Напряжение Тока После Диодного Моста
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Последние посетители 0 пользователей онлайн
- Ни одного зарегистрированного пользователя не просматривает данную страницу
Объявления
- Ответов 81
- Создана 9 г
- Последний ответ 17 окт
Топ авторов темы
Hambaker 5 постов
Саша Кот 11 постов
tcoder 14 постов
lucky_guy 8 постов
Популярные посты
tcoder
На самом деле это просто красивые слова. По настоящему серьёзные вопросы как бы не ставились — ответа в них нет. На то он и вопрос, и кстати здесь достаточно понятный, хоть и не сформулированный. Оч
Саша Кот
Ты ещё проверь сколько ампер в розетке! Очень сильно удивишься.
Саша Кот
Ну дак это две большие разницы. На выходе ТРАНСФОРМАТОРА или на ВЫХОДЕ ДИОДНОГО МОСТА! И вот вторых. Ток И напряжение это совсем разные значения. Ток измеряется АМПЕРМЕТРОМ, напряжение ВОЛЬТМЕТ
Выбор диодов для выпрямительного моста для электродвигателя: освещаем по пунктам
Как подключить диодный мост и зачем он вообще нужен? Какие типы бывают и как выбрать? Как правильно замерить напряжение при помощи мультиметра? Где его применяют?
1 » Максимальный долговременный прямой ток
Максимальный долговременный прямой ток – это одна из наиболее важных характеристик диода. К примеру, у диода (1N4007) этот ток равен 1 ампер. Это значит, что при температуре не выше 75 °С данный диод спокойно может через себя пропускать силу тока до 1 ампера без ущерба для себя (не получая тепловой или электрический пробой). Ток выше 1 ампера уже грозит увеличением вероятности пробоя и последующего выхода из строя (либо при сгорании он станет диэлектриком, то есть его внутреннее сопротивление уже будет бесконечно большим, или же после сгорания он, наоборот, станет проводником, у которого сопротивление станет очень малым). При выборе диодов для мостов и готовых диодных сборок мостов нужно делать некий запас по току. Например, Ваш блок питания должен выдавать на выходе максимальный ток 0,5 ампера, и поставив диодный мост на 1 ампер мы получим 50% запас по току, что обеспечивает на дополнительную защиту от случайных токовых перегрузок до 1 ампера. Это позволит обеспечить дополнительную надёжность работающего диодного моста в блоке питания.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
2 » Максимальное обратное напряжение диодов в диодном мосте
Максимальное обратное напряжение диодов – это та максимальная величина амплитудного напряжения, которое будет приложено к диоду при его обратном включении. Напомню, что обратное включение диода, это когда плюс источника питания подсоединяется к минусу (катоду) диода, а минус источника питания подсоединяется к плюсу диода (аноду). То есть, наоборот, плюс к минусу, а минус к плюсу. При этом подключении (обратном) диод находится в закрытом состоянии, его сопротивление бесконечно большое. Следовательно, максимальная амплитуда напряжения оседает на диоде. Максимальное обратное напряжение у нашего (к примеру взятого) диода 1N4007 равна 1000 вольтам (1кВ). Это значит, что диодный мост, собранный на таких диодах может выдерживать амплитудное переменное напряжение аж до 1000 вольт. Напряжение выше этого значения уже, как и в случае с током, увеличивает вероятность электрического пробоя диода, с последующим выходом его из строя. При подборе диода по этой характеристики также делайте некий запас (от 25% до 100%, а то и более). Хотя 1000 вольт это и так достаточно много!
3 » Максимальная рабочая частота диода
Максимальная рабочая частота диода – это наиболее высокая частота, на которой диод (диодный выпрямительный мост) может работать не теряя свои номинальные характеристики, функционировать (переходить из закрытого состояния в открытое и обратно) с максимальный быстродействием, сохраняя свою надёжность. Наш диод серии 1N4007 имеет максимальную рабочую частоту 1 мГц. Это достаточно высокая частота. Работая в схеме обычного блока питания (запитываемого от сети с частотой 50 Гц) этих диодов более чем будет достаточно, касательно этой характеристики. И даже они нормально будут работать в схемах импульсных БП, где обычно используется частота около 10-18 кГц.
Схема простого выпрямителя
Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.
При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.
Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.
Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.
Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.
Что такое диодный мост и из каких элементов он состоит
Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.
Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.
4 » Интервал рабочих температур диода
Интервал рабочих температур диода, что будет работать в схеме диодного моста – это температурная характеристика диода. Она говорит о том, что в определённом диапазоне температур диод будет нормально работать, и его другие параметры останутся в рамках допустимого (поскольку температура полупроводника влияет на электрические характеристики, например изменением внутреннего сопротивления диода). У диода 1N4007 интервал рабочих температур лежит в пределах -65…+175°С. При очень низких температура вряд ли в быту Вы будете использовать диодный мост, а вот высокая температура легко может образоваться при прохождении большой величины тока. Причем, как известно, большинство диодов, и мостов сделаны из кремния. Кремний имеет свою критическую температуру, после которой он начинает необратимо разрушаться. Эта температура около 150-180°С. Работа диода на предельных температурах, это также не совсем хорошо. Нормальной температурой для работы полупроводников можно считать от 0 до 60 °С.
Для чего нужен диодный мост в генераторе автотехники
Диодный мост в генераторе
Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:
- маломощные – до 300 мА;
- средней мощности – от 300 мА до 10 А;
- высокомощные – выше 10 А.
Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.
Как меняется напряжение после диодного моста
Виды диодных мостов
Большинство электронных приборов в вашем доме используют переменный ток, но некоторые устройства, такие как ноутбуки, перед использованием преобразуют этот ток в постоянный. Большинство ноутбуков используют тип импульсного источника питания (SMPS), который позволяет выходному напряжению постоянного тока больше мощности для размера, стоимости и веса адаптера.
Диодные мосты работают с использованием выпрямителя, генератора и фильтра, которые управляют широтно-импульсной модуляцией (метод снижения мощности электрического сигнала), напряжением и током. Генератор представляет собой источник переменного сигнала, из которого вы можете определить амплитуду тока и направление его протекания. Адаптер переменного тока ноутбука затем использует его для подключения к источнику переменного тока и преобразует высокое напряжение переменного тока в низкое напряжение постоянного тока, форму, которую он может использовать для питания самого себя во время зарядки.
Некоторые выпрямительные системы также используют сглаживающую цепь или конденсатор, который позволяет им выводить постоянное напряжение, а не то, которое изменяется во времени. Электролитический конденсатор сглаживающих конденсаторов может достигать емкостей от 10 до тысяч микрофарад (мкФ). Большая емкость необходима для большего входного напряжения.
Другие выпрямители используют трансформаторы, которые изменяют напряжение, используя четырехслойные полупроводники, известные как тиристоры, наряду с диодами. Кремний – управляемый выпрямитель, другое название тиристора, использует катод и анод отделены друг от друга ворот и ее четырех слоев, чтобы создать два р — п переходов, расположенных один поверх другого.
6 » Максимальный импульсный ток
Этот пункт логичнее было указать вторым, но я его опустил по причине упорядочивания по важности характеристик диода. Итак, первым пунктом у нас было максимальный долговременный ток, то есть ток, величина которого постоянна во времени. Импульсный ток уже характеризует амплитудное значение силы тока. Во времени это ток может меняться, и в некоторые моменты времени быть равен нулю. Поэтому общая мощность, которая будет оседать на диоде при прохождении через него импульсного тока будет меньше, чем та, которая была бы при долговременном токе. К примеру, для диода 1N4007 при длительности импульса 3.8 мс величина тока равна 30 ампер. И тут мы видим ощутимую разницу. Если при длительном токе диод может выдерживать до 1 ампера, то при импульсном это значение увеличилось аж в 30 раз.
Видео по этой теме:
P.S. Это и были основные характеристики диодов, которые будут работать в диодном мосте, на которые нужно обращать внимание при выборе. Хотя если свести к еще большей простоте, то для обычных трансформаторных блоков питания важны две характеристики, это максимальный длительный ток и обратное напряжение (первый и второй пункт в моей статье). Все остальные параметры обычно у современных диодов достаточно велики и их более чем достаточно для всех диодных мостов, которые могут быть использованы для простых блоков питания.
Как рассчитать и подобрать диодный мост по мощности
Максимальное пульсирующее напряжение, присутствующее в цепи двухполупериодного выпрямителя, определяется не только значением сглаживающего конденсатора, но и частотой и током нагрузки и рассчитывается как:
Напряжение пульсации моста выпрямителя
Формула напряжения пульсаций
Где: I – ток нагрузки постоянного тока в амперах, ƒ – частота пульсации или удвоенная входная частота в герцах, а C – емкость в Фарадах.
Основными преимуществами двухполупериодного мостового выпрямителя является то, что он имеет меньшее значение пульсации переменного тока для данной нагрузки и меньший резервуар или сглаживающий конденсатор, чем эквивалентный полуволновой выпрямитель. Следовательно, основная частота пульсирующего напряжения в два раза больше частоты переменного тока (100 Гц), где для полуволнового выпрямителя она точно равна частоте питания (50 Гц).
Величина пульсирующего напряжения, которое накладывается поверх напряжения питания постоянного тока диодами, может быть практически устранена путем добавления значительно улучшенного π-фильтра (pi-фильтра) к выходным клеммам мостового выпрямителя. Этот тип фильтра нижних частот состоит из двух сглаживающих конденсаторов, как правило, одного и того же значения и дросселя или индуктивности через них, чтобы ввести путь с высоким полным сопротивлением в переменный компонент пульсации.
Мостовой выпрямитель
Другая, более практичная и более дешевая альтернатива – использовать готовый трехполюсный ИС-регулятор напряжения, например, LM78xx (где xx обозначает номинальное выходное напряжение) для положительного выходного напряжения или его обратный эквивалент, LM79xx для отрицательного выходное напряжение, которое может снизить пульсации более чем на 70 дБ (таблица данных), обеспечивая постоянный выходной ток более 1 ампера.
Многие схемы с этой технологией построены с мостовым выпрямителем. Мостовые выпрямители преобразуют переменный ток в постоянный, используя свою систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление сигнала переменного тока, либо полноволновым методом, который выпрямляет оба направления входного переменного тока.
Диодный мост GBL10
Полупроводники – это материалы, которые пропускают ток, потому что они сделаны из металлов, таких как галлий, или металлоидов, таких как кремний, которые загрязнены такими материалами, как фосфор, в качестве средства контроля тока. Вы можете использовать мостовой выпрямитель для различных применений для широкого диапазона токов.
Мостовые выпрямители также имеют преимущество в том, что они выдают больше напряжения и мощности, чем другие выпрямители. Несмотря на эти преимущества, мостовые выпрямители страдают от необходимости использовать четыре диода с дополнительными диодами по сравнению с другими выпрямителями, вызывая падение напряжения, которое уменьшает выходное напряжение.
Какое напряжение после диодного моста 220в?
Влияние формы выходного переменного напряжения после диодного моста и изменение сигнала от емкости
В данном видео, я вам покажу, какая форма сигнала будет после трансформатора. Как изменится форма сигнала, если подключить прибор к части диодному мосту, и к полному диодному мосту.
Так же мы с вами посмотрим, как изменится форма выходного сигнала с трансформатора, если подключить АКБ с маленькой емкостью, и с большей емкостью.
При этом я буду использовать сильно изношенные АКБ. Вы сможете наглядно увидеть изменение формы сигнала осциллограммы, относительно сопротивления АКБ.
Так же я подключу электролитический конденсатор дополнительно в цепь, и мы так же посмотрим, как он влияет на показания приборов, и на форму выходного сигнала с трансформатора.
Стоит учитывать, что при разной мощности входного сигнала, например если использовать ветрогенератор, у которого увеличивается мощность по мере увеличения оборотов = напряжение и ток. Влияние емкости конденсатора и емкого АКБ, будут не очень сильно изменять форму выходного сигнала. (А именно, сглаживать его)
Для того чтобы он оставался в определенной зоне, необходимо сделать перерасчет, необходимой емкости конденсатора. А так же подобрать и емкость АКБ. При этом емкость АКБ это не постоянная величина. Которая будет изменятся как и сопротивление АКБ со временем.
Стоит так же учитывать, что с ростом напряжения из за импульсов сигнала, которые превышают максимальное напряжение АКБ. АКБ будет нагреваться, что приведет к увеличению его сопротивления. И соответственно к более сильному его износу.
ВЫПРЯМИТЕЛИ
Фото трансформаторный блок питания
Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.
Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.
Однополупериодный выпрямитель
Схема однополупериодный выпрямитель
Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:
Выпрямленный ток после однополупериодного выпрямителя
На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:
Электролитический конденсатор большой емкости
Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.
Выпрямленный ток в однополупериодном выпрямителе после конденсатора
Двухполупериодный выпрямитель со средней точкой
Схема двухполупериодный выпрямитель со средней точкой
Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:
График двухполупериодного выпрямителя
Двухполупериодный выпрямитель, мостовая схема
Схема двухполупериодный выпрямитель мостовая схема
И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:
Диодный мост рисунок
Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.
Объяснение работы диодного моста
Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:
График мостого выпрямителя
При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:
Еще одно изображение диодного моста
Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:
Фото импортного диодного моста
На фото далее изображен отечественный диодный мост КЦ405.
Фото диодный мост кц405
Трехфазные выпрямители
Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.
Фото трехфазного трансформатора
Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.
Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.
Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV.
Обсудить статью ВЫПРЯМИТЕЛИ
История изобретения
В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.
В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.
В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.
Изобретателем же схемы выпрямительного моста считается электротехник из Польши Карол Поллак. Позже в журнале Elektronische Zeitung опубликовали результаты исследований Лео Гретца, поэтому в литературе можно встретить и другое название диодного моста — схема или мост Гретца.
Что такое диоды
Диод – это полупроводниковый элемент на основе кристалла кремния. Ранее эти детали также изготавливались из германия, но со временем этот материал был вытеснен из-за своих недостатков. Электрический диод функционирует как клапан, т.е. он пропускает ток в одном направлении и блокирует его в другом. Такие возможности в эту деталь заложены на уровне атомарного строения его полупроводниковых кристаллов.
Один диод не может получить из переменного напряжения полноценное постоянное. Поэтому на практике используют более сложные сочетания этих элементов. Сборка из 4 или 6 деталей, объединённых по специальной схеме, образует диодный мост. Он уже вполне способен справиться с полноценным выпрямлением тока.
Определение
Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.
Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.
Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.
Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.
В зависимости от сферы применения и схемы подключения диодные мосты бывают:
- однофазные;
- трёхфазные.
Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.
Отличия выпрямителя и стабилизатора
В связи с ростом энергопотребления домохозяйств подстанции не редко приходится модернизировать. В ином случае качество энергоснабжения заметно снижается. Решением проблемы может стать установка стабилизатора или выпрямителя напряжения. Под выпрямителем тока понимается полупроводниковое, механическое, электровакуумное устройство. Большинство таких приборов создают «пульсирующий» ток. Их основные преимущества заключаются в следующем:
- незначительные пульсации напряжения, неразрывная форма выходного тока;
- высокий КПД во всем регулировочном диапазоне;
- эффективное воздушное охлаждение;
- герметичность конструкции обеспечивает защиту от проникновения внутрь агрессивных сред;
- современные модели имеют промышленный интерфейс для управления с пульта или компьютера при различной удаленности;
- возможность задать автоматический режим работы;
- модульная конструкция выпрямителей высокой мощности позволяет работать при неисправности одного силового модуля;
- оптимальные массогабаритные параметры;
- возможность использования в качестве устройства выпрямления одно- и трехфазного тока.
Будет интересно➡ Чему равна электроемкость конденсатора?
Представленные в продаже выпрямители тока просты в обслуживании и отличаются высокой степенью ремонтопригодности. Для них характерен высокой энергетический фактор, то есть небольшое реактивное энергопотребление (за исключением тиристорных моделей).
Стабилизаторы напряжения – уникальная техника для автоматической регулировки сетевых параметров на прикрепленных зажимах с заранее установленными пределами. Основное отличие стабилизаторов от выпрямителей заключается в принципе их действия. Например, в стабилизирующих устройствах параметрического типа в основу положено использование свойств нелинейных элементов: карборундовых резисторов, насыщенных дросселей, нелинейных конденсаторов.
Стабилизаторы компенсационного типа работают за счет воздействия колебаний выходного напряжения через цепочку обратной связи на регулирующий элемент. Как правило, это замкнутые системы автоматической регулировки, поэтому их иногда именуют регуляторами напряжения. Через регулирующий орган ток проходит импульсно или непрерывно. Преимущества стабилизаторов напряжения:
- многофункциональность в отличие от выпрямителей. Современные модели стабилизаторов не только регулируют напряжение, но и могут включать задержку его подачи;
- возможность сетевого мониторинга посредством вольтметров встроенного типа;
- наличие дополнительной защиты от замыканий в подключенной сети и перенапряжений с внешней стороны;
- позволяют владельцу быть в курсе происходящего с электросетью.
В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке
схема двухтактного выпрямителя переменного напряжения
Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1. В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна p= k · q = 1 · 2 = 2. По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.
Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде.
В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).
Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.
Будет интересно➡ Что такое статическое электричество и как от него избавиться
Принцип действия
Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.
Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.
Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:
- На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или
- Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.
Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.
Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.
Однополупериодный преобразователь
Ниже приведена типичная схема подобного устройства с минимумом элементов.
Схема: простейший преобразователь
Читать также: Посудомоечная машина не сушит причины
Обозначения:
- Tr – трансформатор;
- DV- вентиль (диод);
- Cf – емкость (играет роль сглаживающего фильтра);
- Rn – подключенная нагрузка.
Теперь рассмотрим осциллограмму в контрольных точках U1, U2 и Un.
Осциллограмма, снятая в контрольных точках U1, U2 и Un
Пояснение:
- в контрольной точке U1 отображается диаграмма снятая на входе устройства;
- U2 – диаграмма перед емкостным сглаживающим фильтром;
- Un – осциллограмма на нагрузке.
Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.
Недостатки такой схемы очевидны – это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.
Схема диодного моста
Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.
Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.
Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.
Схема диодного моста
Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.
В железе это выглядит следующим образом.
Диодный мост из отдельных диодов S1J37
Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют « схема Гретца» или « мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.
Полупроводниковые схемы
Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.
Его можно уменьшить двумя способами:
- улучшая эффективность электрического фильтра;
- улучшая параметры выпрямляемого переменного напряжения.
Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.
Интересно почитать! Что такое варистор и где его применяют.
Использовать обе полуволны переменного напряжения можно двумя способами:
- по схеме моста;
- по схеме со средней точкой обмотки (схема Миткевича).
Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.
Схема устройства стабилизатора напряжения
Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока.
Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.
При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».
Будет интересно➡ Что такое шаговое напряжение и чем оно опасно
Силовой трансформатор
Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства. Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатораU2 влияет величина напряжения на выходе выпрямительного моста Uн.
Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iнодновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.
Силовой трансформатор
Диодный мост
Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный. В блоке применяются чаще всего элементы в виде диодов. На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.
Диодный мост
Устройство фильтрования
Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки. В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.
Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.
Интересно почитать: что такое клистроны.
Как проверить диодный мост
Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.
То есть все, что мне надо сделать – это просто прозвонить каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.
Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-” припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.
Устройство и работа выпрямительного диода. Диодный мост.
Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.
Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.
Общие характеристики выпрямительных диодов.
В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:
малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.
По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.
Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.
Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.
Технология изготовления и конструкция выпрямительных диодов.
Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.
Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.
Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.
Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.
Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).
Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).
Электрические параметры выпрямительных диодов.
У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:
Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.
Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.
Схема простого выпрямителя переменного тока на одном диоде.
Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:
На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD).
При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).
При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).
В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.
Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.
Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.
Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.
Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.
Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.
Диодный мост.
Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.
Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «—» или «
», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.
Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.
На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.
Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.
Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку Rн, диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.
В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку Rн, диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.
В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.
И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:
1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.
А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.
Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.
А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.