Thd n что это
Перейти к содержимому

Thd n что это

Коэффициент нелинейных искажений (КНИ, THD), коэффициент гармонических искажений (КГИ, Kг, THDr) – различные подходы к определению

19.01.2012 08:48 |

Коэффициент нелинейных искажений (КНИ, THD)

Коэффициент нелинейных искажений (КНИ) или Total Harmonic Distorsions (THD) – показатель, характеризующий степень отличия формы сигнала от синусоидальной, так же можно сказать это – величина для количественной оценки нелинейных искажений периодического сигнала.

The total harmonic distortion, or THD, of a signal is a measurement of the harmonic distortion present and is defined as the ratio of the RMS of all high harmonic components to the RMS of the fundamental frequency harmonica.

Коэффициент безразмерный, но обычно умножается на 100% для получения значения в %.

Важное замечание:
В силовой электротехнике рассматриваются термины характеризующие нелинейность одного конкретного сигнала (например только сигнала выходного тока). Термины характеризующие нелинейность устройства (усилителя, и т.д.) и включающие в расчёт как входной так и выходной сигналы устройства не используются.

Коэффициент нелинейных искажений сигнала (КНИ, Kн, THD, THDf) – величина, выражающая степень нелинейных искажений сигнала, равна отношению среднеквадратичного значения всех высших гармоник сигнала к напряжению первой гармоники:

Это определение соответствует международному определению КНИ / THD для силовой электротехники и используется в большинстве анализаторов сети, например, HIOKI3197 (и др. оборудовании измеряющим КНИ), указывается в паспортных данных большинства электротехнического оборудования. Данный термин указывается в паспортных данных оборудования N-Power. Данная формула является основной (соответствует ГОСТ и EN 62040-3) , а все другие приведенные в данной статье являются упрощенными и приведены для справки.

  1. Первая гармоника также называется основной или фундаментальной, для обычной сети – это гармоника 50Гц.
  2. В паспортных значениях ИБП, стабилизаторов, и др. оборудования обычно указывается этот параметр.
  3. Оборудование измеряющее КНИ / THD (стабилизаторы, ИБП, анализаторы сети и др.), обычно используют этот параметр.
  4. КНИ используется в основном для измерения искажений формы входного или выходного тока и обозначается как: Current THD, THDI, токовый КНИ. Также параметр используется для характеристики сигнала напряжения, в этом случае он обозначается: THDU, КНИ напряжения.
  5. Во многих учебниках эта величина также может называться КГИ (RHD, Residual Harmonic Distortion) например [4,5,9,10] – см. дополнение ниже.

Так же в электротехнике используется следующий термин (например Анализаторы сети могут измерять эту величину):

Коэффициент гармонических искажений (КГИ, Kг, THDr) – величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичного значения всех высших гармоник сигнала, к среднеквадратичному значению спектральных компонентов всего сигнала кроме постоянной составляющей:

  1. Нулевая гармоника называется также постоянной составляющей.
  2. Во многих учебниках эта величина также может называться КНИ(THD) например [4,5,9,10] –см. дополнение ниже.
  3. При незначительных величинах гармонического состава значения THDr и THDf близки.

Соотношения связывающие обе величины:

  1. КНИ (THDf) также называется КНИ приведённым к величине СКЗ фундаментальной гармоники.
  2. КГИ (THDr) также называется КНИ приведённым к величине СКЗ полного сигнала. [12] не использует термин КНИ, но если считать что при вычислении значения коэффициента искажения синусоидальности кривой именно его рассчётная формула приведена первой [12, Б3.3.2], то терминология приведённая выше соответствует ГОСТ 13109-97.
Современные международные обозначения КНИ (THD)

Приведённые ниже термины повторяют уже рассмотренные в данной статье определения.

1) THDf is the Total Distortion compared to the RMS value of the fundamental frequency value.

THDf is the ratio of the sum of the powers of all harmonic frequency components (except for the fundamental RMS1) to the power of the fundamental frequency component and is calculated as follows:

Remarks:
Total RMS = RMS value of all waveform points (full waveform periods)
RMS0 = RMS value of DC component
RMS1 = RMS value of the fundamental frequency component

Remarks:
Real_i = Real part of the frequency component i
Imag_i = Imaginary part of the frequency component i

2) THDr is the Total Distortion compared to the RMS value of the total waveform.

THDr is the ratio of the sum of the powers of all harmonic frequency components (except for the fundamental RMS1) to the power of all harmonic frequency components and is calculated as follows:

Remarks:
Total RMS = RMS value of all waveform points (full waveform periods)
RMS0 = RMS value of DC component
RMS1 = RMS value of the fundamental frequency component

Remarks:
Real_i = Real part of the frequency component i
Imag_i = Imaginary part of the frequency component i

Прочие определения КНИ (THD), встречающиеся в технической литературе

Существуют другие определения КНИ (THD), например, приведённые ниже. Однако, в силовой электротехнике они не используются.

1) THD:

2) THD+N – общие искажения плюс шум:

Перечень терминов и определений, применяемых ранее в русскоязычных учебниках по радиоэлектронике и электротехнике

Во избежании путаницы ниже представлена терминология, использовавшаяся в русскоязычных учебниках по радиоэлектронике и электротехнике.

Эти термины могут использоваться в настоящее время в радиотехнике, но в силовой электротехнике во избежании путаницы рекомендовано применение международных терминов (см. выше).

В русскоязычной литературе ранее были приняты обозначения и термины:

1) Коэффициент нелинейных искажений (КНИ) или коэффициент искажений или коэффициент гармонических искажений сигнала, равный отношению действующего значениия основной(первой) гармоники к действующему значению всего сигнала (всей функции):

d = Кни = КНИ = A1 / A=I1 / I

d=1 – для синусоидального сигналов
d=

0.99 – для треугольного сигнала
d=0.9 – для прямоугольного сигнала

Положим, что напряжение синусоидально, а ток несинусоидален. В этом случае активная мощность определяется мощностью первой гармоники:

При этом действующее значение тока:

Множитель kи называется коэффициентом искажения:

Русский термин «коэффициент искажения» эквивалентен зарубежному термину «искаженный коэффициент мощности». Его можно выразить также через THD как показано ниже:

Формула является правильной, но как в отечественной, так и зарубежной литературе, эти термины в силовой электротехнике не используются (или применяются редко). Эту формулу можно получить поставив определение КНИ в формулу определяющую «искажённый коэфф мощности»:

2) Коэффициент нелинейных искажений (КНИ) – величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним – клирфактор (заимств. с нем.). КНИ – безразмерная величина, выражается обычно в процентах.

Коэффициент гармонических искажений – величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Коэффициент гармоник (КГ) так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (K Н ) соотношением:

Важное замечание:
Следует признать, что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети [10], но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэффициента мощности и др.) рекомендуется применение терминов приведенных в самом начале.

Данную терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

Российский стандарт. Коэффициент нелинейных искажений (КНИ) и качество сетевого электропитания (ГОСТ 13109-97)

Ниже представлены выдержки из ГОСТ 13109-97:

Вычисляют значение коэффициента искажения синусоидальности кривой напряжения Кт в процентах как результат i-го наблюдения по формуле:

где U(1)i — действующее значение междуфазного (фазного) напряжения основной частоты для i-го наблюдения, В, кВ.

При определении данного показателя КЭ допускается:

1) не учитывать гармонические составляющие, значения которых менее 0,1 %;
2) вычислять данный показатель КЭ по формуле

Примечание:
Относительная погрешность определения КUi с использованием формулы (Б.16) вместо формулы (Б.15) численно равна значению отклонения напряжения U(1)i от Uном.

Формула приведенная в данном ГОСТе первой (Б.15) соответствует международному определению термина КНИ / THD (см. начало статьи, см. стандарт EN 62040-3).

Европейский стандарт качества сетевого электропитания (EN 62040-3), и коэффициент нелинейных искажений тока

Коэффициент нелинейных искажений по току в % идентичен базовому определению КНИ, определенному в стандарте EN 62040-3 и рассчитывается как процентное отношение среднеквадратичных значений высших гармоник к базовой (первой) гармоники. См. прилагаемую формулу.

[1] Ф.Е.Евдокимов. Теоретические основы электротехники М., Академия 2004 cтр. 262

[2] Г.И. Атабеков. Основы Теории Цепей с.176, стр. 434

[3] Анализатор сети Fluke 435. Руководство пользователя

[4] Справочник по радиоэлектронным устройствам. В 2-х т. Под ред. Д. П. Линде – М.: Энергия, 1978

[5] Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины – М: Рус. яз., 1993

[6] Коэффициент нелинейных искажений: http://ru.wikipedia.org/

[7] Total Harmonic Distortion: http://en.wikipedia.org/wiki/Total_harmonic_distortion

[8] Total Harmonic Distortion: http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion

[9] П.Шпритек. Справочное руководство по звуковой схемотехнике 3.1.1. Москва Мир 1991

[10] Анализатор сети DMK62 Lovato. Руководство пользователя:
http://www.lovatoelectric.com/RICERCA/ITALIANO/03_ISTRUZIONI/I104IGBFE04_08.PDF

[11] ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки.
ГОСТ 8.110-97 ГСИ. Государственная поверочная схема для средств измерения коэффициента гармоник

[13] Анализатор сети HIOKI3197. Руководство пользователя

Современные международные обозначения КНИ(THD)
Приведённые ниже термины повторяют определения приведённые выше.
I

Дополнение1
Замечание: существуют другие определения КНИ(THD) например приведённые ниже но в силовой электротехнике они не используются:
I THD

II THD+N
THD+N обозначает общие искажения плюс шум.

Дополнение2
Внимание!
Во избежании путаницы ниже приведены термины ранее использовавшиеся в русскоязычных учебниках по радио/электротехнике.
Эти термины могут использоваться в настоящее время в радиотехнике но в силовой электротехнике во избежании путаницы рекомендовано применение международных терминов приведённых выше.
В русскоязычной литературе ранее были приняты обозначения и термины:
I
Коэффицие́нт нелине́йных искаже́ний (КНИ)
или Коэффициент искажения(ий)
или Коэффициент гармонических искажений сигнала
равен отношению действующего значениия основной(первой) гармоники к действующему значению всего сигнала (всей функции).
d=Кни=КНИ=A1/A=I1/I
Для синусоиды d=1, для треугольного сигнала d

=0,99, для прямоуг. сигнала d=0,9.
Дополнительная информация:

II
Коэффицие́нт нелине́йных искаже́ний (КНИ) — величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним — клирфактор (заимств. с нем.). КНИ — безразмерная величина, выражается обычно в процентах.

Коэффициент гармонических искажений — величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Коэффициент гармоник так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН) соотношением :

Замечание 1: следует признать что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети [10], но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэфф. мощности и др.) рекомендуется применение терминов приведённых в самом начале.
Эту терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

Дополнение 3
Выдержки из ГОСТ 13109-97:

Из приведённых в ГОСТ определений видно что вторая формула соответствует определению КНИ (несмотря на то что термин КНИ вообоще отсутствует).

[1] Ф.Е.Евдокимов Теоретические основы электротехники М., Академия 2004 c.262.
[2] Г.И. Атабеков Основы Теории Цепей с.176, 434с.
[3] Анализатор сети Fluke 435 Руководство пользователя
[4] Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде — М.: Энергия, 1978
[5] Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины — М: Рус. яз., 1993
[6] http://ru.wikipedia.org/ Коэффициент нелинейных искажений
[7] http://en.wikipedia.org/wiki/Total_harmonic_distortion
[8] http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion
[9] П.Шпритек Справочное руководство по звуковой схемотехнике 3.1.1, Москва Мир 1991
[10] Анализатор сети DMK62 Lovato Руководство пользователя.
http://www.lovatoelectric.com/RICERCA/ITALIANO/03_ISTRUZIONI/I104IGBFE04_08.PDF
[11] ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки
ГОСТ 8.110-97 ГСИ. Государственная поверочная схема для средств измерения коэффициента гармоник
[12] ГОСТ 13109-97
[13] Анализатор сети HIOKI3197 Руководство пользователя

С замечаниями по содержанию этого раздела просьба обращаться: .

Александр.
SIEL подвердил что все правильно с THD
Можно целиком текст ниже в статью включить+этот стандарт тоже.
Даниил А.
________________________________________
From: Mazza Angelo [mailto: ]
Sent: Wednesday, December 21, 2011 7:33 PM
To: Daniil A.
Cc: ‘Олег Сергеев’; Matoshi Gladiola; Pensini Glauco
Subject: R: SafePower Evo input THD //l2
Dear Mr. Daniil,
the value THDI%, indicated in the manual, is the definition of Total Harmonic Distortion and is exactly equal to the definition expressed by UPS Statement of EN 62040-3, which defines it as the percentage ratio of the rms value of the harmonic content and the rms value of the fundamental component (first harmonic) which expressed by the following relationship:

Аудио высокой «четкости»: мифы и реальность

Технология Intel® High Definition Audio (она же Azalia) по замыслу её создателей должна прийти на смену изъезженной вдоль и поперёк архитектуре компьютерного звука AC-97. Последняя получила широчайшее распространение на всех типах платформ, включая мобильные решения, но рано или поздно будет вынуждена сойти с дистанции. Вообще-то старение AC-97 пока ещё не столь заметно. «Ветеран» AC-97 может поупираться ещё довольно долго, благодаря всяким ревизиям-обновлениям, хотя запас «расширений» уже исчерпан. Главное преимущество продвигаемой «Интелом» новаторской технологии (далее сокращенно HD Audio) – это 32 битный многоканальный (7.1) звук с частотой дискретизации до 192 кГц. Для специалистов это преимущество весьма сомнительно, но на народ действует гипнотически. Посему настал черёд разобраться, стоит ли принимать во внимание «новинку» (которая уже год, как тихой сапой продаётся) при выборе компьютера.

Есть у HD Audio и другие преимущества. Например, поддержка 16 микрофонов. Всё дело в микрофонной решётке, выделяющей голос из окружающих шумов, что (не без хитрых алгоритмов) помогает распознавать слитную речь. Это скорее задел на светлое корпоративное будущее, чем реалии современного быта. Устаревающий стандарт AC-97 был готов обслуживать 2 мономикрофона (один стерео), но на практике производители ограничивались единственным моновходом, очевидно, по причине отсутствия массового спроса. Не спешат использовать кучу микрофонов и новоявленные HD Audio устройства. Так, в ноутбуках с Sonoma, которая потенциально поддерживает HD Audio, даже стереовходы лично мне ещё не встречались ни разу.

Самым «слабым» местом AC-97 были драйверы, которые разрабатывались сторонними производителями по принципу «кто во что горазд». HD Audio обещает обслуживаться готовыми драйверами операционной системы (разумеется, от MicroSoft), но на деле системными драйверами для такого сложного устройства, как аудиокарта (не важно, встроенная, или нет), ограничиться будет крайне сложно. В любом случае, потребуются дополнительные драйверы от тех же сторонних производителей.

Как выяснилось, удобство инсталляции «plug’n’play» у AC-97 было реализовано лишь частично. HD Audio берётся довести это «до ума». Похвально! Но верится с трудом.

Что действительно революционно у HD Audio, так это поддержка многопоточности с динамическим распределением каналов (памяти) DMA для каждого потока в отдельности. То есть предоставляется возможность озвучивать одновременно несколько источников, причём с разной частотой дискретизации (например, воспроизводить фильм с Dolby Digital 5.1, и параллельно не забывать про монофонический голосовой чат). Полоса пропускания составит для вывода до 48 Мбит в сек, а для ввода – 24 Мбит в сек. Это позволит воплотить в жизнь доктрину «цифрового дома», стерев границы между бытовым и компьютерным аудио. Фактически, в ближайшем будущем появится некая штуковина вроде домашнего развлекательного центра, обслуживающего всё видео и аудио в нашей квартире. Более того, стабильная синхронизация для каждого потока заложит «мину замедленного действия» под профессиональные аудиорешения. Однако, всё это лишь в перспективе, а действительность выглядит не столь радужно. О чём в подробностях чуть ниже.

Даешь все домашнее видео и аудио в руках одного компьютера!

Если верить информации, выложенной на сайте Intel, на данный момент HD Audio поддерживается чипсетами Intel® 915G, 915P и 925X Express. Что-ж, лиха беда начало…

А что же конкуренты? Похоже, AMD сделал ставку не на ту лошадку. Поначалу, заморочив головы с кодированием-декодированием в Dolby Digital, аудио от AMD (точнее, от NVIDIA, родоначальницы чипсета nForce), не долго поражало воображение покупателей. Помнится, года два назад NVIDIA грозилась сделать «лучший в мире звук на РС». Полная аппаратная поддержка DirectSound и DirectX 8.0, конечно, хорошо, но для долговременного успеха явно не достаточно. Например, кодирование в реальном времени в DolbyDigital с хорошим качеством выходящего сжатого звука в случае шести каналов требует прорву вычислительных ресурсов даже для 16 битного сигнала. А слабо 24 бит 96 кГц в DTS сжать? Какое конкретно качество после сжатия в состоянии обеспечить nForce, так и осталось тайной. Фирма не удосужилась поведать, а журналисты слепо поверили на слово. Это надо же было такое придумать: сжимать непонятно как, чтобы ради одного цифрового шнурка передавать многоканальный сигнал на внешний Hi-Fi ресивер! Короче, идея фикс. На сегодняшний день продвинутое аудио как таковое в списке перспективно-приоритетных направлений NVIDIA не значится. Возможно, какие-то замыслы держатся в строжайшей тайне, хотя серьёзных предпосылок для этого не видать. Было бы что по существу держать в секрете!

Краткий справочник (вместо теории)

АЦП (ADC) Преобразователь аналогового сигнала в цифровой. Передаваемый (а также хранимый где-либо) цифровой сигнал представляется в двоичном виде как упорядоченная последовательность нулей и единиц. Один нолик (или единичка) эквивалентен одному биту. Кстати, количество информации измеряется битах, а восемь бит дают один байт.
Разрядность АЦП (ADC bits) Количество бит (иными словами, разрядов) у АЦП фиксировано. Чем больше бит, тем бОльшая по значению амплитуда может быть представлена, и тем больше динамический диапазон (см далее). Следует различать линейные (ещё их называют мультибитными) и однобитные (типа дельта-сигма и т.п.) преобразователи. В однобитном преобразователе прибегают к передискретизации (см далее), тем самым косвенно наращивая число бит в формируемом цифровом сигнале. Не все разряды мультибитного АЦП вносят одинаковый вклад в формирование цифрового сигнала. Как правило, крайние биты у силу принципиальных ограничений работают в полсилы, что приводит к сокращению количества эффективных бит. Поэтому, например, у 20 битного АЦП эффективных бит может оказаться около 16, а у какого-нибудь разрекламированного 24 битного АЦП (на самом деле однобитного дельта-сигма) случается к.п.д. и того меньше. Чем выше количество эффективных бит, тем лучше у АЦП реальный динамический диапазон (см далее), соотношение сигнал шум и т.д.
Частота дискретизации (sampling frequency) Частота, с которой при получении цифрового сигнала выхватываются в аналоговом сигнале отдельные уровни амплитуды (дискреты), переводимые тем или иным способом в численные значения. Чтобы корректно озвучить цифровой сигнал (т.е. преобразовать его обратно в аналоговый), необходимо знать величину частоту дискретизации, при которой происходила «оцифровка».
Передискретизация (oversampling) Упрощенно говоря, захват дополнительных точек (дискрет) в промежутках между временнЫми отсчётами, задаваемыми частотой дискретизации. Используется для повышения точности цифрового сигнала при искусственно заниженной разрядности (вплоть до 1) преобразователей.
Искажения (distortions) Искажения подразделяются на нелинейные, переходные, амплитудно-частотные и фазово-частотные. Нелинейные искажения, в свою очередь, делятся на гармонические (когда при подведении одной частоты возникают и другие частоты, кратные подводимой, назваемые гармониками) и интермодуляционные (когда при подведении двух разных частот возникают частоты, являющиеся суммой или разностью подводимых частот). Нелинейные искажения оцениваются посредством разнообразных придуманных коэффициентов. Так, THD (total harmonic distortion) отличается от THD+N тем, что для оценки отбираются лишь гармоники, а широкополосные шумовые составляющие не учитываются. Следовательно, THD+N характеризует нелинейные искажения какого-либо преобразователя более полно, но смешивает в одну кучу гармоники и шум. Коэффициент интермодуляционных искажений обозначается как IMD (inter modulation distortion) и свидетельствует о том, как одна частотная компонента (например, 10 кГц) влияет на другую (1 кГц). Какие искажения наиболее ощутимы на слух, зависит как от значения частоты, так и от комбинации множества факторов. Например, так любимые эстетами звука лампы в усилительных каскадах дают чётные (более заметные на слух) и нечётные гармоники, причём очень мощные, хотя и ослабевающие экспоненциально по мере роста частоты. Многие гитарные distortion эффекты превносят кучу гармоник, но на слух это в целом воспринимается позитивно. Так что оценки величины нелинейных искажений указывают на потенциальные неточности воспроизведения/записи звука, но мало говорят о том, насколько приятен или неприятен будет звук на слух.
ЦАП (DAC) Преобразователь цифрового сигнала в аналоговый. В принципе, выполняет все процедуры намного быстрее и проще, чем АЦП, поэтому дешевле в разработке и производстве. Чем выше текущая частота звуковых составляющих в цифровом сигнале, тем сложнее ЦАПу восстановить истинную форму в выдаваемом аналоговом сигнале.
Кодек (codec) Совмещённый АЦП/ЦАП.
Программное (реже аппаратное) кодирование-сжатие и декодирование видео- или аудиопотоков.
Разрядность** цифрового сигнала** (Bit depth) В отличие от разрядности, ЦАП и АЦП однозначно свидетельствует о динамическом диапазоне цифрового сигнала как такового. При этом динамический диапазон равен максимально возможному. Например, для 8-битного сигнала это 48 дБ, для 16-битного – 96 дБ, для 24-битного 144 дБ (предел человеческого слуха

Практические аспекты на примере CMI 9880/8 CH Azalia Audio Codec от C-Media

Сам по себе кодек – это ещё полдела. Качество звука в немалой степени обеспечивается за счёт развязки аналоговых цепей (прежде всего питания) от цифровых, а также фильтров на звуковых выходах. Тем не менее, если кодек с его ЦАПами и АЦП «убогий», то хорошего звука ждать неоткуда, как ни упирайся с передовыми алгоритмами обработки.

Основные параметры усилителей низкой частоты и акустики. Что нужно знать, чтобы не попасться на удочку маркетологов

Благодаря торговым сетям и интернет магазинам разнообразие предлагаемой к продаже аудиоаппаратуры зашкаливает за все разумные пределы. Каким образом выбрать аппарат, удовлетворяющий вашим потребностям к качеству, существенно не переплатив?

Если вы не аудиофил и подбор аппаратуры не является для вас смыслом жизни, то самый простой путь — уверенно ориентироваться в технических характеристиках звукоусилительной аппаратуры и научиться извлекать полезную информацию между строк паспортов и инструкций, критически относясь к щедрым обещаниям. Если вы не ощущаете разницы между dB и dBm, номинальную мощность не отличаете от PMPO и желаете наконец узнать, что такое THD, также сможете найти интересное под катом.

Коэффициент усиления. Зачем нам логарифмы и что такое децибелы?

Одним из основных параметров усилителя является коэффициент усиления — отношение выходного параметра усилителя к входному. В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению, току или мощности:

Коэффициент усиления по напряжению

Коэффициент усиления по току

Коэффициент усиления по мощности

Коэффициент усиления УНЧ может быть очень большим, ещё большими значениями выражаются усиление операционных усилителей и радиотрактов различной аппаратуры. Цифрами с большим количеством нулей не слишком удобно оперировать, ещё сложнее отображать на графике различного рода зависимости имеющие величины, отличающиеся между собой в тысячу и более раз. Удобный выход из положения — представление величин в логарифмическом масштабе. В акустике это вдвойне удобно, поскольку ухо имеет чувствительность близкую к логарифмической.

Поэтому коэффициент усиления часто выражают в логарифмических единицах — децибелах (русское обозначение: дБ; международное: dB)

Изначально дБ использовался для оценки отношения мощностей, поэтому величина, выраженная в дБ, предполагает логарифм отношения двух мощностей, а коэффициент усиления по мощности вычисляется по формуле:

Немного другим образом обстоит дело с «неэнергетическими» величинами. Для примера возьмём ток и выразим через него мощность, воспользовавшись законом Ома:

тогда величина выраженная в децибелах через ток будет равна следующему выражению:

Аналогично и для напряжения. В результате получаем следующие формулы для вычисления коэффициентов усиления:

Коэффициент усиления по току в дБ:

Коэффициент усиления по напряжению в дБ:

Громкость звука. Чем отличаются dB от dBm?

imageВ акустике «уровень интенсивности» или просто громкость звука L тоже измеряют в децибелах, при этом данный параметр является не абсолютным, а относительным! Всё потому, что сравнение ведётся с минимальным порогом слышимости человеческим ухом звука гармонического колебания — амплитудой звукового давления 20 мкПа. Поскольку интенсивность звука пропорциональна квадрату звукового давления можно написать:

где не ток, а интенсивность звукового давления звука с частотой 1 кГц, который приближенно соответствует порогу слышимости звука человеком.

Таким образом, когда говорят, что громкость звука равна 20 дБ, это означает, что интенсивность звуковой волны в 100 раз превышает порог слышимости звука человеком.

Кроме этого, в радиотехнике чрезвычайно распространена абсолютная величина измерения мощности dBm (русское дБм), которая измеряется относительно мощности в 1 мВт. Мощность определяется на номинальной нагрузке (для профессиональной техники — обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники — 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет примерно 20 мВт).

Разделяй и властвуй — раскладываем сигнал в спектр.

Пора переходить к более сложной теме — оценке искажений сигнала. Для начала придётся сделать небольшое вступление и поговорить о спектрах. Дело в том, что в звукотехнике и не только принято оперировать сигналами синусоидальной формы. Они часто встречаются в окружающем мире, поскольку огромное количество звуков создают колебания тех или иных предметов. Кроме того, строение слуховой системы человека отлично приспособлено для восприятия синусоидальных колебаний.

Любое синусоидальное колебание можно описать формулой:

где длина вектора, амплитуда колебаний, — начальный угол (фаза ) вектора в нулевой момент времени, — угловая скорость, которая равна:

Важно, что с помощью суммы синусоидальных сигналов с разной амплитудой, частотой и фазой, можно описать периодически повторяющиеся сигналы любой формы. Сигналы, частоты которых отличаются от основной в целое число раз, называются гармониками исходной частоты. Для сигнала с базовой частотой f, сигналы с частотами

будут являться чётными гармониками, а сигналы

Давайте для наглядности изобразим график пилообразного сигнала.

Для точного представления его через гармоники потребуется бесконечное число членов. На практике для анализа сигналов используют ограниченное число гармоник с наибольшей амплитудой. Наглядно посмотреть процесс построения пилообразного сигнала из гармоник можно на рисунке ниже.

А вот как формируется меандр, с точностью до пятидесятой гармоники…

Подробнее о гармониках можно почитать в замечательной статье пользователя dlinyj, а нам пора переходить наконец к искажениям.

Наиболее простым методом оценки искажений сигналов является подача на вход усилителя одного или суммы нескольких гармонических сигналов и анализ наблюдающихся гармонических сигналов на выходе.

Если на выходе усилителя присутствуют сигналы тех же гармоник, что и на входе, искажения считаются линейными, потому-что они сводятся к изменению амплитуды и фазы входного сигнала.

Нелинейные искажения добавляют в сигнал новые гармоники, что приводит к искажению формы входных сигналов.

Линейные искажения и полоса пропускания.

Коэффициент усиления К идеального усилителя не зависит от частоты, но в реальной жизни это далеко не так. Зависимость амплитуды от частоты называют амплитудно- частотной характеристикой — АЧХ и часто изображают в виде графика, где по вертикали откладывают коэффициент усиления по напряжению, а по горизонтали частоту. Изобразим на графике АЧХ типичного усилителя.

Снимают АЧХ, последовательно подавая на вход усилителя сигналы разных частот определённого уровня и измеряя уровень сигнала на выходе.

Диапазон частот ΔF, в пределах которого мощность усилителя уменьшается не более, чем в два раза от максимального значения, называют полосой пропускания усилителя.

Однако, на графике обычно откладывают коэффициент усиления по напряжению, а не по мощности. Если обозначить максимальный коэффициент усиления по напряжению, как , то в пределах полосы пропускания коэффициент не должен опускаться ниже чем:

Значения частоты и уровня сигналов, с которыми работает УНЧ, могут изменяться очень существенно, поэтому АЧХ обычно строят в логарифмических координатах, иногда его называют при этом ЛАЧХ.

Коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот отличающихся между собой в десять раз). Не правда ли так график выглядит не только симпатичнее, но и информативнее?

Усилитель не только неравномерно усиливает сигналы разных частот, но ещё и сдвигает фазу сигнала на разные значения, в зависимости от его частоты. Эту зависимость отражает фазочастотная характеристика усилителя.

При усилении колебаний только одной частоты, это вроде бы не страшно, но вот для более сложных сигналов приводит к существенным искажениям формы, хотя и не порождает новых гармоник. На картинке снизу показано как искажается двухчастотный сигнал.

Нелинейные искажения. КНИ, КГИ, THD.

image

Нелинейные искажения добавляют в сигнал ранее не существовавшие гармоники и, в результате, изменяют исходную форму сигнала. Пожалуй самым наглядным примером таких искажений может служить ограничение синусоидального сигнала по амплитуде, изображённое ниже.

На левом графике показаны искажения, вызванные наличием дополнительной чётной гармоники сигнала — ограничение амплитуды одной из полуволн сигнала. Исходный синусоидальный сигнал имеет номер 1, колебание второй гармоники 2, а полученный искажённый сигнал 3. На правом рисунке показан результат действия третьей гармоники — сигнал «обрезан» c двух сторон.

Во времена СССР нелинейные искажения усилителя было принято выражать с помощью коэффициента гармонических искажений КГИ. Определялся он следующим образом — на вход усилителя подавался сигнал определённой частоты, обычно 1000 Гц. Затем производилось вычисление уровня всех гармоник сигнала на выходе. За КГИ брали отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники — той самой, частота которой равна частоте входного синусоидального сигнала.

Аналогичный зарубежный параметр именуется как — total harmonic distortion for fundamental frequency.

Коэффициент гармонических искажений (КГИ или )

Такая методика будет работать только в том случае, если входной сигнал будет идеальным и содержать только основную гармонику. Это условие удаётся выполнить не всегда, поэтому в современной международной практике гораздо большее распространение получил другой параметр оценки степени нелинейных искажений — КНИ.

Зарубежный аналог — total harmonic distortion for root mean square.

Коэффициент нелинейных искажений (КНИ или )

КНИ — величина равная отношению среднеквадратичной суммы спектральных компонент выходного сигнала, отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала.

Как КНИ, так и КГИ относительные величины, которые измеряются в процентах.

Величины этих параметров связаны соотношением:

Для сигналов простой формы величина искажений может быть вычислена аналитически. Ниже приведены значения КНИ для наиболее распространённых в аудиотехнике сигналов (значение КГИ указано в скобках).

0 % (0%) — форма сигнала представляет собой идеальную синусоиду.
3 % (3 %) — форма сигнала отлична от синусоидальной, но искажения незаметны на глаз.
5 % (5 %) — отклонение формы сигнала от синусоидальной заметной на глаз по осциллограмме.
10 % (10 %) — стандартный уровень искажений, при котором считают реальную мощность (RMS) УМЗЧ, заметен на слух.
12 % (12 %) — идеально симметричный треугольный сигнал.
21 % (22 %) — «типичный» сигнал трапецеидальной или ступенчатой формы.[3]
43 % (48 %) — идеально симметричный прямоугольный сигнал (меандр).
63 % (80 %) — идеальный пилообразный сигнал.

Ещё лет двадцать назад для измерения гармонических искажений низкочастотного тракта использовались сложные дорогостоящие приборы. Один из них СК6-13 изображён на рисунке ниже.

Сегодня с этой задачей гораздо лучше справляется внешняя компьютерная аудиокарта с комплектом специализированного ПО, общей стоимостью не превышающие 500USD.

image

Амплитудная характеристика. Совсем коротко о шумах и помехах.

Зависимость выходного напряжения усилителя от его входного, при фиксированной частоте сигнала (обычно 1000Гц), называется амплитудной характеристикой.

Амплитудная характеристика идеального усилителя представляет из себя прямую, проходящую через начало координат, поскольку коэффициент его усиления является постоянной величиной при любых входных напряжениях.

На амплитудной характеристике реального усилителя имеется, как минимум, три разных участка. В нижней части она не доходит до нуля, так как усилитель имеет собственные шумы, которые становятся на малых уровнях громкости соизмеримы с амплитудой полезного сигнала.

В средней части (АВ) амплитудная характеристика близка к линейной. Это рабочий участок, в его пределах искажения формы сигнала будет минимальным.

В верхней части графика амплитудная характеристика также имеет изгиб, который обусловлен ограничением по выходной мощности усилителя.

Если амплитуда входного сигнала такова, что работа усилителя идет на изогнутых участках, то в выходном сигнале появляются нелинейные искажения. Чем больше нелинейность, тем сильнее искажается синусоидальное напряжение сигнала, т.е. на выходе усилителя появляются новые колебания (высшие гармоники).

Шумы в усилителях бывают разных видов и вызываются разными причинами.
Белый шум

Белый шум — это сигнал с равномерной спектральной плотностью на всех частотах. В пределах рабочего диапазона частот усилителей низкой частоты примером такого шума можно считать тепловой, вызванный хаотичным движением электронов. Спектр этого шума равномерен в очень широком диапазоне частот.

Розовый шум

Розовый шум известен также как мерцательный (фликкер-шум). Спектральная плотность мощности розового шума пропорциональна отношению 1/f (плотность обратно пропорциональна частоте), то есть он является равномерно убывающим в логарифмической шкале частот. Розовый шум генерируется как пассивными так и активными электронными компонентами, о природе его происхождения до сих пор спорят учёные.

Фон от внешних источников

Одна из основных причин шума — фон наводимый от посторонних источников, например от сети переменного тока 50 Гц. Он имеет основную гармонику в 50 Гц и кратные ей.

Самовозбуждение

Стандарты выходной мощности УНЧ и акустики

Номинальная мощность

Западный аналог RMS (Root Mean Squared – среднеквадратичное значение ) В СССР определялась ГОСТом 23262-88 как усредненное значение подводимой электрической мощности синусоидального сигнала с частотой 1000 Гц, которое вызывает нелинейные искажения сигнала, не превышающие заданное значение КНИ (THD). Указывается как у АС, так и у усилителей. Обычно указанная мощность подгонялась под требования ГОСТ к классу сложности исполнения, при наилучшем сочетании измеряемых характеристик. Для разных классов устройств КНИ может варьироваться очень существенно, от 1 до 10 процентов. Может оказаться так, что система заявлена в 20 Ватт на канал, но измерения проведены при 10% КНИ. В итоге слушать акустику на данной мощности невозможно. Акустические системы способны воспроизводить сигнал на RMS-мощности длительное время.

Паспортная шумовая мощность

Иногда ещё называют синусоидальной. Ближайший западный аналог DIN — электрическая мощность, ограниченная исключительно тепловыми и механическими повреждениями (например: сползание витков звуковой катушки от перегрева, выгорание проводников в местах перегиба или спайки, обрыв гибких проводов и т.п.) при подведении розового шума через корректирующую цепь в течение 100 часов. Обычно DIN в 2-3 раза выше RMS.

Максимальная кратковременная мощность

Западный аналог PMPO (Peak Music Power Output – пиковая выходная музыкальная мощность). — электрическая мощность, которую громкоговорители АС выдерживают без повреждений (проверяется по отсутствию дребезжания) в течение короткого промежутка времени. В качестве испытательного сигнала используется розовый шум. Сигнал подается на АС в течение 2 сек. Испытания проводятся 60 раз с интервалом в 1 минуту. Данный вид мощности дает возможность судить о кратковременных перегрузках, которые может выдержать громкоговоритель АС в ситуациях, возникающих в процессе эксплуатации. Обычно в 10-20 раз выше DIN. Какая польза от того, узнает ли человек о том, что его система возможно перенесет коротенький, меньше секунды, синус низкой частоты с большой мощностью? Тем не менее, производители очень любят приводить именно этот параметр на упаковках и наклейках своей продукции… Огромные цифры данного параметра зачастую основаны исключительно на бурной фантазии маркетингового отдела производителей, и тут китайцы несомненно впереди планеты всей.

Максимальная долговременная мощность

Практика — лучший критерий истины. Разборки с аудиоцентром

Попробуем применить наши знания на практике. Заглянем в один очень известный интернет магазин и поищем там изделие ещё более известной фирмы из Страны Восходящего Солнца.

Ага — вот музыкальный центр футуристического дизайна продаётся всего за 10 000 руб. по очередной акции:

Из описания узнаём, что аппарат оснащён не только мощными колонками, но и сабвуфером.

imageЗахватывающе, пожалуй стоит посмотреть на параметры. “ Центр содержит две фронтальные колонки, каждая мощностью по 235 Ватт, и активный сабвуфер с мощностью 230 Ватт.” При этом размеры первых всего 31*23*21 см.

Да это же Соловей разбойник какой то, причём и по силе голоса и по размерам. В далёком 96 году на этом я бы свои исследования и остановил, а в дальнейшем, глядя на свои S90 и слушая самодельный Агеевский усилитель, бурно бы обсуждал с друзьями, насколько отстала от японской наша советская промышленность — лет на 50 или всё таки навсегда. Но сегодня с доступностью японской техники дело обстоит гораздо лучше и рухнули многие мифы с ней связанные, поэтому перед покупкой постараемся найти более объективные данные о качестве звука. На сайте про это ни слова. Кто бы сомневался! Зато есть инструкция по эксплуатации в формате pdf.

Cкачиваем и продолжаем поиски. Среди чрезвычайно ценной информации о том, что “лицензия на технологию звуковой кодировки была получена от Thompson” и каким концом вставлять батарейки с трудом, но удаётся таки найти нечто напоминающее технические параметры. Весьма скудная информация запрятана в недрах документа, ближе к концу.

Привожу её дословно, в виде скриншота, поскольку, начиная с этого момента, у меня стали возникать серьёзные вопросы, как к приведённым цифрам не смотря на то, что они подтверждены сертификатом соответствия, так и к их интерпретации.

Дело в том, что чуть ниже было написано, что потребляемая от сети переменного тока мощность первой системы составляет 90 ватт, а второй вообще 75. Хм.

imageИзобретён вечный двигатель третьего рода? А может в корпусе музыкального центра прячутся аккумуляторы? Да не похоже — заявленный вес аппарата без акустики всего три кило. Тогда, как же потребляя 90 ватт от сети, можно получить на выходе 700 загадочных ватт (для справок) или хотя бы жалких, но вполне осязаемых 120 номинальных. Ведь при этом усилитель должен обладать КПД порядка 150 процентов, даже с отключенным сабвуфером! Но на практике этот параметр редко превышает планку в 75.

Попробуем применить полученную из статьи информацию на практике

Заявленная мощность для справки 235+235+230=700 — это явно PMPO. С номинальной ясности много меньше. Судя по определению это номинальная мощность, но не может она быть 60+60 только для двух основных каналов, без учёта сабвуфера, при номинальной мощности потребления в 90 ватт. Это всё больше напоминает уже не маркетинговую уловку, а откровенную ложь. Судя по габаритам и негласному правилу, соотношения RMS и PMPO, реальная номинальная мощность этого центра должна составлять 12-15 ватт на канал, а общая не превышать 45. Возникает закономерный вопрос — как можно доверять паспортным данным тайваньских и китайских производителей, когда даже известная японская фирма такое себе позволяет?

Покупать такой аппарат или нет — решение зависит от вас. Если для того, чтобы ставить по утрам на уши соседей по даче — да. В противном случае, без предварительного прослушивания нескольких музыкальных композиций в разных жанрах, я бы не рекомендовал.

Чайник дёгтя в банке мёда.

Казалось бы, мы имеем почти исчерпывающий список параметров, необходимых для оценки мощности и качества звука. Но, при более пристальном внимании, это оказывается далеко не так, по целому ряду причин:

    Многие параметры больше подходят не столько для объективного отражения качества сигнала, сколько для удобства измерения. Большинство проводятся на частоте 1000 Гц, которая очень удобна для получения наилучших численных результатов. Она располагается далеко от частоты фона электрической сети в 50 Гц и в самом линейном участке частотного диапазона усилителя.

Общее гармоническое искажение — Total harmonic distortion

Общее гармоническое искажение (THD или THDi ) — это измерение гармонических искажений, присутствующих в сигнале, и определяется как отношение суммы мощностей всех гармонических составляющих к мощности основная частота. Коэффициент искажения, тесно связанный термин, иногда используется как синоним.

В аудиосистемах меньшее искажение означает, что компоненты динамика, усилителя, микрофона или другого оборудования обеспечивают более точное воспроизведение аудиозаписи.

В радиосвязи устройства с более низким THD, как правило, создают меньше непреднамеренных помех другим электронным устройствам. Поскольку гармонические искажения имеют тенденцию расширять частотный спектр выходных излучений устройства за счет добавления сигналов, кратных входной частоте, устройства с высоким THD менее подходят для таких приложений, как и.

В энергосистемах ниже THD подразумевает более низкие пиковые токи, меньший нагрев, меньшее электромагнитное излучение и меньшие потери в сердечнике в двигателях. Стандарт IEEE 519-2014 охватывает рекомендуемые методы и требования к управлению гармониками в электроэнергетических системах.

Содержание

  • 1 Определения и примеры
  • 2 THD + N
  • 3 Измерение
    • 3.1 Интерпретация

    Определения и примеры

    Чтобы понять систему с входом и выходом, такую ​​как аудиоусилитель, мы начнем с идеальной системой, в которой передаточная функция является линейной и не зависит от времени. Когда синусоидальный сигнал с частотой ω проходит через неидеальное нелинейное устройство, добавляется дополнительный контент, кратный nω (гармоникам) исходной частоты. THD — это мера того дополнительного содержания сигнала, которого нет во входном сигнале.

    Когда основным критерием эффективности является «чистота» исходной синусоидальной волны (другими словами, вклад исходной частоты по отношению к ее гармоникам), измерение чаще всего определяется как отношение Среднеквадратичная амплитуда набора более высоких гармонических частот до среднеквадратичной амплитуды первой гармоники или основной гармоники, частота

    где V n — среднеквадратичное значение напряжения n-й гармоники, а n = 1 — основная частота.

    На практике THD F обычно используется в характеристиках искажения звука (THD в процентах); однако THD является нестандартной спецификацией, и результаты между производителями нелегко сопоставить. Поскольку измеряются амплитуды отдельных гармоник, требуется, чтобы производитель раскрыл частотный диапазон тестового сигнала, уровень и условия усиления, а также количество выполненных измерений. Можно измерить полный диапазон 20–20 кГц, используя развертку (хотя искажения для основной частоты выше 10 кГц не слышны).

    Измерения для расчета THD выполняются на выходе устройства при определенных условиях. THD обычно выражается в процентах или в дБ относительно основной гармоники как затухание искажений.

    В определении варианта в качестве эталона используется основная плюс гармоника, хотя использование не рекомендуется:

    Они могут различаются как THD F(для «фундаментального») и THD R(для «среднеквадратичного»). THD R не может превышать 100%. При низких уровнях искажений разница между двумя методами расчета незначительна. Например, сигнал с THD F, равным 10%, имеет очень похожий THD R, равный 9,95%. Однако при более высоких уровнях искажения расхождение становится большим. Например, сигнал с THD F 266% имеет THD R 94%. Чистая прямоугольная волна с бесконечными гармониками имеет THD F 48,3% или THD R 43,5%.

    Некоторые используют термин » коэффициент искажения »как синоним THD R, в то время как другие используют его как синоним THD F.

    . IEC определяет термин« общий коэффициент гармоник »как: d = E eff 2 — E эфф 1 2 E эфф. <\ displaystyle d = <\ frac <\ sqrt > ^ <2>-E _ <\ mathrm > ^ <2>>> >>>.>

    THD + N

    THD + N означает полное гармоническое искажение плюс шум. Это измерение гораздо более распространено и более сопоставимо между устройствами. Обычно это измеряется путем ввода синусоидальной волны, режекторной фильтрации на выходе и сравнения отношения между выходным сигналом с синусоидой и без нее:

    Как и при измерении THD, это отношение среднеквадратичных амплитуд, которое может быть измерено как THD F (с пропускной полосой или вычисленной основной гармоникой в ​​качестве знаменателя) или, чаще, как THD R (общий искаженный сигнал в качестве знаменателя). Измерения Audio Precision — это, например, THD R.

    Значимое измерение должно включать полосу пропускания измерения. Это измерение включает эффекты контура заземления, гула линии электропередач, высокочастотных помех, интермодуляционных искажений между этими тонами и основной гармоникой и т. Д., В дополнение к гармоническим искажениям. Для психоакустических измерений применяется кривая взвешивания, такая как A-weighting или ITU-R BS.468, которые предназначены для выделения того, что наиболее слышно для человеческого уха, что способствует более точное измерение.

    Для заданной входной частоты и амплитуды THD + N обратен SINAD при условии, что оба измерения выполняются в одной и той же полосе пропускания.

    Измерение

    Искажение формы сигнала относительно чистой синусоиды можно измерить с помощью анализатора THD или проанализировать выводить волну на составляющие ее гармоники и отмечать амплитуду каждой относительно основной гармоники; или подавляя основную частоту с помощью режекторного фильтра и измеряя оставшийся сигнал, который будет представлять собой полное совокупное гармоническое искажение плюс шум.

    Учитывая генератор синусоидальных сигналов с очень низким уровнем собственных искажений, его можно использовать в качестве входа для оборудования усиления, искажение которого на разных частотах и ​​уровнях сигнала можно измерить, исследуя форму выходного сигнала.

    Имеется электронное оборудование как для генерации синусоид, так и для измерения искажений; но универсальный цифровой компьютер, оснащенный звуковой картой, может выполнять гармонический анализ с помощью подходящего программного обеспечения. Для генерации синусоид можно использовать различное программное обеспечение, но собственные искажения могут быть слишком высокими для измерения усилителей с очень низким уровнем искажений.

    Интерпретация

    Для многих целей разные типы гармоник не эквивалентны. Например, кроссоверные искажения при заданном THD гораздо более слышны, чем ограничивающие искажения при том же THD, поскольку создаваемые гармоники находятся на более высоких частотах, которые не так легко замаскировать основной гармоникой. Одного числа THD недостаточно для определения слышимости, и его следует интерпретировать с осторожностью. Измерение THD на разных уровнях выходного сигнала выявит, является ли искажение ограничением (которое увеличивается с уровнем) или кроссовером (которое уменьшается с уровнем).

    THD — это среднее значение ряда гармоник, имеющих одинаковый вес, даже несмотря на то, что исследования, проведенные несколько десятилетий назад, показывают, что гармоники более низкого порядка труднее услышать на одном уровне по сравнению с гармониками более высокого порядка. Вдобавок считается, что гармоники четного порядка труднее услышать, чем нечетные. Был опубликован ряд формул, которые пытаются соотнести THD с реальной слышимостью, однако ни одна из них не получила широкого распространения.

    Примеры

    Для многих стандартных сигналов вышеуказанный критерий может быть рассчитан аналитически в закрытая форма. Например, чистый прямоугольный сигнал имеет THD F, равный

    Чисто симметричная волна треугольника имеет THD F из

    Для прямоугольной последовательности импульсов с скважностью μ (иногда называемый циклическим соотношением), THD F имеет вид

    THDF (μ) = μ (1 — μ) π 2 2 sin 2 ⁡ π μ — 1, 0

    и, по логике, достигает минимума (≈0,483), когда сигнал становится симметричным μ = 0,5, то есть чистой прямоугольной волной. Соответствующая фильтрация этих сигналов может резко снизить результирующие THD. Например, чистый прямоугольный сигнал , отфильтрованный фильтром нижних частот Баттерворта второго порядка (с частотой среза , равной основной частоте) имеет THD F 5,3%, тогда как тот же сигнал, отфильтрованный фильтром четвертого порядка, имеет THD F 0,6%. Однако аналитическое вычисление THD F для сложных сигналов и фильтров часто представляет собой сложную задачу, и получение результирующих выражений может быть довольно трудоемким. Например, выражение в замкнутой форме для THD F пилообразной волны, отфильтрованной фильтром нижних частот Баттерворта первого порядка, будет просто

    THDF = π 2 3 — π coth ⁡ π ≈ 0,370 = 37,0% <\ displaystyle \ mathrm > \, = \, <\ sqrt <<\ frac <\, \ pi ^ <2>> <3 >> — \ pi \ coth \ pi \,>> \, \ приблизительно \, 0.370 \, = \, 37.0 \%>

    , тогда как для того же сигнала, отфильтрованного фильтром Баттерворта второго порядка задается довольно громоздкой формулой

    Тем не менее, выражение в замкнутой форме для THD F последовательности импульсов , отфильтрованных с помощью p-го порядка Фильтр нижних частот Баттерворта еще более сложен и имеет следующий вид

    THDF (μ, p) = csc ⁡ π μ ⋅ μ (1 — μ) π 2 — sin 2 π μ — π 2 ∑ s = 1 2 p детская кроватка ⁡ π zszs 2 ∏ l = 1 l ≠ s 2 p 1 zs — zl + π 2 R e ∑ s = 1 2 pei π zs (2 μ — 1) zs 2 sin ⁡ π zs ∏ l знак равно 1 l ≠ s 2 п 1 zs — zl <\ displaystyle \ mathrm > \, (\ mu, p) = \ csc \ pi \ mu \, \ cdot \! <\ sqrt <\ mu (1- \ mu) \ pi ^ <2>— \, \ sin ^ <2>\! \ Pi \ mu \, — \, <\ frac <\, \ pi><2>> \ sum _ ^ <2p><\ frac <\ cot \ pi z_ > ^ <2>>> \ prod \ limits _ <\ scriptstyle l = 1 \ atop \ scriptstyle l \ neq s >^ <2p>\! <\ Frac <1> <\, z_ -z_ \,>> \, + \, <\ frac <\, \ pi><2>> \, \ mathrm \ sum _ ^ <2p> <\ frac (2 \ mu -1)>> ^ <2>\ sin \ pi z_ >> \ prod \ limits _ <\ scriptstyle l = 1 \ atop \ scriptstyle l \ neq s>^ <2p>\! <\ frac <1> <\, z_ -z_ < l>\,>> \,>>>

    где μ — рабочий цикл, 0 zl ≡ exp ⁡ i π (2 l — 1) 2 p, l = 1, 2,…, 2 п <\ Displaystyle Z_ \ эквив \ ехр <\ гидроразрыва <я \ пи (2l-1)><2p>> \,, \ qquad l = 1,2, \ ldots, 2p>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *