Tp4056 как работает
Перейти к содержимому

Tp4056 как работает

Реинкарнация «народной» платы TP4056 или самодельная зарядка для лития на 3А

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, об одной интересной модификации «народного» зарядного модуля TP4056 на ток 3А и небольшом применении в качестве самодельной зарядки для лития. Будет небольшое тестирование и простенький пример изготовления зарядки из дешевых компонентов, поэтому, кому интересно, милости прошу под кат.

Итак, вот та самая модификация «народной» платки:

Применение данной платы:

  • Зарядка Li-Ion аккумуляторов, встроенных в конечное устройство. Частый случай – в устройстве несколько запараллеленных банок и 1А слишком мало. Ну, сами посудите, есть две-три банки по 2,6-3Ач, общая емкость около 6-7Ач. Заряд такой батареи займет около 7-8 часов, а с данной платкой – около 3 часов. Как пример – самодельные ПБ, аккумуляторные отвертки и минишуруповерты
  • Сборка своего «быстрого» зарядника на один или два аккумулятора. Современные высокоемкие аккумуляторы на 3300-3500mah спокойно могут принимать 3-4А, а уж две запараллеленные банки тем более (перед зарядом лучше приблизительно уравнять потенциалы). Сами производители допускают заряд некоторых банок током 3-4А, об этом написано в даташитах на эти банки.
  • Входной разъем – DC Port 5мм + дублирующие выводы;
  • Входное напряжение — 4,5V-5,5V
  • Конечное напряжение заряда — 4,2V (Li-Ion аккумуляторы);
  • Максимальный зарядный ток — 3А;
  • Количество модулей TP4056 — 4 (макс. разгонный ток 4А);
  • Индикация – дискретный двухцветный светодиод (красный/зеленый);
  • Защита от переполюсовки — нет;
  • Размеры — 65мм*15мм.
  • Плата заряда 4*TP4056 на 3А;
  • Двухцветный трехногий светодиод (красный/синий свет);
  • DC разъем 5мм.

image

Поставляется платка в обычном мелком пакете, до меня доехала за две-три недели. Внутри пакета была своеобразная защита – два склеенных листа пенополиэтилена, внутри которых и была платка:

image

Плата зарядки крупным планом:

image

По схемотехнике ничего сверхъестественного – просто взяли и запараллелили 4 контроллера TP4056, одновременно уменьшив максимальный зарядный ток для каждого контроллера с 1А до 750ma. Поначалу я не мог понять, почему максимальный зарядный ток всего 3А, ведь контроллеров то четыре, но приглядевшись, увидел не привычный 1,2Ком SMD резистор, а 1,6Ком. Причем во всех плечах стоит резистор 1,6Ком:

image

Напомню таблицу максимального зарядного тока в зависимости от номинала токозадающего резистора:

image

В нашем случае стоят резисторы по 1,6Ком для каждого контроллера, по 750ma на плечо. Следовательно, общий максимальный зарядный ток – 3А. Оно и к лучшему, меньше греется платка, да и 4А уже многовато. С другой стороны, если нужен зарядный ток 4А – меняем 4 резистора.

Регулировать общий зарядный ток подпайкой подстроечного/переменного резистора, скорее всего, не получится, ибо нужно задавать для каждого контроллера.

Итого, кому сложно или не хочет сам спаивать народные платки — неплохое решение проблемы.

Размеры платки:

Платка совсем небольшая, всего 65мм*15мм:

image

Вот сравнение с «народной» платой TP4056 на 1А, 18650 аккумулятором и холдером:

image

При необходимости можно откусить переднюю часть платы, на которую впаивается DC разъем и припаяться к контактам 5V+ или 5V-, либо напрямую к соответствующим дорожкам:

image

Так длина платки станет на 1 сантиметр короче. Ранее я уже переделывал народную платку, вот что получилось:

image

В нашем случае все просто до невозможности, ибо дорожки на печатной плате не страдают. Разумеется, кому необходим DC разъем – оставляем, либо подпаиваем его через провода к контактам 5V+ или 5V-. Разъемы microUSB и miniUSB здесь нежелательны, будут сильно греться, ибо не рассчитаны на такие токи. Да и незачем они, ибо в большинстве адаптерах стоит ограничение на 2,5А. Но с другой стороны, если адаптер не отключается при перегрузке, то мы экономим на дискретном блоке питания, ну и ток будет чуть меньше. Поэтому, решать вам…

Тестирование платки 4*TP4056 3A:

Теперь протестируем платку. Действительно ли она заряжает 3А? Для этого нам поможет ампервольтметр, который частенько мелькает в моих обзорах (замер тока заряда) и привычный мультиметр (замер напряжения на аккумуляторе). В качестве источника питания – импульсный БП S-30-5 на 5V/6A:

image

Как видим, заряд действительно идет постоянным током 3А (фаза СС), пока напряжение на банке не превысит 3,9V-3,95V, затем начинает плавно снижаться (начинается фаза CV). Как только напряжение на банке равняется 4,2V, цвет светодиода меняется на зеленый, означая, что заряд окончен. Хотя из-за инерционности ток продолжает еще течь:

image

После этого еще 10-15 минут ток снижается, при этом напряжение на аккуме 4,21V. Как только ток снизится до 150ма, контроллер полностью отключает заряд, напряжение на банке скидывается до 4,2V.

Практически «выжатую» банку Sanyo UR18650ZY 2600mah модуль зарядил за 75-80 минут. Ну что же, просто великолепно!

Небольшой пример сборки своего зарядника на 3А:

В качестве примера приведу пример постройки своего зарядного устройства из проверенных недорогих компонентов. Что нам для этого понадобится:

1)Непосредственно сама обозреваемая плата TP4056*:

image

image

Вот такие холдеры ни в коем случае не применяйте, 3А для них много:

image

Можно попробовать переделать дрянную зарядку, выпаяв все кишки:

image

Я рекомендую первый вариант, т.к. они с легкостью выдерживают 3А, ибо контакты на порядок лучше, да и имеют паз для провода.

3)Любой подходящий разъем: DC port* (поставляется в комплекте с платой), USB (не очень желательно), Molex* (при питании от компьютера), силовые модельные или автомобильные разъемы (какие найдутся под рукой):

image

В крайнем случае, можно вывести просто два провода и гонять все хозяйство на скрутке, как в моем случае, :-).

image

Нужен именно медный, а не омедненный. Определить легко – зачищаем ножом и если жилки начинают блестеть и не лудятся, значит, провод омедненный (алюминий покрытый медью). Рекомендую либо качественный акустический, либо бытовые, типа ШВВП.

5) Блок питания (БП) на 5V на 5-6A (с запасом). Я использовал БП S-30-5 на 5V/6A*:

image

Можно применить часто встречающийся БП на 12V на 2-3A, которые идут в комплекте к различным устройствам и понижающий DC-DC преобразователь на 5А (3А они стабильно держат). Но здесь есть пара минусов, ибо усложняется схема и повышается себестоимость зарядника. Поэтому, если нет в наличии подходящего БП, то используем БП компьютера. Дополнительная нагрузка в 15Вт ему не страшна, если, конечно, он и так не работает на пределе своих возможностей. Если есть в наличии свободный Molex разъем, то подцепить к нему переходник не составит труда. В таком случае нам нужны красный (+) и черный (-) провода.

Итак, с компонентами разобрались. Теперь непосредственно сборка:

Поскольку платка будет использоваться в другом устройстве и у меня уже есть хорошие высокотоковые зарядники, то самодельная зарядка мне не нужна, поэтому сборка, как говорится, на коленке (подпаивать разъемы я не буду):

image

Берем холдер для аккумулятора и вырезаем пластик на торцах для провода (на фото нижний паз):

image

Далее подпаиваемся с правой стороны к плюсовому контакту и укладываем провод в пазу:

image

image

Далее припаиваем минусовой выход платы (В-) к другому, минусовому выводу холдера, а проведенный в пазу провод – к плюсовому выходу платы (В+):

image

Потом припаиваем питающие провода с разъемами или без них, в зависимости от того, какой вариант вы выбрали. Трехногий светодиод изгибаем по своему усмотрению, но чтобы не коротнуть его выводы – натягиваем на них изоляцию от любого провода:

image

Закрываем плату пластиковой крышкой от кабель-канала или аналогичным кожухом и заматываем всеми известной изолентой, :-). Получается довольно кустарно, но главное работает:

image

Контрольная проверка, все работает:

image

Я не стал припаивать разъемы, а подключил напрямую к БП. Я же рекомендую припаять соответствующий разъем, который выдержит длительное протекание тока 3А. На этом у меня все…

  • Надежная, проверенная годами элементная база;
  • Высокий ток заряда;
  • Возможность увеличения зарядного тока до 4А путем замены токозадающих резисторов;
  • Небольшой размер;
  • Простота монтажа и эксплуатации.
  • Цена великовата;
  • Платка не предназначена для зарядки последовательных сборок (2S, 3S, 4S и более не умеет);
  • Требуется внешнее питание;
  • Боится переполюсовки;
  • Некоторая заторможенность последней фазы заряда (CV).

Вывод: полезная модификация народной платки TP4056* на большой зарядный ток, брать можно!

Модуль контроллера заряда TP4056 + защита для аккумуляторов или Вторая жизнь миксера из Икеи

Речь пойдет про очень удобную плату с контроллером заряда на основе TP4056. На плате дополнительно установлена защита для аккумуляторов li-ion 3.7V.

Подходят для переделок игрушек и бытовой техники с батареек на аккумуляторы.
Это дешевый и эффективный молуль (зарядный ток до 1А).

Хоть про модули на чипе TP4056 написано уже много, добавлю немного от себя.
Совсем недавно узнал про платы зарядки на TP4056, которые стоят чуть дороже, по размерам чуть больше, но дополнительно имеют в своем составе BMS модуль (Battery Monitoring System) для контроля и защиты аккумулятора от переразряда и перезаряда на основе S-8205A и DW01, которые отключают батарею при превышении напряжения на ней.

Платы предназначены для работы с элементами 18650 (в основном из-за зарядного тока 1А), но при некоторой переделке (перепайка резистора — уменьшение зарядного тока) подойдут для любые аккумуляторов на 3.7В.
Разводка платы удобная — присутствуют контактные площадки под пайку на вход, на выход и для аккумулятора. Штатно питать модули можно от Micro USB. Статус зарядки отображается встроенным светодиодом.
Размеры примерно 27 на 17 мм, толщина небольшая, самое «толстое» место — это MicroUSB коннектор

Specifications:
Type: Charger module
Input Voltage: 5V Recommended
Charge Cut-off Voltage: 4.2V (±)1%
Maximum Charging Current: 1000mA
Battery Over-discharge Protection Voltage: 2.5V
Battery Over-current Protection Current: 3A
Board Size: Approx. 27 * 17mm
Status LED: Red: Charging; Green: Complete Charging
Package Weight: 9g

По ссылке в заголовке продается лот из пяти штук, то есть цена одной платы около $0.6. Это чуть дороже, чем одна плата зарядки на TP4056, но без защиты — эти продаются пачками за полтора доллара. Но для нормальной работы нужно покупать отдельно BMS.

Модуль контроллера заряда TP4056 + защита для аккумуляторов S-8205A/B Series BATTERY PROTECTION IC
Производит защиту от перезарядки, переразрядки, тройная защита от перегрузки и короткого замыкания.
Максимальный зарядный ток: 1 А
Максимальный постоянный ток разряда: 1 А (пик 1.5А)
Ограничение напряжения зарядки: 4.275 В ±0. 025 В
Ограничение (отсечка) разрядки: 2.75 В ±0. 1 В
Защита аккумулятора, чип: DW01.
B+ соединяется с положительным контактом аккумулятора
B- соединяется с отрицательным контактом аккумулятора
P- подключается к отрицательному контакту точки подключения нагрузки и зарядки.

На плате присутствует R3 (маркировка 122 — 1.2кОм), для выбора нужного тока зарядки элемента выбираем резистор согласно таблице и перепаиваем.

На всякий случай типовое включение TP4056 из спецификации.

Лот модулей TP4056+BMS берется уже не первый раз, уж оказался очень удобен для беспроблемных переделок бытовой техники и игрушек на аккумуляторы.
Размеры модулей небольшие, По ширине как раз меньше двух АА батареек, плоские — замечательно подходят с установкой старых аккумуляторов от сотовых телефонов.

Для зарядки используется стандартный источник на 5В от USB, вход — MicroUSB. Если платы используются каскадом — можно припаять к первой в параллель, на фото видно контакты минуса и плюса по сторонам от MicroUSB разъема.

С обратной стороны ничего нет — это может помочь при креплении на клей или скотч.

Используются разъемы MicroUSB для питания. У старых плат на TP4056 встречался MiniUSB.
Можно спаять платы вместе по входу и только одну подключать к USB — таким образом можно заряжать 18650 каскадами, например, для шуруповертов.

Выходы — крайние контактные площадки для подключения нагрузки (OUT +/–), в середине BAT +/– для подключения ячейки аккумулятора.

Плата небольшая и удобная. В отличие от просто модулей на TP4056 — здесь присутствует защита ячейки аккумуляторов.
Для соединения каскадом нужно соединить выходы под нагрузку (OUT +/–) последовательно, а входы по питанию параллельно.

Модуль идеально подходит для установки в различные бытовые приборы и игрушки, которые предусматривают питание от 2-3-4-5 элементов АА или ААА. Это во-первых, приносит некоторую экономию, особенно при частой замене батареек (в игрушках), а, во-вторых, удобство и универсальность. Использовать для питания можно элементы, взятые из старых аккумуляторов от ноутбуков, сотовых телефонов, одноразовых электронных сигарет и так далее. В случае, если есть три элемента, четыре, шесть и так далее, нужно использовать StepUp модуль для повышения напряжения от 3.7V до 4.5V/6.0V и т.д. В зависимости от нагрузки, конечно. Также удобен вариант на двух ячейках аккумуляторов (2S, две платы последовательно, 7.4V) со StepDown платой. Как правило, StepDown имеют регулировку, и можно подстроить любое напряжение в пределах напряжения питания. Это лишний объем для размещения вместо батареек АА/ААА, но тогда можно не переживать за электронику игрушки.

Конкретно, одна из плат была предназначена для старого икеевского миксера. Уж очень часто приходилось заменять батарейки в нем, а на аккумуляторах он работал плохо (в NiMH 1.2В вместо 1.5В). Моторчику все равно, будет ли его питать 3В или 3.7В, так что я обошелся без StepDown. Даже слегка бодрее крутить стал.

Аккумулятор 08570 от электронной сигареты практически идеальный вариант для любых переделок (емкость около 280мАч, а цена — бесплатно).

Но в данном случае несколько длинноват. Длина АА батарейки 50 мм, а этого аккумулятора 57 мм, не влез. Можно, конечно, сделать «надстройку», например, из пластика полиморфа, но…
В итоге взял мелкий модельный аккумулятор с такой же емкостью. Очень желательно снизить ток зарядки (до 250. 300 мА) увеличением резистора R3 на плате. Можно штатный нагреть, отогнуть один конец, и припаять любой имеющийся на 2-3 кОм.

Слева привел картинку по старому модулю. На новом модуле размещение компонентов другое, но все те же самые элементы присутствуют.

Подключаем аккумулятор (Припаиваем) в клеммам в середине BAT +/–, отпаиваем контакты моторчика от пластин-контактор для АА батареек (их вообще убираем), припаиваем нагрузку-моторчик к выходу платы (OUT +/–).
В крышке дремелем можно прорезать отверстие под USB.

Я сделал новую крышку — старую совсем выкинул. В новой продуманы пазы для размещения платы и отверстие под MicroUSB.

Гифка работы миксера от аккумулятора — крутит бодро. Емкости 280мАч хватает на несколько минут работы, заряжать приходится в 3-6 дней, смотря как часто использовать (я пользуюсь редко, можно и за один раз посадить, если увлечься.). Из-за снижения тока зарядки заряжает долго, чуть меньше часа. Зато любой зарядкой от смартфона.

Если использовать StepDown контроллер для р/у машинок, то лучше взять два 18650 и две платы и соединить их последовательно (а входы для заряжания — параллельно), как на картинке. Где общий OUT ставится любой понижающий модуль и регулируется до нужного напряжения (например, 4.5V/6.0V) В этом случае машинка не будет медленно ездить, когда «сядут» батарейки. В случае разряда модуль просто резко отключится.

Модуль на TP4056 со встроенной защитой BMS – очень практичный и универсальный.
Модуль рассчитан на зарядный ток 1А.
Если соединяете каскадом — учитывайте суммарный ток при зарядке, например, 4 каскада для питания аккумуляторов шуруповерта «попросят» 4А на зарядку, а это з/у от сотового телефона не выдержит.
Модуль удобен для переделки игрушек — машинок на радиоуправлении, роботов, различных светильников, пультов… — всех возможных игрушек и техники, где приходится часто менять батарейки.

Update: если минус сквозной, то с запаралелливанием сложнее все.
См комментарии.

Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Зарядное устройство для Li-ion на ТР4056

Заказал на Ali лот из пяти модулей зарядных устройств на чипе TP4056 для Li-ion аккумуляторов (цена лота 68,70 руб, за модуль 13,74 руб, сентябрь 2015). Пришли на одной печатной плате, разделенные скрайбированием (надрезанием). На печатке логотип kvsun — китайский производитель широкого спектра зарядок Li-ion аккумуляторов различных типоразмеров и применений.

Статья в основном является компиляцией разрозненных данных интернета, с целью собрать все в одном месте.

Модуль основан на чипе TP4056 — контроллере зарядки Li-ion аккумуляторов со встроенным термодатчиком от NanJing Top Power ASIC Corp, это завершенное изделие с линейным зарядом по принципу постоянное напряжение/постоянный ток для одноэлементных литий-ионных аккумуляторов. Чип от компании из Нанкина, провинция Цзянсу, Китай. Специализация — системы питания игрушек, телефонов, LCD, LCM. Основана в 2003 году.
Контроллер выполнен в корпусе SOP-8, имеет на нижней поверхности металлический теплосьемник не соединенный с контактами, позволяет заряжать аккумулятор током до 1000 мA (зависит от токозадающего резистора). Требует минимум навесных компонентов.
По сути это более навороченная модификация их же чипа TP4054, у которого в свою очередь куча аналогов (MCP73831, LTC4054, TB4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051). Кто тут кому аналог, судить не берусь.

Расположение выводов:

  1. TEMP — подключение датчика температуры, встроенного в литий-ионную батарею. Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостановится. Контроль температуры отключается замыканием входа на общий провод.
  2. PROG — Программирование тока зарядки (1.2к — 10к);
    Постоянный ток зарядки и контроль напряжения зарядки выбираются сопротивлением резистора, между этим пином и GND;
    Для всех режимов зарядки, зарядный ток может быть выведен из формулы:
  3. GND — Общий;
  4. Vcc — Напряжение питания, если ток потребления (ток зарядки батареи) становится ниже 30mA, контроллер уходит в спячку, потребляя от контакта BAT
  • При подключенной батарее, в течении зарядки — разомкнут, по окончании — замкнут;
  • При неподключенной батарее замкнут;
  • При подключенной батарее, в течении зарядки — замкнут, по окончании — разомкнут;
  • При неподключенной батарее, кратковременно включается с периодом 1-4 сек;
  1. Контроль напряжения подключенного аккумулятора (постоянно);
  2. Зарядка током 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) до уровня 2.9 В (если требуется);
  3. Зарядка максимальным током (1000мА при Rprog = 1.2к);
  4. При достижении на батарее 4.2 В идет стабилизация напряжения на уровне 4.2В. Ток падает по мере зарядки;
  5. При достижении тока 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) зарядное устройство отключается. Переход к п. 1

Контроллер имеет хороший профиль CC/CV и может быть адаптирован ко многим различным конфигурациям зарядки и типам Li-ion аккумуляторов. Номинальный зарядный ток может быть изменен подбором единственного резистора.
Модуль представляет из себя небольшую платку (19 х 27 мм, рядом элемент ААА) с собранной схемой зарядного устройства.

Схема практически идентична схеме из даташита, за исключением подключения термодатчика аккумулятора. На полученных модулях цвет светодиодов окончания зарядки другой, вместо зеленого — синий.

Можно (если понадобилось) вывести вход термодатчика отдельным проводком, напаявшись на лапку и отрезав ее от GND. Или же подняв лапку над платой и напаявшись. Если же хочется без паяния, надо просто заказать там же другой модуль:

Отличие только в компоновке и габаритах (37×15мм).

  • Напряжение питания +4,5. +8,0 вольт (более 5,5 В не рекомендуется, чип перегревается);
  • Разьем Mini-USB на плате, для питания от USB-порта компьютера или универсального блока питания;
  • Ток заряда 1,0 Ампер (1000 мА), легко программируется изменением значения резистора Rprog (от 1,2k до 10k (по даташиту, на самом деле до

Заявленная емкость 3400mAh:

Очень хороший график CC/CV, немного затянуто падение СС, это увеличивает время зарядки, но аккумулятору от этого хуже не будет. Ток зарядки не достиг заявленных 1000мА. Возможно его ограничила температура самого контроллера. Контроллер сначала сильно разогревшись к концу зарядки остывает.

Снижение напряжения питания до 4.5 В, увеличивает время зарядки и уменьшает температуру, но итоговое напряжение немного ниже.

Увеличение напряжения питания действительно увеличивает температуру, но также и уменьшает ток. Когда чип перегревается, он уменьшает ток.

То же, но использован небольшой алюминиевый радиатор на контроллере. И это действительно помогает, температура ниже, чем при питании от 5,0 В.

Старый 16340 IMR аккумулятор от видеокамеры также был заряжен успешно.

После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора. Ток, потребляемый схемой мониторинга 2-3 mkA. После падения напряжения до 4.0В, зарядка включается снова.
При отключении и подключении аккумулятора, зарядка включится только если напряжение аккумулятора ниже 4.0В.

Внимание. Контроллер имеет одну особенность, не описанную в даташите.
Он не содержит схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выходит из строя из-за превышения максимального тока и теплового пробоя. Но это только полбеды, контроллер пробивается накоротко, и на его выходе (батарее) появляется полное (!) входное напряжение.
Это особенно актуально для заряда пальчиковых аккумуляторов типа 18650. При установке очень легко ошибиться с полярностью.

Можно купить и модули с защитой:

Кроме контроллера зарядки ТP4056 в него добавлены два чипа: DW01 (схема защиты) + ML8205A (сдвоенный ключ MOSFET).

  • Встроенная защита окончания зарядки: 4,2 вольт (ТP4056 и так это делает);
  • Встроенная защита от короткого замыкания по выходу (ограничение на 3А);
  • Встроенная защита от глубокого разряда аккумулятора (+2,4 вольт);
  • Разьем Micro-USB на плате, в предыдущем Mini-USB;

Чего хотелось достичь?

Ранее я заказал и описАл простую платку с DS1307Z и AT24C32 на борту.
Для резервного питания часов там заложен Li-ion аккумулятор LIR2032. Его подзарядка осуществляется постоянно, через резистор (1,8мкА), от питающего напряжения. Хотя упоминаний об этом в инете нет, меня убедили, что такая схема зарядки быстро убивает аккумулятор.
Данная зарядка бралась на замену резистору. Такая замена естественно дороже. Хотя если учесть цену данной платы (13,74 руб), плюсов будет больше.

Тестовая работа по подключению маломощного аккумулятора LIR2032 к зарядке на TP4056 была проведена здесь:

Автор изменил сопротивление токозадающего резистора с 1,2к на 33к, зарядный ток уменьшился до 45мА. По словам автора, зарядка разряженного аккумулятора занимает около часа.
Как это будет выглядеть в теории? Даташит на Li-MnO2 аккумулятор LIR2032 рекомендует зарядку номинальным током 20мА и напряжением 4,2В. После падения тока до 4мА батарею можно считать полностью заряженной. Максимальный ток зарядки 35-45мА, в зависимости от производителя. Минимальное напряжение разряда аккумулятора до начала деградации ячейки 2,75В. Для аккумулятора гарантируется 500 циклов заряда/разряда с сохранением после них не менее 80% емкости.
В свою очередь контроллер Tp4056 не сможет обеспечить ток зарядки ниже 30мА, просто уйдет в сон. И ждать пока напряжение на аккумуляторе упадет до 2,75В тоже не будет, включит зарядку уже при падении до 4,0В. Таким образом он будет постоянно поддерживать аккумулятор на

85-95% заряженным. Наверное это не оптимально для ячейки, но все же лучше, чем через резистор.

TP4056 схема подключения модуля к Ардуино

Модуль TP4056 схема подключения

Модуль зарядки TP4056 с защитой аккумуляторов от перезарядки, перегрузки и короткого замыкания. TP4056 со встроенным термодатчиком позволяет заряжать аккумулятор током до 1000 мА, сила тока регулируется заменой резистора Rprog на модуле. Рассмотрим, как правильно включить модуль зарядки аккумуляторов с нагрузкой к микроконтроллеру Ардуино для бесперебойного питания платы.

TP4056 модуль зарядки с защитой li-ion аккумуляторов

Контроллер TP4056 является улучшенной модификацией чипа TP4054. Имеет защиту от короткого замыкания, автоматически завершает зарядку аккумуляторов при напряжении на выходе 4,2 Вольт и снижении тока заряда до 1/10 от заданной величины. При зарядке аккумулятора на плате включается красный светодиод, когда батарея полностью заряжена включается встроенный зеленый светодиод.

Схема модуля зарядки TP4056 с защитой аккумуляторов

Схема модуля зарядки TP4056 с защитой литиевых аккумуляторов

Технические характеристики TP4056
  • Контроллер: TP4056 для зашиты переразряда/перезаряда аккумулятора;
  • Режим зарядки: линейная 1%;
  • Ток зарядки: до 1 Ампер (настраивается);
  • Точность зарядки: 1.5%;
  • Входное напряжение: 4.5 — 5,5 Вольт;
  • Напряжение полного заряда: 4,2 Вольт;
  • Защита от переполюсовки: нет;
  • Защита от перезаряда: 4,30 ± 0,050 Вольт;
  • Защита от переразряда: 2,40 ± 0,100 Вольт;
  • Входной разъем: mini USB и контакты для проводов;
  • Размеры платы: 25 × 17 × 4 мм.

График зарядки аккумуляторов от TP4056 изображен выше. Процесс состоит из нескольких этапов. Сначала идет зарядка током 1/10 от запрограммированного резистором Rprog (по умолчанию 1,2 кОм) до уровня 2,9 Вольт. Затем идет зарядка максимальным током, а при достижении заряда 4,2 Вольта происходит стабилизация напряжения. При достижении тока 1/10 от заданного значения — зарядка отключается.

Резистор (кОм) Ток заряда (мА)
30
20
10
5
4
3
2
1.66
1.5
1.33
1.2
50
70
130
250
300
400
580
690
780
900
1000

Чтобы подобрать оптимальный ток зарядки аккумулятора, необходимо правильно подобрать резистор Rprog, согласно таблице, размещенной выше. Разберем простой пример: имеется аккумулятор емкостью 1700 Ампер/часов. Чтобы узнать необходимый ток зарядки, следует емкость разделить на 2, то есть: 1700 / 2 = 850 мА. Поэтому необходимо заменить резистор Rprog на резистор с сопротивлением 1,33 кОм.

TP4056 схема подключения с нагрузкой

Модуль tp4056 подключение к аккумулятору 18650

Модуль tp4056 подключение к аккумулятору 18650

На картинке выше, продемонстрировано использование модуля зарядки при подключении к нагрузке с одним аккумулятором 18650. Обратите внимание, что при отсутствии внешнего источника питания, подключенного к USB-порту или контактам IN, на пины OUT начнет поступать питание от аккумулятора. На выходе будет напряжение 3,7 Вольт, но это можно исправить, используя повышающий преобразователь.

TP4056 подключение аккумуляторов 18650

На схеме выше показано, как сделать с помощью модуля зарядки источник бесперебойного питания для микроконтроллера Arduino Uno или power bank. Но для этого следует подключить к модулю TP4056 несколько аккумуляторов, чтобы увеличить емкость батареи и более длительное время работы устройства. Также потребуется любой модуль, повышающий постоянное напряжение до 5 Вольт.

Повер банк на модуле зарядки TP4056

Повер банк на модуле зарядки TP4056

TP4056 схема подключения к Ардуино плате

Как мы уже говорили, данную схему повер банка можно использовать в качестве источника бесперебойного питания для Arduino Nano или Uno. Для этого к повышающему модулю следует подключить USB шнур. Черный провод USB кабеля припаивается к контакту модуля VOUT-, а красный провод к VOUT+. В качестве питания для модуля зарядки можно использовать солнечные панели или блок питания.

Заключение. Мы рассмотрели, как подключить модуль зарядки TP4056 и аккумуляторы 18650 с защитой от перезарядки и переразряда, чтобы сделать power bank своими руками. Теперь вы знаете, как правильно подключить к TP4056 к Arduino для бесперебойной работы устройств на микроконтроллере. Любые вопросы по рассмотренной теме вы можете оставить ниже в комментариях к этой записи.

Добавить комментарий

Ваш адрес email не будет опубликован.