Tvs диод как проверить мультиметром
Перейти к содержимому

Tvs диод как проверить мультиметром

Как проверить защитный диод тестером

Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.Читать далее

Вступите в группу, и вы сможете просматривать изображения в полном размере

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Классификация

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Принятые обозначения

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Тестирование с использованием регулируемого источника питания

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

Выбор необходимого режима для тестирования

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.

Демонстрация проверки варикапа

Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно цифрового мульти метра с функцией измерения емкости верки конденсаторов, например UT151B).

Приставка к мультиметру для измерения емкости варикапа

Обозначения:

  • Резисторы: R1, R2 -120 кОм (да, два резистора, да последовательно, нет одним заменить нельзя, паразитную емкость, далее без комментариев); R3 – 47 кОм; R4 – 100 Ом.
  • Конденсаторы: С1 – 0,15 мкФ; С2 – 75 пФ; С3 – 6…30 пФ; С4 – 47 мкФ га 50 вольт.

Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно демонстрирует зависимости емкости варикапа от номинального напряжения .

Проверка супрессора (TVS-диода)

Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Схема для проверки используемого в микроволновке диода

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования – как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Тестирование диодов туннельного типа

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Видео: Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до Imax диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до Imin, после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Пример схемы для снятия вольтамперных характеристик

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока в течение пары минут.

Проверка на «ползучесть»

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод, наиболее часто выполняемый из кремния, может носить название:

  • Супрессора;
  • Ограничительного стабилитрона;
  • Диодный предохранитель;
  • TVS-диода;
  • Трансила;
  • Полупроводникового ограничителя напряжений (ПОН) и т.д.

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

  • Защита наземных приборов от воздействия природных явлений (удары молний);
  • Защита авиатехники;
  • Страховка от воздействия импульсов электрической природы при неисправности питающего блока.[/google_font]

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.

Существует два типа ограничительных стабилитронов:

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.

Значимые характеристики защитных диодов

  • Uпроб. (пробоя)

Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

Значение является показателем постоянного обратного напряжения. VRWM.

Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

Рис 2 ВА характеристики защитного диода

Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода

Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Рис 3 Проверка защитного диода

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов

  • Способность стабильно функционировать в условиях обратного напряжения;
  • Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
  • Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
  • Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением .

Области применения защитных диодов

Существуют несколько направлений, в которых может применяться супрессор:

  • Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
  • Телекоммуникации;
  • Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
  • Цифровой интерфейс.

Как правильно подобрать защитный диод?

Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

Защитный диод (супрессор)

Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод, наиболее часто выполняемый из кремния, может носить название:
* Супрессора;
* Ограничительного стабилитрона;
* Диодный предохранитель;
* TVS-диода;
* Трансила;
* Полупроводникового ограничителя напряжений (ПОН) и т.д.

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

* Защита наземных приборов от воздействия природных явлений (удары молний);
* Защита авиатехники;
* Страховка от воздействия импульсов электрической природы при неисправности питающего блока.[/google_font]

Принципы действия
Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.

Существует два типа ограничительных стабилитронов:

* Симметричные.
Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

* Несимметричные.
Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.

Значимые характеристики защитных диодов
* Uпроб. (пробоя)
Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

* Iобр.
Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

* Uобр.
Значение является показателем постоянного обратного напряжения. VRWM.

* U огр.имп.
Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

* Iогр.max.
Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

* Pимп.
Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.


Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода
Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов
* Способность стабильно функционировать в условиях обратного напряжения;
* Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
* Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
* Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением.

Области применения защитных диодов
Существуют несколько направлений, в которых может применяться супрессор:

* Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
* Телекоммуникации;
* Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
* Цифровой интерфейс.

Как правильно подобрать защитный диод?
Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

1 Определиться с типом напряжения (будет оно переменным или постоянным?);
2 TVS потребуется одно- или двунаправленный;
3 Узнать каков уровень номинального напряжения на линии, которую надо будет защищать;
4 Осведомиться о максимальном значении Iогр. и Uогр.max. в условиях нагрузки;
5 Выявить верхнюю и нижнюю температурную границу, при которой будет работать прибор;
6 Решить, каким образом будет монтироваться элемент (поверхностно/с помощью отверстий);
7 С опорой на все выявленные данные необходимо определиться с подходящей серией и оптимальным вариантом диода.

Кроме того, нужно учесть:

* Насколько велико обратное напряжение диода (оно должно превышать номинальное напряжение схемы, если данный момент не учитывается, то диод будет «включаться» даже не имея на то причин);
* Уровень Uогр. обязан быть меньше Umax. на линии, которую требуется защищать;
* Что даже если диод выбран в соответствии со всеми нуждами, его действие всё равно нужно проверить во всём необходимом температурном диапазоне;
* Удостовериться в том, что размеры диода и прочие нюансы позволяют его адекватный монтаж.

Как проверить стабилитрон на работоспособность

Так как диоды имеют такие же технические характеристики, как и стабилитроны, кроме участков с пробоем, механизм проверки их состояния работоспособности одинаков. Соответственно, чтобы проверить любой стабилитрон, необходимо знать метод проверки обычного диода или любой из его разновидностей. Для проверки потребуется цифровой мультиметр, который должен быть переведен в режим прозвонки или сопротивления.

Это манипуляция осуществляется переключением в диапазон Ом. К выводам, затем присоединяются радиодетали, которые проверяются на работоспособность. Существует определенный порядок действий, который не займет много времени. Проверить состояние можно всего за несколько минут. Чтобы узнать состояние стабилитрона, мультиметр должен быть переведен в режим сопротивления, измеряемое в кОм. В статье содержится подробная инструкция, а также по этой теме содержится два видеоролика и одна статья.

Проверка на работоспособность.

Проверка на работоспособность.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии. Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене. Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля. Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему. Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;
  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция. Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов. Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно.

Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно цифрового мультиметра с функцией измерения емкости верки конденсаторов, например UT151B). Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно демонстрирует зависимости емкости варикапа от номинального напряжения.

Стабилитрон на плате.

Стабилитрон на плате.

Проверка супрессора (TVS-диода)

Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования – как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до I max диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до I min , после чего снова начнет расти.

Тестирование без выпайки

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять. Стабилитрон относится к электронным приборам с нелинейной вольт-амперной характеристикой. Его свойства характерны обычному диоду. Но есть и существенное различие между ним и диодом. Для проверки исправности стабилитрона можно использовать много различных лабораторных приборов и стендов. На практике, для ремонта электронной начинки, радиолюбители используют мультиметры или тестеры со стрелочной шкалой индикации. Чтобы выявить неисправность стабилитрона своими руками нужно хорошо знать его характеристики и уметь пользоваться мультиметром.

Как проверить стабилитрон этим прибором, не прибегая к сложным и длительным лабораторным экспериментам, можно рассмотреть на примере. Его работа основана на нелинейной вольт-амперной характеристике p-n перехода. Отличие от диодов и светодиодов заключается в наличии на вольт-амперной характеристике зоны пробоя. Она показывает, что при возрастании тока в нагрузке напряжение остается практически неизменным. Это свойство называют стабилизационным, а электронный элемент получил название стабилитрон. Устройства, где они применяются, называются стабилизаторы. Стабилитроны изготавливаются, в основном, в стеклянном или металлическом корпусе. Они бывают низковольтными и высоковольтными. Чтобы убедиться в исправности элемента его проверяют мультиметром.

Проверка стабилитрона на тестере.

Проверка стабилитрона на тестере.

Порядок проверки

Чтобы проверить деталь на исправность, мультиметр используют в режиме измерения сопротивления или в режиме проверки диодов. Тестером или мультиметром стабилитроны прозваниваются точно также как и диоды. К выводам стабилитрона прикладывают щупы и считывают показания со шкалы индикации. Измерения должны проводиться в прямом и обратном направлении, то есть сначала прикладываем плюс мультиметра к катоду, а затем к аноду стабилитрона. Прибор должен показать в первом случае бесконечное сопротивление, а во втором случае покажет единицы или десятки Ом.

Такие показатели говорят об исправности стабилитрона. Если измерение сопротивления показывают в обоих направлениях бесконечность, то это говорит об обрыве p-n перехода и неисправности. Бывает так, что при прозвонке стабилитрона мультиметр показывает в обоих направлениях десятки или сотни Ом. В этом случае создается впечатление, что стабилитрон пробит. Именно такой вывод можно было бы сделать, если бы это был обычный диод. Но в случае стабилитрона такой вывод неверен, он, скорее всего, исправен. Объясняется это наличием напряжения пробоя. В таблице ниже представлен полный перечень стабилитронов по напряжению стабилизации:

перечень стабилитронов

Таблица стабилитронов по напряжению стабилизации.

[stextbox прикладывании щупов мультиметра к выводам стабилитрона прикладывается напряжение внутреннего источника питания мультиметра. Если напряжение источника питания выше значения напряжения пробоя, то шкала индикации покажет сопротивление десятков или сотен Ом. Если мультиметр имеет источник питания напряжением, например, 9 Вольт, то все проверяемые стабилитроны с напряжением стабилизации меньше 9 Вольт при измерении будут показывать пробой.[/stextbox]

Поэлементное описание проверки имеет вид:

  • на приборе выбирается режим измерения сопротивления;
  • щупы тестера подключаются к выводам детали;
  • оцениваются показания прибора, высвечиваемые на дисплее.

Когда собственный источник питания мультиметра подключен плюсовым щупом к аноду, то на дисплее можно зафиксировать показания сопротивления от нескольких долей Ома до его единиц. После замены местами измерительных щупов при исправном элементе получают бесконечно большое сопротивление. Помня о том, что стабилитрон ведёт себя, как простой диод, устанавливают интервал измерений в кОм. В этом случае сопротивление исправной радиодетали доходит до сотен кОм.

Информация. Показания, выданные на дисплей тестером, часто вводят в заблуждение проводящего измерения. Одинаково высокое сопротивление при различных подключениях щупов не всегда означает пробой элемента. Поданное для измерений напряжение внутреннего источника может превысить номинальное напряжения пробоя, тогда полученные результаты будут ложными.

Различные типы диодов.

Различные типы диодов.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике. К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде:

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Как проверить стабилитрон мультиметром на плате

При ремонте платы, где расположен стабилитрон необходимо предусмотреть меры защиты от поражения электрическим током. Порядок действий при проверке электронного устройства такой же, как и при проверке выпаянного стабилитрона. Но нужно учесть, что остальные радиоэлементы, расположенные в схеме на плате, могут сильно изменить показания. Если остаются сомнения в правильности интерпретации результатов проверки, то стабилитрон демонтируют из платы и проверяют его без влияния остальных компонентов схемы. Нужно отметить, что исправность элемента нельзя гарантировать со стопроцентной уверенностью при проверке его мультиметром. Ее можно гарантировать в том случае, если поместить его в схему и включить электронное устройство с этой схемой. Если устройство будет работать, то это означает, что элемент исправен.

Как и большинство измерительных приборов, мультиметры (тестеры) делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране. Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком – неточности измерений. Следовательно, если отметка должна быть максимально верна, рекомендуется приобрести цифровой мультиметр.

Все варианты тестеров обладают как минимум двумя выводами – красным и черным .

  1. Первый используется непосредственно для измерений, также иногда называется потенциальным,
  2. Второй является общим. В современных моделях обычно также есть переключатель, благодаря которому возможно установить максимальные предельные значения.

Как проверять диод мультиметром

Диод является элементом, проводящим электричество в одном направлении. Если же развернуть это направление, диод будет закрыт. Т олько в случае выполнения этого условия элемент считается работоспособным. В большинстве моделей тестеров уже есть такая функция, как проверить диод тестером. Перед началом проверки рекомендуется соединить между собой два щупа мультиметра, чтобы убедиться в его работоспособности, а затем выбрать “режим проверки диодов”. Если тестер аналоговый, данная операция производится с помощью режима омметра.

Проверка диодов мультиметром не требует дополнительных навыков. Чтобы убедиться в функционировании элемента, необходимо произвести прямое включение, следовательно, подключить анод к плюсовому значению (красный щуп), а катод – к минусовому (черный). На экране или шкале прибора должно появиться значение пробивного напряжения диода, эта цифра в среднем составляет от 100 до 800 мВ . Если же произвести обратное включение (поменять местами электроды), значение будет не больше единицы. Из этого можно сделать вывод, что сопротивление прибора огромно и электричество он не проводит. Если все происходит именно так, как описано выше, электронный элемент исправен и дееспособен.

Бывают ситуации, когда при подключении щупов диод пропускает ток в обоих направлениях, либо же не пропускает вообще (значения при прямом и обратном включениях равны единице). В первом случае это означает, что диод пробит, а во втором – он перегорел либо же находится в обрыве. Такие электронные элементы являются неисправными и это легко проверить тестером.

Как проверять светодиод

Если речь идет о светодиоде, алгоритм проверок аналогичен, но дополнительно облегчит задачу тот факт, что при прямом включении этот вид диода будет светиться . Разумеется, это позволит окончательно убедиться в том, что он в порядке. Но случается такое, что необходима проверка стабилитронов. Стабилитрон является одной из разновидностей диодов, его главное предназначение – сохранение стабильного выходного напряжения вне зависимости от изменений уровня тока. К сожалению, выделенной функции для проверки данного вида электронных элементов пока не внедрили в мультиметры.

Тем не менее часто прозвонить их можно с помощью такого же принципа, как с диодами. Но многие опытные радиолюбители заявляют, что произвести проверку стабилитрона с помощью цифрового тестера весьма проблематично. Причиной этого является тот факт, что напряжение стабилитрона должно быть ниже, чем напряжение на выходах мультиметра. Это связано с тем, что из-за низкого напряжения возможно посчитать рабочей неисправную модель, точность показаний падает.

Если при проверке диода необходимо обратить внимание на значение пробивного напряжения, в случае со стабилитронами показательным станет сопротивление. Эта цифра должна составлять от 300 до 500 Ом . И аналогично алгоритму действий с диодами:

  • Если ток пропускается в обе стороны это называется пробивом,
  • Если сопротивление слишком велико это обрыв.

Также немаловажно помнить, что цифровое значение при прозвоне стабилитрона будет выше значения обычных диодов. Если нужно отличить один элемент от другого, такая проверка окажет помощь.

Стабилитроны, проверка которых не принесла желаемых результатов, изобретатели часто тестируют с помощью дополнительных приборов, иногда конструируя их самостоятельно . Одним из наиболее простых способов является использование для проверки блока питания с возможностью переключения напряжения. Необходимо сначала подсоединить к аноду резистор, имеющий значение сопротивления, оптимальное для стабилитрона, а затем подключить блок питания . Затем замеряется напряжение на диоде, параллельно поднимается на блоке. По достижении уровня напряжения стабилизации, эта цифра должна перестать расти. В этом случае стабилитрон в норме, при любых отличиях от вышеприведенной схемы он неисправен.

Стабилитрон в блоке питания.

Стабилитрон в блоке питания.

Заключение

И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.

Как проверить диод мультиметром. Подробная инструкция

В данной статье объясним как проверить диод мультиметром. Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.

Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.

Зная это свойство диода можно легко проверить его на неисправность при помощи обычного мультиметра.

Как проверить диод мультиметром

Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:

Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.

Признаки исправного диода:

  • При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение отличается. Так у германиевых диодов оно составляет примерно 0,3…0,7 вольт, у кремниевых диодов 0,7…1,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.
  • И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.

При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.

Альтернативный способ проверки исправности диода

В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.

При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).

Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.

Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.

Как проверить диодный мост

Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.

Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.

Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:

Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:

а при следующей полуволне работает другая пара выпрямительных диодов:

Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:

Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:

  • 1-й: выводы 1 – 2;
  • 2-й: выводы 2 – 3;
  • 3-й: выводы 1 – 4;
  • 4-й: выводы 4 – 3;

При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *