделать такую коммутацию без проблем.

LG Flatron W1942S ремонт платы питания и инвертора

Пришёл в ремонт жк монитор LG FLATRON W1942S с вздутыми конденсаторами 470 мкФ на 35 В — 3шт. Монитор при включении мигает надписью LG, и выключается и так, до бесконечности. Проверяем предохранитель, если цел смотрим дальше.

Схема монитора TFT LG FLATRON W1942S

Перед началом диагностики рекомендуем ознакомится со структурной схемой монитора lg w1942s

С другой стороны платы часто выгорает smd конденсатор, который стоит в обвязке микросхемы, маркировка C303, находится параллельно с таким же C302. Как правило, выгорает конденсатор C303 вместе с транзистором APN 4052. По всей видимости – это слабое звено у LG w1942s.

Прошивка после скачка напряжения

Как правило, после скачка напряжении у LCD монитора LG 1942 и 1742 слетает и прошивка. Так что после замены неисправных элементов, возможно, потребуется перепрошить монитор.

LG flatron w1942s при включении подсветка загорается на 2-3 секунды и гаснет

Осмотр показал 3 вздутых электролита на 470 мкф на 35 вольт, которые были заменены на новые, вместо с 1000 мкФ х 16 В для профилактики. Первое включение показало, что после замены конденсаторов подсветка не загорается даже на секунду, а индикатор питания светится синим, но экран остается темным. Диагноз сгорел мосфет 4525GEH, его можно заменить аналогом STU407D.

схема блока питания для подсветки монитора LG W1942S

Внимание! Включать монитор, после замены вздутых конденсаторов по питанию инвертора, без предварительной прозвонки выходных транзисторов, нельзя.

Не рекомендуем покупать дешевые китайские конденсаторы (класса Экстра E-C), у них ESR завышено в 1,5 – 2 раза. Работать будет, но чревато нагревом конденсатора и транзистора импульсного преобразователя. Ставим конденсаторы нормального бренда: Jamicon, Suntan, Samwha или Yageo.

Обвязка транзистора, по схеме инвертора для подсветки монитора не пострадала, все детали оказались рабочими. Осталось приобрести APM4048DU4 корпус TO252-4 или аналоги STU407D, АР4525GEH, IRF7389, IRF7319PBF (хуже по току). Поставили STU407D, т. к. характеристики по току лучше почти в 2 раза.

После замены элементов еще нужно проверить ежеминутно температуру транзисторов и температуру конденсаторов в первые 10 минут. Ежели не горячие, то проверяем температуру уже через каждые 5 минут.

Не включаются лампы подсветки LG W1942S – виноват APM4048DU4

Если ремонт не закончился перепайкой конденсаторов, а у LG flatron W1942S видимо нет срабатывания защиты после утечки конденсаторов (их надо менять заранее), то всё может оказаться сложнее. Короткое замыкание трансформатора в инверторе или непропаянные ножки трансформатора в самом трансформаторе, то ищите по запросу «схема инвертора для подсветки монитора«.

схема инвертора для подсветки монитора LG W1942S

Обратите внимание на плату, в том месте, где припаяны ножки конденсаторов 470 мкф х 35 В, ремонт монитора LG W1942S уже был когда-то, и Харьковские мастера решили не заморачиватся с чисткой платы от канифоли после пайки. Вот и результат, не видно ни дорожек и вид не презентабельный

APM4048DU4

APM4048DU4 — вот и сам виновник.

Stu407d как проверить

Изначально был слегка слышный треск 5-10сек при включениях. потом при работе замерцал и отключился. Сейчас включается на 1-2 сек и гаснет. Вскрыл, обнаружил 2 вздутых конденсатора 470uF25v. Заменил. Треск вроде пропал, но все равно гаснет через 1-2 сек.

Начитался "проверить обмотки транса TMS92515CT". но не пойму где там обмотки, везде по нулям кажет.

что еще смотреть? проблема наверно уже решалась неоднократно.

_________________
я кот — сам по себе.

_________________
я кот — сам по себе.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

как раз этим занимаюсь:) щас все будет

модель Samsung 932BF

Старые кондюки
Изображение

Изображение

подозрительный stu407D такое ощущение что впаян кустарно, но моник покупался новым, запечатанным, в 2008 году в олди.

Изображение

все остальное вроде целое внешне
общие виды

темные пятна это я так паял коряво, спешил, думал "щя все заработает")
Изображение

Изображение

Источники питания для автомобильной электроники, включая маяки, GPS/ГЛОНАСС-трекеры и охранную сигнализацию, должны обеспечивать бесперебойное питание и безопасность, а также быть устойчивыми к вибрации и исправно работать при низких температурах. Батарейки FANSO EVE Energy обладают всеми необходимыми параметрами для надежной работы оборудования современного автомобиля.

My video on youtube nic SLvik78

На складе КОМПЭЛ доступны сетевые адаптеры (внешние блоки питания) производства MEAN WELL, представленные семействами GS, GST и GSM различного конструктивного исполнения: в розетку и настольные. Адаптеры GS и GST предназначены для питания различных промышленных и бытовых приборов, а семейство GSM может применяться для питания устройств медицинского назначения, поскольку соответствует требованиям EN 60601-1 и 60601-1-11. При этом они характеризуются малым потреблением энергии на холостом ходу.

еще бы знать как:) куда ткнуть что смотреть?

транс ткнул мультиметром. (тут я так понимаю 2 первички и 2 вторички?) На первичках показывает очень мало — 2 ОМ, на вторичках 1,15 и 1,22К

Нет, наверно первичка тут одна? И на ней при диапазоне 200 Ом мультиметр показывает "03.1"!

вот что начитал

Монитор (LS19MYAKBB/EDC / MY19LS) поступил в ремонт с заявленным дефектом "включается и сразу гаснет". В мониторе используются: матрица HannStar HSD190MEN3 -A00 Rev:0; плата источника питания / инвертора PWI1904SJ(M) Rev.1.1 Mckinley 17"/19" Normal, источник питания выполнен на основе микросхемы FSDM0465R (маркировка — DM0465R, datasheet), а инвертор — на основе микросхемы FAN7314, транзисторной сборки STU407DH (datasheet) и высоковольтного трансформатора TMS92515CT; плата скалера Mckinley BN41-00877A MP1.0.

В ходе проверки было установлено, что причиной дефекта является неисправность высоковольтного трансформатора T1 TMS92515CT, точнее — одной из его высоковольтных обмоток (связана с разъёмами для подключения ламп подсветки CN1, CN2), параметры неисправной обмотки — R=1.18k, L=2.4H, исправной — R=1.13k, L=2.44H. После замены неисправного трансформатора на новый (параметры его обмоток: R=890Ω/ 920Ω, L=1.93H/ 1.95H), монитор стал нормально включаться, но при этом выяснилось, что на экране есть помехи в виде какой-то непонятной "ряби" и несколько нарушена цветопередача. Данная проблема была решена перепрограммированием на программаторе микросхемы Flash-памяти IC201 MX25L1005MC, расположенной на плате скалера. Файл для прошивки микросхемы можно взять на этом сайте, в разделе "Прошивки".

НА ПРАКТИКЕ НЕ ПРОВЕРЯЛОСЬ! По аналогии с ремонтом монитора SAMSUNG SyncMaster 940N, можно попробовать не заменять трансформатор T1, а перевести монитор на работу с двумя лампами подсветки от одной исправной обмотки T1. Для этого нужно удалить один из SMD-диодов типа CA2 D10 (в данном случае) или D11 (если неисправна обмотка, работающая на разъёмы CN3, CN4) и саму неисправную обмотку TMS92515CT.

P.S. Другой материал по ремонту монитора этой модели можно посмотреть здесь.

P.P.S. В ремонт поступил ещё один аналогичный монитор (с платой источника питания / инвертора PWI1904SJ(M) Rev.1.0), неисправность которого также была вызвана дефектом высоковольтного трансформатора T1 TMS92515CT. Для статистики: сопротивление его неисправной высоковольтной обмотки было около 4k (индуктивность определить не удалось), а исправной — 1.13k (L=2.94H), сопротивление обмоток исправного трансформатора — 923. 924Ω.

Последний раз редактировалось FF_Group Чт апр 11, 2013 22:47:45, всего редактировалось 1 раз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *