Изучение принципа действия трансформатора. Расчет трансформатора и представление его чертежа общего вида
Цель работы: изучение принципа действия трансформатора, освоение методики расчета маломощного трансформатора электропитания на ЭВМ, непосредственный расчет трансформатора и представление его чертежа общего вида.
Приборы и оборудование: клавиатура, мышь, монитор, PC и Trans32.
1. Какие параметры трансформатора определяются в режиме холостого хода?
Напряжение на первичной, вторичной обмотках, ток холостого хода, мощьность, определяющая потери стали, коэффициент трансформации для каждой из обмоток, активное сопротивление первичной обмотки (r0 = P0 /I0 2 ), реактивное сопротивление первичной обмотки (X0 = U1/I0), комплексное сопротивление первичной обмотки (|Z0| = √(r0 2 + X0 2 )).
2. Какие параметры трансформатора определяются в режиме короткого замыкания?
В режиме короткого замыкания измеряют и определяют напряжение короткого замыкания, ток в первичной обмотке, равный номинальному току, мощность, потребляемая трансформатором, определяющую потери в меди, потери в проводах обмоток при номинальном токе, сопротивление трансформатора при коротком замыкании, активная и реактивная составляющая напряжения короткого замыкания.
3 . Что называется полной отдаваемой и полной потребляемой мощностями трансформатора?
4. Что характеризует собой типовая мощность трансформатора и в чем ее отличие от мощности, потребляемой трансформатором из сети? Назовите схемы выпрямителей, в трансформаторе которых эти мощности одинаковы?
Типовая (габаритная) мощность: , где N – число обмоток. Ее отличие от потребляемой мощности в том, что при более точном приближении Sт зависит от числа фаз трансформатора, числа обмоток, частоты тока, толщины изоляции и др. Схема Ларионова –наглядный пример выпрямителя, для которого Sт=1.05∙P0.P0, т. е. типовая мощность почти равна мощности, потребляемой от сети;
Мощность, потребляемая от источника, представляет собой произведение напряжения первичной обмотки U1 на ток первичной обмотки I1:
5. Как влияет частота сети на габаритные размеры и вес трансформатора?
, т. е. увеличение частоты и повышение электромагнитных нагрузок приводит к уменьшению линейных и массогабаритных показателей;
6. Как зависят параметры и КПД от тока нагрузки?
Зависимость параметров и КПД трансформатора от тока нагрузки определяется коэффициентом нагрузки, который представляет собой отношение значения тока вторичных обмоток к их номинальному значению.
7. Каков диапозон значений коэфицентов трансформации автотрансформаторов?
Рекомендуемый диапазон значений коэффициента трансформации автотрансформатора находится в пределах 1…2
8. Каким образом производится выбор магнитопрвода трансформатора?
Применяют стержневые и броневые магнитопроводы. Трансформаторы больших и средних мощностей выполняют стержневыми, т. к. в броневых трудно изолировать обмотки высшего напряжения от магнитопровода. Для измерительных и лабораторных трансформаторов применяют тороидальные магнитопроводы из-за малого магнитного сопротивления и нечувствительности к внешним полям. Также магнитопровод выбирают по произведению и далее по таблицам;
Sст-площадь поперечного сечения сердечника, Sok-площадь окна магнитопровода.
9. Как определяют число витков первичной и вторичной обмоток?
Количество витков первичной обмотки выбирают, учитывая отдаваемую мощность, максимальные ток и напряжение. Количество витков вторичной обмотки выбирают в зависимости от коэффициента трансформации трансформатора. ЭДС, индуктируемая в одном витке: и далее число витков каждой обмотки трансформатора: ;
10. Как выбирают обмоточные провода?
Обмоткам придают преимущественно цилиндрическую форму, выполняя их при малых токах из круглого изолированного провода, а при больших токах из шин прямоугольного поперечного сечения. Определяются диаметр провода обмотки трансформатора (без учета толщины изоляции): , средняя длина витка обмотки трансформатора Rср и длина каждой обмотки: . Сопротивление каждой обмотки: , число витков вторичных обмоток: , для первичной обмотки: . Толщина каждой обмотки броневого трансформатора: , толщина катушки трансформатора: . Потери мощности на сопротивлениях обмоток, считая потери в первичной обмотке при протекании по ней полного тока: .
11. В чем заключается проверка теплового режима трансформатора?
При проверке теплового режима трансформатора находят перегрев сердечника по отношению к окружающей среде. Перегрев для каждой марки провода не должен превышать определенной температуры. Если тепловой режим неудовлетворительный, то уменьшают плотность тока. Приближенная формула для нахождения перегрева сердечника: , где Sохл – охлаждающая поверхность обмоток.
12. В чем заключаются особенности расчета трансформаторного преобразователя?
В преобразователях используются насыщающиеся или перенасыщающиеся трансформаторы. В первом Типе трансформаторов рекомендуется применять в сердечнике материалы с формой петли Гистерезиса близкой к прямоугольной. На частотах свыше 5 – 10 кГц используются ферритовые сердечники, форма петли Гистерезиса которых не напоминает прямоугольник.
В расчетных формулах значение индукции для насыщаемых трансформаторов выбирается значение индукции В = Bs, для не насыщаемых В = (0,7…0,9)∙ Bs.
Плотность тока в обмотках преобразователя можно примерно определить по формуле
В расчетных формулах следует также учитывать форму воздействующего напряжения. Учет производится учетом коэффициента формы сигнала КA? для формы косинуса Кф = 1,11, для синусоидальной Кa = 1.
Устройство и принцип работы трансформаторов
Трансформатор преобразует напряжение с помощью взаимоиндукции. И по сути эта делать простая, но очень эффективная. Это происходит благодаря переменному магнитному полю, которая связывает несколько катушек друг с другом. Трансформатор преобразует только переменные и импульсные токи.
Как работает трансформатор
Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.
Что такое индукция
Если по проводу пустить электрический ток, то возникнет магнитное поле.
Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.
У постоянных магнитов наличие магнитного поля объясняется направлением «доменов в одну сторону». Т.е. у каждого отдельно взятого атома есть свое маленькое магнитное поле. У постоянных магнитов эти маленькие магнитные поля направлены в одну сторону. Поэтому у постоянного магнита такое сильное магнитное поле.
И другие материалы можно намагнитить, т.е. сделать так, чтобы магнитные поля были направлены в одну сторону. Так получится «искусственно созданный» магнит.
Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.
А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.
Чем больше материал может создать магнитное поле, тем выше его индуктивность.
Магнитное поле можно увеличить, если сделать катушку.
Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.
Это и есть катушка индуктивности.
Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.
Изменение магнитного поля создает электрическое поле.
Увеличение индуктивности сердечником
А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.
Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.
Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.
Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.
Взаимоиндукция и принцип передачи тока
Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.
Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.
При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.
Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.
А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.
Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.
Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.
Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.
Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.
Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.
Устройство трансформатора
А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.
Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.
Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.
Классический трансформатор
Разберем устройство классического трансформатора.
Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.
Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).
На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.
Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.
Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.
Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.
На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.
Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.
Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.
Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.
Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.
Коэффициент трансформации
У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).
Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К<1. А если понижающий, то наоборот К>1. У разделительного коэффициент равен 1.
От чего зависит мощность трансформатора
При расчете учитываются следующие параметры:
- Размеры магнитопровода (сердечника);
- Количество витков;
- Сечение провода;
- Количество обмоток;
- Частота работы.
И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.
Типы классических трансформаторов
Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:
Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.
А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.
Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.
Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.
Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.
После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.
Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.
Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.
Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.
Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.
Режимы работы трансформаторов
Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.
Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.
Импульсные трансформаторы
У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.
Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Отличия импульсных трансформаторов от классических
Тезисно можно выделить несколько различий:
- Частота работы;
- Состав сердечника;
- Размеры;
- Схема работы;
- Стоимость.
А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.
Почему сердечник не делают сплошным
Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.
Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.
Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.
Что делает трансформатор
У трансформатора много полезных и важных функций:
- Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.
- Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.
- Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.
- Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
- Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
- Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
- Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.
Вопросы об устройстве трансформатора
-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.
-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.
-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.
-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.
-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.
Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.
Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.
Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.
-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.
Неисправности трансформаторов
К основным неисправностям трансформаторов можно отнести:
- Коррозия и наличие ржавчины на сердечнике;
- Перегрев и нарушение изоляции;
- Межвитковое короткое замыкание;
- Деформация корпуса, обмоток и сердечника
- Попадание воды в обмотку.
Как проверить на целостность
Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.
Так же вы можете найти паспорт на свой трансформатор. В нем указываются сопротивления обмоток, и их параметры, которые нужно будет проверить мультиметром.
Безопасная проверка работы трансформатора
Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.
Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.
Интересные факты про трансформаторы
Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.
Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.
ТУЛЬСКИЙ ЗАВОД ТРАНСФОРМАТОРОВ
Производство тороидальных трансформаторов и дросселей ОСМ
Ответы на характерные вопросы, связанные с работой трансформаторов и дросселей
Ниже приведены краткие ответы на наиболее часто встречающиеся вопросы, возникающие при конструировании и применении трансформаторов и дросселей. Все эти вопросы подробно освещены в книге Котенева С.В., Евсеева А.Н. «Расчет и оптимизация тороидальных трансформаторов и дросселей» (Москва: Горячая линия — Телеком, 2017, 2-е издание). Здесь же дано конспективное изложение проблем. Специалисты, интересующиеся подробным обоснованием ответов на вопросы, могут обратиться к названной книге. Для упрощения изложения мы постараемся обойтись без формул.
В конечном счете, мощность трансформатора определяется его допустимым нагревом. Нагрев трансформатора вызван нагревом его магнитопровода (сердечника) и нагревом проводов обмоток. Нагрев сердечника определяется свойствами электротехнической стали (так называемыми удельными потерями, которые зависят от величины электромагнитной индукции) и не зависит от величины нагрузки, подключенной к трансформатору. Нагрев проводов обмоток определяется величиной тока, протекающего через обмотки, и удельного сопротивления материала обмоток (как правило, используются медные провода, реже — алюминиевые). Мощность нагрева обмоток пропорциональна квадрату силы тока и омическому (активному) сопротивлению обмотки. Таким образом, минимальный нагрев трансформатора будет иметь место в режиме холостого хода, когда нагрев обмоток минимален — через первичную обмотку протекает только ток холостого хода, а через вторичную обмотку ток совсем не протекает.
Большинством производителей проектируют трансформаторы таким образом, чтобы при полной нагрузке перегрев трансформатора (то есть превышение его температуры над температурой окружающей среды) не превышал 50…70 °. Если нагрузка трансформатора превысит номинальную, то температура перегрева превысит расчетную величину. Это приведет к ускоренному старению материалов трансформатора и к уменьшению срока его службы. При дальнейшем увеличении температуры перегрева трансформатор выйдет из строя. Однако температура перегрева может быть снижена применением принудительного охлаждения трансформатора — например, с помощью воздушного охлаждения (обдув вентилятором) или водяного охлаждения (прокачка холодной воды через специальную систему охлаждения, совмещенную с магнитопроводом или обмотками трансформатора). Следовательно, применение дополнительного охлаждения позволяет увеличить мощность, которую трансформатор способен отдать в нагрузку.
Можно также снизить нагрев применением проводов большего сечения. Однако для их размещения потребуется магнитопровод больших размеров (габаритов), и в результате получится трансформатор большей габаритной (номинальной) мощности. Поэтому увеличение номинальной мощности трансформатора сопряжено с увеличением его размеров (при сохранении температуры перегрева в допустимых пределах). Следует также заметить, что увеличение размеров трансформатора приводит к увеличению площади поверхности теплоотдачи и дает возможность рассеиванию большей тепловой мощности потерь в окружающую среду.
Нет, не зависит. Мощность, отдаваемая в нагрузку (номинальная мощность трансформатора) определяется только током и напряжением нагрузки (или вторичной обмотки, что одно и то же). Поскольку мощность трансформатора, как было показано выше (в ответе на вопрос 1) определяется допустимым нагревом обмоток, который, в свою очередь, пропорционален квадрату тока, для работы трансформатора не имеет значения, какая доля тока является активной, а какая реактивной. Как известно, соотношение активной и реактивной составляющей тока (а также напряжения или мощности) количественно определяется косинусом ФИ ( Cosφ ). При выборе трансформатора имеет значение только полная мощность, которую потребляет нагрузка и которая измеряется в ВА (вольт-амперы) и не имеет значения величина Cosφ .
В режиме холостого хода нагрев трансформатора определяется потерями мощности в стали магнитопровода. Нагрев провода катушек на холостом ходу отсутствует, поскольку ток в цепи вторичной обмотки не протекает, а через первичную обмотку протекает незначительный ток холостого хода, который практически не нагревает обмотку. В режиме холостого хода перегрев трансформатора составляет от 5 ° до 15 °, если трансформатор рассчитан правильно, а напряжение сети соответствует номинальному. Если же напряжение сети превышает номинальное, то нагрев увеличится, поскольку увеличатся потери в стали сердечника за счет увеличения величины индукции. При значительном (более 10…15 %) увеличении питающего напряжения возникнет насыщение стали магнитопровода. При этом, помимо резкого увеличения мощности потерь в сердечнике, резко увеличится также и ток холостого хода, что вызовет существенный нагрев обмоток. При длительном воздействии повышенного напряжения трансформатор выйдет из строя из-за перегрева.
Увеличение числа витков первичной обмотки трансформатора при заданном магнитопроводе и заданном питающем напряжении приведет к снижению величины индукции и, следовательно, — к уменьшению величины тока холостого хода. Однако увеличение числа витков увеличит сопротивление обмоток трансформатора, что увеличит потери мощности в обмотках. Поскольку мощность потерь в обмотках нагруженного трансформатора в несколько раз больше мощности потерь в магнитопроводе, при увеличении числа витков КПД трансформатора уменьшится.
Иногда для подбора выходного напряжения трансформатора прибегают к уменьшению или увеличению числа витков первичной обмотки. При этом следует знать следующее. Уменьшение числа витков приведет к увеличению величины индукции в стали магнитопровода и может привести к насыщению магнитопровода, следствием чего может быть перегрев трансформатора и выход его из строя (см. также ответ на вопрос 3). Увеличение числа витков приведет к увеличению нагрева трансформатора под нагрузкой, однако при этом будет повышена устойчивость трансформатора при возможных повышениях питающего напряжения — трансформатор в этом случае не войдет в насыщение. Кроме того, увеличение числа витков уменьшает пусковой ток включения трансформатора. Однако увеличение числа витков приводит к увеличению массы и стоимости трансформатора.
Известно, что расчетная плотность тока уменьшается с увеличением габаритной мощности трансформатора. Так для трансформаторов мощностью 5…25 ВА плотность тока может составлять 5…10 А/мм2, а для трансформаторов мощностью 4…5 кВА она не превышает 1…2 А/мм2. Плотность тока выбирается из условий обеспечения требуемой температуры перегрева и зависит от множества факторов: соотношения размеров магнитопровода, условий охлаждения трансформатора, расчетной величины индукции и др. Поэтому она может быть определена путем решения сложной системы уравнений, описывающих работу трансформатора. Величины плотности тока применительно к трансформаторам на конкретных сердечниках приведены в книге Котенева С.В., Евсеева А.Н. «Расчет и оптимизация тороидальных трансформаторов и дросселей» (М.: Горячая линия — Телеком, 2013).
Можно. Но при этом надо помнить, что при включении в питающую сеть наименьшего числа витков первичной обмотки (что соответствует наибольшему напряжению вторичной обмотки) трансформатор не должен входить в насыщение. Трансформатор должен быть рассчитан так, чтобы при подключении к питающей сети секции первичной обмотки с наименьшим числом витков величина индукции не превышала бы номинальную. Тогда при подключении к сети всей обмотки индукция будет иметь значение меньше номинального. При этом свойства электротехнической стали будут использоваться не в полном объеме, а трансформатор будет иметь избыточность (увеличенное число витков первичной обмотки). Вследствие этого — увеличенная масса, большая стоимость. К такому способу прибегают в тех случаях, когда сделать отводы во вторичной обмотке затруднительно по технологическим соображениям, а также для более точной подгонки выходного напряжения.
Да, может работать. При увеличении частоты, например, в два раза величина индукции также снижается в два раза. Это следует из формулы (2.25) названной выше книги. Однако увеличение частоты магнитного потока приводит к увеличению потерь в стали магнитопровода (это следует из формулы (2.27) книги). Потери растут пропорционально степени 3/2 частоты и степени 2 (квадрату) индукции, поэтому при повышении частоты потери в магнитопроводе будут уменьшаться. Разумеется, все написанное верно при неизменном питающем напряжении. Часто возникает вопрос о возможности работы трансформаторов, рассчитанных на 50 Гц в сети с частотой 60 Гц (в ряде стран в сети именно такая частота). Из сказанного выше следует, что увеличение частоты сети с 50 Гц до 60 Гц никак не повлияет на работоспособность трансформатора.
В тех случаях, когда мощности одного трансформатора недостаточно для питания потребителей, можно прибегнуть к параллельному или последовательному соединению обмоток трансформаторов. В зависимости от способа соединения первичной и вторичной обмоток возможны четыре различных варианта соединения трансформаторов. Варианты соединения сведены в таблицу.
Способы соединения первичных и вторичных обмоток | ||
Первичные обмотки соединены: | Вторичные обмотки соединены: | |
Последовательно | Параллельно | |
Последовательно | Одинаковость обмоток не требуется | Допустимо. Мощность нагрузки между трансформаторами распределяется пропорционально напряжением вторичных обмоток; если вторичные обмотки одинаковы, то мощности их равны |
Параллельно | Допустимо во всех случаях. Мощность нагрузки между трансформаторами распределяется пропорционально напряжениям вторичных обмоток; если вторичные обмотки одинаковы, то мощности их равны | Допустимо при одинаковости первичных и вторичных обмоток |
Действительно, иногда возникает ситуация, когда необходимо запитать однофазных потребителей от стандартной промышленной трехфазной сети. Задача преобразования трех фаз в одну довольно часто встречается, например, на различных производствах с мощными однофазными станками. В частном секторе также часто возникают проблемы невозможности равномерного распределения бытовых и профессиональных потребителей по трем фазам питающей сети частного дома.
Казалось бы, можно однофазную нагрузку подключить к любой фазе сети. Но при этом, если потребитель достаточно мощный, а нагрузка по двум остальным фазам небольшая, может возникнуть так называемый перекос фаз: уменьшение напряжения на той фазе, к которой подключена нагрузка, и увеличение напряжения на двух других фазах. Чтобы этого не происходило, следует применять специальные трансформаторы, преобразующие трехфазное напряжение в однофазное. Такие трансформаторы решают проблему перекоса фаз, а также обеспечивают гальваническую развязку потребителей от питающей сети.
Последовательное и параллельное соединение дросселей позволяет увеличить суммарную индуктивность и суммарный рабочий ток. Формулы для вычисления индуктивности и тока приведены в таблице. В таблице приняты следующие обозначения: L1, L2 и i1, i2 — соответственно номинальные значения индуктивности и тока первого и второго дросселей; L и I — суммарные значения индуктивности и тока двух дросселей, соединенных последовательно или параллельно.
Вид соединения | Формулы для вычисления | |
Индуктивности | Тока | |
последовательное![]() | L = L1 + L2 | i = i1 = i2 |
параллельное![]() | ![]() | i = i1 + i2 |
Пропитка трансформаторов и дросселей электротехническим лаком (Тульский завод трансформаторов использует лак марки МЛ-92) преследует несколько целей. Во-первых, пленка лака после высыхания обладает очень высокой электрической прочностью (то есть способностью без электрического пробоя выдерживать высокое напряжение) — для данного лака 40…65 кВ/мм. Во-вторых, лаковое покрытие обеспечивает определенную влагозащиту трансформатора от воздействия окружающей среды. В-третьих, пропитка лаком уменьшает подвижность витков магнитопровода и провода обмоток и несколько снижает уровень шума трансформатора или дросселя.
На Тульском заводе трансформаторов пропитке подвергаются все дроссели и трансформаторы мощностью более 0,1 кВА.
Как известно, в нашей стране питающая трехфазная сеть 380/220 В обязательно заземляется, то есть имеет, как говорят, гальваническую связь с землей. Поэтому в электрической бытовой розетке два провода неравнозначны: связанный с землей провод называется нулевым (или нейтральным) проводом, а второй провод называется фазным проводом. При касании фазного провода индикаторной отверткой индикатор светится, а при касании нулевого провода — нет. Если человек прикоснется рукой или другой частью тела к фазному проводу, через его тело будет протекать переменный ток. Величина этого тока будет зависеть от сопротивления тела человека и переходного сопротивления между телом и землей. Уменьшению переходного сопротивления способствует влажность обуви, пола, одежды. Человек начинает чувствовать ток величиной от 0,1…0,3 мА, а ток более 100 мА считается смертельным.
Применение разделительного трансформатора позволяет значительно снизить риск поражения электрическим током, поскольку вторичная обмотка такого трансформатора не имеет гальванической связи с землей. Применение разделительного трансформатора необходимо также для обеспечения нормальной работы некоторых типов газовых котлов.
Иногда в наличии оказывается трансформатор, рассчитанный на более высокое напряжение, чем напряжение питающей сети. Например, трансформатор рассчитан на напряжение 380 В, а его требуется подключить к сети 220 В, при этом напряжение вторичной обмотки оказывается достаточным для питания нагрузки. В таком случае следует иметь в виду, что трансформатор не сможет отдать в нагрузку номинальную мощность. Это связано с тем, что мощность равна произведению напряжения и тока; при уменьшении напряжения для сохранения мощности неизменной следует увеличить ток. Однако при увеличении тока через обмотки трансформатора будет увеличиваться нагрев обмоток, поскольку мощность потерь в обмотках будет возрастать пропорционально квадрату силы тока. Следовательно, при питании трансформатора пониженным напряжением необходимо так рассчитать режим работы, чтобы токи в обмотках не превышали номинальных величин. При этом мощность нагрузки снизится, то есть трансформатор не сможет отдать номинальную мощность.
Два наиболее распространённых примера питания нагрузки током несинусоидальной формы: регулирование мощности в нагрузке с помощью тиристорного регулятора с фазоимпульсным управлением и зарядное устройство для автомобильного аккумулятора. В первом случае форма напряжения представляет собой резаную вертикальной линией синусоиду, поскольку тиристор открывается с задержкой относительно нуля напряжения. Во втором случае форма тока представляет собой набор узких импульсов, поскольку ток заряда течёт только в те моменты времени, когда мгновенное значение напряжения на выходе зарядного устройства превышает напряжение заряжаемого аккумулятора.
При питании трансформатора напряжением, форма которого отличается от синусоидального, в общем случае нагрев трансформатора увеличится. Во-первых, увеличатся потери в стали магнитопровода. Это связано с тем, что в спектре несинусоидального напряжения имеются гармонические составляющие частот, кратных частоте основной гармоники 50 Гц. Как было показано в ответе на вопрос 10, увеличение частоты магнитного потока приводит к росту потерь в стали.
Во-вторых, возрастут потери в проводах обмоток при том же среднем значении тока, что и для сигнала синусоидальной формы. Количественно это характеризуется коэффициентом формы напряжения или тока. Попросту говоря, ток синусоидальной формы способен перенести большее количество энергии, чем ток такой же величины, но несинусоидальной формы. Это следует учитывать при выборе номинальной мощности трансформатора.
Удельное сопротивление алюминия в полтора раза больше, чем удельное сопротивление меди. Поэтому, для сохранения температуры перегрева трансформатора неизменной, сечение алюминиевого провода должно быть в полтора раза больше, чем сечение медного провода. Для укладки алюминиевого провода в общем случае необходим магнитопровод большего размера, чем для размещения медного провода. Следует также учитывать, что плотность (удельная масса) алюминия в три раза меньше аналогичного параметра меди; обмотки из алюминиевого провода при прочих равных условиях будут иметь массу примерно вдвое меньшую, чем обмотки из медного провода. Однако необходимость применения магнитопровода большего размера может привести к увеличению массы трансформатора. Кроме того, паять алюминий гораздо сложнее, чем медь, необходимо применять специальные флюсы и припои. В то же время трансформатор с обмотками из алюминиевого провода будет несколько дешевле, нежели его аналог с медными проводами.
Исходя из возможностей намоточного оборудования, разные производители для трансформаторов одной и той же мощности могут применять магнитопроводы с разным соотношением высоты к диаметру. Это первая причина различия в размерах трансформаторов одинаковой номинальной мощности. Другая причина — разные производители могут задавать разные температуры перегрева трансформатора. Выше, в ответе на вопрос 1, было показано, что увеличение температуры перегрева трансформатора приводит к снижению его размеров и массы. Поэтому, если имеются два трансформатора одинаковой номинальной мощности, но разных размеров, можно с уверенностью утверждать: меньший трансформатор будет сильнее нагреваться во время работы.
Если не рассматривать заведомо неверно рассчитанный и неправильно изготовленный трансформатор, то есть две главные группы причин выхода из строя трансформаторов: 1) неосторожное обращение при транспортировке и монтаже и 2) неправильная эксплуатация трансформатора. Трансформаторы боятся ударов, поскольку при ударе деформируются провода обмоток, а эмалевая изоляция повреждается; это может вызвать замыкание соседних витков обмоток, что приводит к локальным коротким замыканиям и резкому повышению температуры в местах таких замыканий. При этом величина выходного напряжения трансформатора будет отличаться от своего номинального значения. При монтаже трансформаторов следует помнить, что вся поверхность тороидального трансформатора образована витками проводов обмоток, и производить затяжку крепежных элементов (чашек) следует крайне осторожно. На Тульском заводе трансформаторов для трансформаторов мощностью 1,6 кВА и выше (а по желанию заказчика — и на меньшую мощность) применяются методы крепления, полностью исключающие механическое воздействие на витки обмоток.
При эксплуатации трансформаторов мощность подключённой нагрузки не должна превышать номинальную мощность трансформатора. Температура окружающей среды должна быть такой, чтобы температура трансформатора не превысила 120 °С (предельная температура нагрева эмальпровода). Чем меньше температура, тем медленнее происходит старение проводов обмоток. Одной из наиболее частых причин выхода из строя трансформаторов является их длительный перегрев по причине короткого замыкания в цепи нагрузки или подключения нагрузки с мощностью, превышающей номинальную мощность трансформатора. При таком перегреве происходит осыпание эмалевой изоляции проводов обмоток, что приводит к замыканию витков, ещё большему нагреву и, в конечном итоге, к расплавлению провода обмотки. Предохранитель в таких случаях срабатывает не всегда, поскольку перегрев может происходить при незначительном, но длительном превышении номинального тока.
Нет, нельзя. В основе работы трансформатора лежит закон электромагнитной индукции, который предусматривает изменение магнитного потока по величине и направлению. Это можно обеспечить подачей только переменного напряжения на первичную обмотку трансформатора. Напряжение автомобильного аккумулятора (равно как и любого другого химического источника электроэнергии) является постоянным (по величине и направлению). Для преобразования постоянного напряжения в переменное, пригодное для подачи на трансформатор, следует применять специальные коммутаторы на механических или электронных элементах. Устройство, включающее в себя коммутатор и трансформатор и предназначенное для преобразования постоянного напряжения в переменное, называется инвертором.
Такой вопрос иногда возникает, и он не так банален, как может показаться на первый взгляд. Возникает он обычно потому, что первичная обмотка трансформатора напоминает обмотку дросселя. Можно ли обмотку трансформатора использовать в качестве дросселя?
Вначале — о различиях. Главная функция трансформатора — изменять величину напряжения, подводимого к первичной обмотке. Главная функция дросселя — обеспечивать определённую (и постоянную) величину индуктивности в диапазоне токов от нуля до некоторого номинального значения. Невозможность дросселя выполнить функцию трансформатора обусловлена отсутствием в дросселе вторичной обмотки. В то же время, первичная обмотка трансформатора в некоторых условиях может выполнять функцию дросселя, но индуктивность такого «дросселя» будет существенно зависеть от величины протекающего тока. Чтобы исключить такую нежелательную зависимость, дроссели на сердечниках из трансформаторной стали обязательно имеют немагнитный зазор, который уменьшает относительную магнитную проницаемость, но позволяет обеспечить неизменность величины индуктивности во всём диапазоне рабочих токов дросселя. Кстати, существуют устройства, имеющие свойства и трансформаторов, и дросселей. Их называют трансреакторами. Реактор — одно из названий дросселя. Трансреакторы выполняются на магнитопроводах с немагнитным зазором и имеют первичную и вторичную обмотки. Подробно о трансреакторах написано в разделе «Информация».
Как узнать мощность и ток трансформатора по его внешнему виду
Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.
Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.
Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.
Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).
Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.
Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.
Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.
Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.
Итак, давайте найдем площадь сечения окна.
Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.
В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.
Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:
Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:
Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.
Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.
Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.
Профессиональное развитие начинается здесь: Телеграмм канал Домашняя электрика