История цветовой модели RGB
Я собираюсь совершить экскурс в историю науки о человеческом восприятии, которая привела к созданию современных видеостандартов. Также я попытаюсь объяснить часто используемую терминологию. Кроме того, я вкратце расскажу, почему типичный процесс создания игры со временем будет всё больше и больше напоминать процесс, используемый в киноиндустрии.
Пионеры исследований цветовосприятия
Сегодня мы знаем, что сетчатка человеческого глаза содержит три разных типа фоторецепторных клеток, называемых колбочками. Каждый из трёх типов колбочек содержит белок из семейства белков опсинов, который поглощает свет в различных частях спектра:
Поглощение света опсинами
Колбочки соответствуют красной, зелёной и синей частям спектра и часто называются длинными (L), средними (M) и короткими (S) согласно длинам волн, к которым они наиболее чувствительны.
Одной из первых научных работ о взаимодействии света и сетчатки был трактат «Hypothesis Concerning Light and Colors» Исаака Ньютона, написанный между 1670-1675 гг. У Ньютона была теория, что свет с различными длинами волн приводил к резонансу сетчатки с теми же частотами; эти колебания затем передавались через оптический нерв в «сенсориум».
«Лучи света, падая на дно глаза, возбуждают колебания в сетчатке, которые распространяются по волокнам оптических нервов в мозг, создавая чувство зрения. Разные типы лучей создают колебания разной силы, которые согласно своей силе возбуждают ощущения разных цветов…»
(Рекомендую вам обязательно прочитать отсканированные черновики Ньютона на веб-сайте Кембриджского университета. Я, конечно, констатирую очевидное, но каким же он был гением!)
Больше чем через сотню лет Томас Юнг пришёл к выводу, что так как частота резонанса — это свойство, зависящее от системы, то чтобы поглотить свет всех частот, в сетчатке должно быть бесконечное количество разных резонансных систем. Юнг посчитал это маловероятным, и рассудил, что количество ограничено одной системой для красного, жёлтого и синего. Эти цвета традиционно использовались в субтрактивном смешивании красок. По его собственным словам:
Предположение Юнга относительно сетчатки было неверным, но он сделал правильный вывод: в глазе существует конечное количество типов клеток.
В 1850 году Герман Гельмгольц первым получил экспериментальное доказательство теории Юнга. Гельмгольц попросил испытуемого сопоставить цвета различных образцов источников света, регулируя яркость нескольких монохромных источников света. Он пришёл к выводу, что для сопоставления всех образцов необходимо и достаточно трёх источников света: в красной, зелёной и синей части спектра.
Рождение современной колориметрии
Перенесёмся в начало 1930-х. К тому времени научное сообщество имело достаточно хорошее представление о внутренней работе глаза. (Хотя потребовалось ещё 20 лет, чтобы Джорджу Уолду удалось экспериментально подтвердить присутствие и функции родопсинов в колбочках сетчатки. Это открытие привело его к Нобелевской премии по медицине в 1967 году.) Commission Internationale de L’Eclairage (Международная комиссия по освещению), CIE, поставила задачу по созданию исчерпывающей количественной оценки восприятия цвета человеком. Количественная оценка была основана на экспериментальных данных, собранных Уильямом Дэвидом Райтом и Джоном Гилдом при параметрах, схожих с выбранными впервые Германом Гельмгольцем. Базовыми настройками были выбраны 435,8 нм для синего цвета, 546,1 нм для зелёного и 700 нм для красного.
Из-за значительного наложения чувствительности колбочек M и L невозможно было сопоставить некоторые длины волн с сине-зелёной частью спектра. Для «сопоставления» этих цветов в качестве точки отсчёта нужно было добавить немного основного красного цвета:
Если мы на мгновение представим, что все основные цвета вносят отрицательный вклад, то уравнение можно переписать так:
Результатом экспериментов стала таблица RGB-триад для каждой длины волны, что отображалось на графике следующим образом:
Функции сопоставления цветов RGB по CIE 1931
Разумеется, цвета с отрицательным красным компонентом невозможно отобразить с помощью основных цветов CIE.
Теперь мы можем найти трихромные коэффициенты для света распределения спектральной интенсивности S как следующее внутреннее произведение:
Может казаться очевидным, что чувствительность к различным длинам волн можно проинтегрировать таким образом, но на самом деле она зависит от физической чувствительности глаза, линейной по отношению к чувствительности к длинам волн. Это было эмпирически подтверждено в 1853 году Германом Грассманом, и представленные выше интегралы в современной формулировке известны нам как закон Грассмана.
Термин «цветовое пространство» возник потому, что основные цвета (красный, зелёный и синий) можно считать базисом векторного пространства. В этом пространстве различные цвета, воспринимаемые человеком, представлены лучами, исходящими из источника. Современное определение векторного пространства введено в 1888 году Джузеппе Пеано, но более чем за 30 лет до этого Джеймс Клерк Максвелл уже использовал только зародившиеся теории того, что позже стало линейной алгеброй, для формального описания трихроматической цветовой системы.
CIE решила, что для упрощения вычислений будет более удобно работать с цветовым пространством, в которой коэффициенты основных цветов всегда положительны. Три новых основных цвета выражались в координатах цветового пространства RGB следующим образом:
Этот новый набор основных цветов невозможно реализовать в физическом мире. Это просто математический инструмент, упрощающий работу с цветовым пространством. Кроме того, чтобы коэффициенты основных цветов всегда были положительными, новое пространство скомпоновано таким образом, что коэффициент цвета Y соответствует воспринимаемой яркости. Этот компонент известен как яркость CIE (подробнее о ней можно почитать в замечательной статье Color FAQ Чарльза Пойнтона (Charles Poynton)).
Чтобы упростить визуализацию итогового цветового пространства, мы выполним последнее преобразование. Разделив каждый компонент на сумму компонентов мы получим безразмерную величину цвета, не зависящую от его яркости:
Координаты x и y известны как координаты цветности, и вместе с яркостью Y CIE они составляют цветовое пространство xyY CIE. Если мы расположим на графике координаты цветности всех цветов с заданной яркостью, у нас получится следующая диаграмма, которая вам наверно знакома:
Диаграмма xyY CIE 1931
И последнее, что нужно узнать — что считается белым цветом цветового пространства. В такой системе отображения белый цвет — это координаты x и y цвета, которые получаются, когда все коэффициенты основных цветов RGB равны между собой.
С течением времени появилось несколько новых цветовых пространств, которые в различных аспектах вносили улучшения в пространства CIE 1931. Несмотря на это, система xyY CIE остаётся самым популярным цветовым пространством, описывающим свойства устройств отображения.
Передаточные функции
Прежде чем рассматривать видеостандарты, необходимо ввести и объяснить ещё две концепции.
Оптико-электронная передаточная функция
Оптико-электронная передаточная функция (optical-electronic transfer function, OETF) определяет то, как линейный свет, фиксируемый устройством (камерой) должен кодироваться в сигнале, т.е. это функция формы:
Раньше V был аналоговым сигналом, но сейчас, разумеется, он имеет цифровое кодирование. Обычно разработчики игр редко сталкиваются с OETF. Один из примеров, в котором функция будет важна: необходимость сочетания в игре видеозаписи с компьютерной графикой. В этом случае необходимо знать, с какой OETF было записано видео, чтобы восстановить линейный свет и правильно смешать его с компьютерным изображением.
Электронно-оптическая передаточная функция
Электронно-оптическая передаточная функция (electronic-optical transfer, EOTF) выполняет противоположную OETF задачу, т.е. она определяет, как сигнал будет преобразован в линейный свет:
Эта функция более важна для разработчиков игр, потому что она определяет, как созданный ими контент будет отображаться экранах телевизоров и мониторов пользователей.
Отношение между EOTF и OETF
Понятия EOTF и OETF хоть и взаимосвязаны, но служат разным целям. OETF нужна для представления захваченной сцены, из которого мы потом можем реконструировать исходное линейное освещение (это представление концептуально является буфером кадра HDR (High Dynamic Range) обычной игры). Что происходит на этапах производства обычного фильма:
- Захват данных сцены
- Инвертирование OETF для восстановления значений линейного освещения
- Цветокоррекция
- Мастеринг под различные целевые форматы (DCI-P3, Rec. 709, HDR10, Dolby Vision и т.д.):
- Уменьшение динамического диапазона материала для соответствия динамическому диапазону целевого формата (тональная компрессия)
- Преобразование в цветовой пространство целевого формата
- Инвертирование EOTF для материала (при использовании EOTF в устройстве отображения изображение восстанавливается как нужно).
До текущего момента стандартный техпроцесс игры выглядел следующим образом:
- Рендеринг
- Буфер кадра HDR
- Тональная коррекция
- Инвертирование EOTF для предполагаемого устройства отображения (обычно sRGB)
- Цветокоррекция
Стандартный рабочий процесс цветокоррекции SDR (изображение принадлежит Джонатану Блоу (Jonathan Blow))
После внедрения HDR большинство игр начало двигаться к техпроцессу, похожему на используемый в производстве фильмов. Даже при отсутствии HDR схожий с кинематографическим техпроцесс позволял оптимизировать работу. Выполнение цветокоррекции в HDR означает, что у вас есть целый динамический диапазон сцены. Кроме того, становятся возможными некоторые эффекты, которые раньше были недоступны.
Теперь мы готовы рассмотреть различные стандарты, используемые в настоящее время для описания форматов телевизоров.
Видеостандарты
Rec. 709
Большинство стандартов, относящихся к вещанию видеосигналов, выпущено Международным союзом электросвязи (International Telecommunication Union, ITU), органом ООН, в основном занимающимся информационными технологиями.
Рекомендация ITU-R BT.709, которую чаще называют Rec. 709 — это стандарт, описывающий свойства HDTV. Первая версия стандарта была выпущена в 1990 году, последняя — в июне 2015 года. В стандарте описываются такие параметры, как соотношения сторон, разрешения, частота кадров. С этими характеристиками знакомо большинство людей, поэтому я не буду рассматривать их и сосредоточусь на разделах стандарта, касающихся воспроизведения цвета и яркости.
В стандарте подробно описана цветность, ограниченная цветовым пространством xyY CIE. Красный, зелёный и синий источники освещения соответствующего стандарту дисплея должны быть выбраны таким образом, чтобы их отдельные координаты цветности были следующими:
Их относительная интенсивность должна быть настроена таким образом, чтобы белая точка имела цветность
(Эта белая точка также известна как CIE Standard Illuminant D65 и аналогична захвату координат цветности распределения спектральной интенсивности обычного дневного освещения.)
Свойства цветности можно визуально представить следующим образом:
Охват Rec. 709
Область схемы цветности, ограниченная треугольником, созданным основными цветами заданной системы отображения, называется охватом.
Теперь мы переходим к части стандарта, посвящённой яркости, и здесь всё становится немного сложнее. В стандарте указано, что «Общая оптико-электронная передаточная характеристика в источнике» равна:
Здесь есть две проблемы:
- Не существует спецификации о том, чему соответствует физическая яркость L = 1
- Несмотря на то, что это стандарт вещания видео, в нём не указана EOTF
где L = 1 соответствует яркость примерно 100 кд / м² (единицу кд / м² в этой отрасли называют «нит»). Это подтверждается ITU в последних версиях стандарта следующим комментарием:
Rec. 1886 — это результат работ по документации характеристик ЭЛТ-мониторов (стандарт опубликован в 2011 году), т.е. является формализацией существующей практики.
Кладбище
слоновЭЛТНелинейность яркости как функции приложенного напряжения привела к тому, как физически устроены ЭЛТ-мониторы. По чистой случайности эта нелинейность (очень) приблизительно является инвертированной нелинейностью восприятия яркости человеком. Когда мы перешли к цифровому представлению сигналов, это привело к удачному эффекту равномерного распределения ошибки дискретизации по всему диапазону яркости.
Rec. 709 рассчитана на использование 8-битного или 10-битного кодирования. В большинстве контента используется 8-битное кодирование. Для него в стандарте указано, что распределение диапазона яркости сигнала должно распределяться в кодах 16-235.
HDR10
Что касается HDR-видео, то в нём есть два основных соперника: Dolby Vision и HDR10. В этой статье я сосредоточусь на HDR10, потому что это открытый стандарт, который быстрее стал популярным. Этот стандарт выбран для Xbox One S и PS4.
Мы снова начнём с рассмотрения используемой в HDR10 части цветности цветового пространства, определённой в Рекомендации ITU-R BT.2020 (UHDTV). В ней указаны следующие координаты цветности основных цветов:
И снова в качестве белой точки используется D65. При визуализации на схеме xy Rec. 2020 выглядит следующим образом:
Охват Rec. 2020
Очевидно заметно, что охват этого цветового пространства значительно больше, чем у Rec. 709.
Теперь мы переходим к разделу стандарта о яркости, и здесь снова всё становится более интересным. В своей кандидатской диссертации 1999 года “Contrast sensitivity of the human eye and its effect on image quality” («Контрастная чувствительность человеческого глаза и её влияние на качество изображения») Питер Бартен представил немного пугающее уравнение:
(Многие переменные этого уравнения сами по себе являются сложными уравнениями, например, яркость скрывается внутри уравнений, вычисляющих E и M).
Уравнение определяет, насколько чувствителен глаз к изменению контрастности при различной яркости, а различные параметры определяют условия просмотра и некоторые свойства наблюдателя. «Минимальная различаемая разница» (Just Noticeable Difference, JND) обратна уравнению Бартена, поэтому для дискретизации EOTF, чтобы избавиться от привязки к условиям просмотра, должно быть верно следующее:
Общество инженеров кино и телевидения (Society of Motion Picture and Television Engineers, SMPTE) решило, что уравнение Бартена будет хорошей основой для новой EOTF. Результатом стало то, что мы сейчас называем SMPTE ST 2084 или Perceptual Quantizer (PQ).
PQ был создан выбором консервативных значений для параметров уравнения Бартена, т.е. ожидаемых типичных условий просмотра потребителем. Позже PQ был определён как дискретизация, которая при заданном диапазоне яркости и количестве сэмплов наиболее точно соответствует уравнению Бартена с выбранными параметрами.
Дискретизированные значения EOTF можно найти с помощью следующей рекуррентной формулы нахождения k < 1. Последним значением дискретизации будет являться необходимая максимальная яркость:
Для максимальной яркости в 10 000 нит с использованием 12-битной дискретизации (которая используется в Dolby Vision) результат выглядит следующим образом:
Как можно заметить, дискретизация не занимает весь диапазон яркости.
В стандарте HDR10 тоже используется EOTF PQ, но с 10-битной дискретизацией. Этого недостаточно, чтобы оставаться ниже порога Бартена в диапазоне яркости в 10 000 нит, но стандарт позволяет встраивать в сигнал метаданные для динамической регуляции пиковой яркости. Вот как 10-битная дискретизация PQ выглядит для разных диапазонов яркости:
Разные EOTF HDR10
Но даже так яркость немного выше порога Бартена. Однако ситуация не настолько плоха, как это может показаться из графика, потому что:
- Кривая логарифмическая, поэтому относительная погрешность на самом деле не так велика
- Не стоит забывать, что параметры, взятые для создания порога Бартена, выбраны консервативно.
Вот пример того, как выглядит 8-битная дискретизация Rec. 709 с пиковой яркостью 100 нит:
EOTF Rec. 709 (16-235)
Как можно видеть, мы намного выше порога Бартена, и, что важно, даже самые неразборчивые покупатели будут настраивать свои телевизоры на значительно большие 100 нит пиковые яркости (обычно на 250-400 нит), что поднимет кривую Rec. 709 ещё выше.
В заключение
Одно из самых больших различий между Rec. 709 и HDR в том, что яркость последнего указывается в абсолютных значениях. Теоретически это означает, что контент, предназначенный для HDR, будет выглядеть одинаково на всех совместимых телевизорах. По крайней мере, до их пиковой яркости.
Существует популярное заблуждение, что HDR-контент в целом будет ярче, но в общем случае это не так. HDR-фильмы чаще всего будут изготавливаться таким образом, чтобы средний уровень яркости изображения был тем же, что и для Rec. 709, но так, чтобы самые яркие участки изображения были более яркими и детальными, а значит, средние тона и тени будут более тёмными. В сочетании с абсолютными значениями яркости HDR это означает, что для оптимального просмотра HDR нужны хорошие условия: при ярком освещении зрачок сужается, а значит, детали на тёмных участках изображения будет сложнее разглядеть.
Rgb сигнал что это
Если вы занимаетесь обработкой фото или виде, если вы используете игровой компьютер, телевизор или камеру, вы не можете не встретить термин RGB.
Хотите узнать, что означает RGB, для чего он используется или почему так часто слышите о RGB, когда речь идет о компьютерах, гаджетах или дисплеях? Здесь вы узнаете, что такое RGB, где и почему он чаще используется.
Что означает RGB
— это сокращение от «Red Green Blue»(Красный, Зеленый, Голубой). И, как вы уже догадались, оно относится к цвету и его составу. Вы можете спросить, почему красный, зеленый и синий? Ответ заключается в том, что красный, зеленый и синий являются основными цветами, которые вы можете комбинировать в различных количествах, чтобы получить любой другой цвет из видимого спектра, который может видеть человеческий глаз.
RGB — это аддитивная цветовая модель. Другими словами, чтобы получить другие цвета, вы смешиваете основной красный, зеленый и синий цвета. Если вы смешаете все три цвета с максимальной интенсивностью (100%), вы получите белый цвет. С другой стороны, если вы смешаете их все с минимальной интенсивностью (0%), вы получите черный цвет.
Другими словами, смешивая 100% яркость красного цвета, зеленого и синего, вы получите свет, а если вы смешаете 0% красного, зеленого и синего, вы получите темноту.
RGB также может рассматриваться как противоположность CMY, что означает «Cyan Magenta Yellow». Почему наоборот? Поскольку CMY как цветовая модель, является противоположностью RGB: объединение голубого, пурпурного и желтого при максимальной интенсивности 100% дает вам черный цвет, а минимальная интенсивность в 0% дает белый.
Способы использования RGB
Прежде всего, цветовая модель RGB используется в устройствах, использующих цвет. Из-за того, что это аддитивная цветовая модель, которая выдает более светлые цвета, когда три основных смешанных цвета (красный, зеленый, синий) являются более насыщенными, RGB лучше всего подходит для отображения излучающего изображения. Другими словами, цветовая модель RGB лучше всего подходит для экранов с подсветкой, таких как телевизоры, мониторы компьютеров, ноутбуков, смартфонов и планшетов.
Для сравнения, CMYK, что означает «Cyan Magenta Yellow Key (Black)» и является производным от CMY, является отражающей цветовой моделью, означающей, что его цвета отражаются, а не освещаются, и используются в основном в печати. Вот почему при калибровке принтера вы работаете с цветовым пространством CMY, а при калибровке дисплея компьютера — с RGB.
Помимо телевизоров и других электронных дисплеев, цветовая модель RGB также используется в других устройствах, работающих с подсвеченными цветами, таких как фото и видеокамеры или сканеры.
Например, ЖК-экраны состоят из множества пикселей, которые образуют их поверхность. Каждый из этих пикселей обычно состоит из трех разных источников света, и каждый из них может стать красным, зеленым или синим. Если вы внимательно посмотрите на ЖК-экран, используя увеличительное стекло, вы увидите эти маленькие источники света, которые образуют пиксели.
Однако, когда вы смотрите на него, как обычный человек, без увеличительного стекла, вы видите только цвета, испускаемые этими крошечными источниками света в пикселях. Комбинируя красный, зеленый и синий и регулируя их яркость, пиксели могут создавать любой цвет.
RGB также является наиболее широко используемой цветовой моделью в программном обеспечении. Чтобы иметь возможность указать определенный цвет, цветовая модель RGB описывается тремя числами, каждое из которых представляет интенсивность красного, зеленого и синего цветов.
Однако диапазоны трех чисел могут различаться в зависимости от того, какую систему исчисления вы используете. Стандартные нотации RGB могут использовать тройки значений от 0 до 255, некоторые могут использовать арифметические значения от 0,0 до 1,0, а некоторые могут использовать процентные значения от 0% до 100%.
Например, если цвета RGB представлены 8 битами каждый, это будет означать, что диапазон каждого цвета может изменяться от 0 до 255, 0 — самая низкая интенсивность цвета, а 255 — самая высокая. Используя эту систему обозначений, RGB (0, 0, 0) будет означать черный, а RGB (255, 255, 255) будет означать белый. Кроме того, самый чистый красный будет RGB (255, 0, 0), самый чистый зеленый будет RGB (0, 255, 0), а самый чистый синий будет RGB (0, 0, 255).
Диапазон чисел от 0 до 255 выбран не случайно: RGB часто представлен в программном обеспечении 8-битами на канал. Если вам интересно, почему 255 является максимальным значением в 8-битной исчислении, так это потому, что каждый цвет в нем представлен 8 битами. Бит может иметь два значения: 0 или 1. Два бита, будут иметь четыре значения: 00, 01, 10, 11. (в двоичной системе.) Таким образом, восемь битов, дадут 256 значений — от 0 до 255. То есть, два в восьмой степени. Гики, верно?
Однако обычно используются и другие системы исчисления, такие как 16-бит на канал или 24-бит на канал. Например, в 16-битной системе, каждый бит может принимать значения от 0 до 65535, а в 24-битной системе — от 0 до 16777215. 24-битная система охватывает 16 миллионов цветов, что больше, чем все цвета, которые видны человеческому глазу, который различает 10 миллионов.
Видеосигналы VGA и компонентный: рассмотрим в подробностях
Наше поколение живет в эпоху научно-технической революции, но поскольку мы находимся «внутри процесса», то не замечаем стремительной смены поколений окружающих нас технических устройств. Если раньше бытовая техника могла служить десятилетиями, то сейчас за два-три года она безнадежно устаревает – появляются новые идеи, новые технологии и материалы, которые позволяют эти идеи реализовать.
С момента создания первых искровых передатчиков радиоэлектронная аппаратура была аналоговой. Однако после Второй мировой войны, когда был изобретен биполярный и полевой транзистор, были разработаны первые интегральные микросхемы, цифровые технологии начали завоевывать себе место под солнцем. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала. Несмотря на это, в области современных телевизионных технологий аналоговые видеосигналы применяются весьма широко и не собираются уходить в прошлое.
Проблема цифрового представления видеосигнала состоит в том, что ширина его спектра во много раз больше ширины спектра такого же видеосигнала, но в аналоговой форме. Современные системы цифрового телевидения, на которые постепенно переходят во всем мире, не способны работать с несжатым сигналом. Его приходится кодировать с помощью алгоритма MPEG, а это, как известно, алгоритм с потерей качества. Вот и выходит, что несмотря на развитие и совершенствование цифровых технологий, проще и дешевле для передачи видеосигнала на большие расстояния пользоваться аналоговыми видеоформатами: и ширина спектра сигнала вполне приемлема, и парк оборудования обширен, да и технологии отработаны до совершенства.
Цифровые интерфейсы DVI и его развитие HDMI – это, в общем, интерфейсы хоть недалекого, но будущего, да и предназначены они для решения других задач.
Аналоговый видеосигнал, используемый в современных телевизионных системах, может быть композитным и компонентным.
Композитный CV (composite video) – это простейший вид аналогового видеосигнала, в котором информация о яркости, цвете и синхронизации передается в смешанном виде. На ранних этапах развития видеотехники именно композитный сигнал передавался по коаксиальному кабелю, соединявшему видеомагнитофоны или видеоплееры с телевизорами.
Более совершенным вариантом композитного сигнала является сигнал S‑Video. Этот вид аналогового видеосигнала обеспечивает раздельную передачу сигнала яркости (Y) и двух объединённых сигналов цветности (C) по независимым кабелям, из-за чего этот сигнал называют еще YC. Поскольку сигналы яркости и цветности передаются раздельно, сигнал S-Video занимает значительно более широкую полосу частот, чем композитный. По сравнению с композитным видеосигналом, S-Video обеспечивает заметный выигрыш в чёткости и устойчивости изображения, в меньшей степени – в цветопередаче. S-Video широко используется в полупрофессиональной аппаратуре, вещательными студиями, а также при записи на 8-мм пленку в стандарте Hi-8 фирмы Sony.
Для телевидения высокой четкости и компьютерного видео эти интерфейсы не подходят, поскольку не обеспечивают необходимого разрешения изображения.
Компонентные видеосигналы
Для достижения максимального качества изображения и создания видеоэффектов в профессиональном оборудовании видеосигнал разделяется на несколько каналов. Например, в системе RGB видеосигнал делится на красный, синий и зеленый компоненты, а также сигнал синхронизации. Такой сигнал еще называют сигналом RGBS, наибольшее распространение он получил в Европе.
В зависимости от способа передачи сигналов синхронизации сигнал RGB имеет несколько разновидностей. Если синхроимпульсы передаются в канале зеленого цвета, то сигнал называют RGsB, а если сигнал синхронизации передается во всех цветовых каналах, то RsGsBs.
Для подключения сигнала RGBS используют кабели с четырьмя разъемами BNC или разъем SCART.
Кабель для видеосигнала RGBS с разъемами BNC.
Разъем SCART
Таблица 1. Назначение контактов разъема SCART
Контакт Описание 1. Выход аудио, правый 2. Вход аудио, правый 3. Выход аудио, левый + моно 4. Земля для аудио 5. Земля для RGB Blue 6. Вход аудио, левый + моно 7. Вход RGB Blue (синий) 8. Вход, переключение режима телевизора, в зависимости от типа телевизора – Audio/RGB/16:9, иногда включение AUX (старые телевизоры) 9. Земля для RGB Green 10. Data 2: Clockpulse Out, только в старых видеомагнитофонах 11. Вход RGB Green (зеленый) 12. Data 1 Выход данных 13. Земля для RGB Red 14. Земля для Data, дистанционное управление, только в старых видеомагнитофонах 15. Вход RGB Red (красный) или вход канала С 16. Вход Blanking Signal, переключение режима телевизора (композит/RGB), «быстрый» сигнал (новые телевизоры) 17. Земля композитного видео 18 Земля Blanking Signal (для контактов 8 или 16) 19. Выход композитного видео 20. Вход композитного видео или канал Y (яркости) 21. Защитный экран (корпус) В системе YUV, получившей распространение в США, используют другой набор компонентов: смешанный сигналы яркости и синхронизации, а также красный и синий цветоразностные сигналы. Для каждой компонентной системы требуется свой тип оборудования, каждая обладает своими достоинствами и недостатками. Для объединения устройств различных видеоформатов необходимы специальные интерфейсные блоки. Разъёмы на концах кабелей обычно бывают RCA или BNC.
Компонентый сигнал YUV
Компонентый сигнал формата RGBHV
Путь формирования видеосигнала таков: изображение раскладывается на сигналы трех первичных цветов: красного (Red – R), зеленого (Green – G) и синего (Blue – В) – отсюда и название «RGB», к которым добавляются сигналы горизонтальной и вертикальной синхронизации (HV), а затем превращается в RGB-сигнал с синхроимпульсами в канале зеленого (RGsB), который далее преобразуется в: компонентный (цветоразностный) сигнал YUV, где Y=0,299R+0,5876G+0,114В; U=R–Y; V= В–Y, преобразуемый затем в сигнал S-Video и композитный видеосигнал. Композитный видеосигнал преобразуется в радиочастотный сигнал, сочетающий аудио- и видеосигналы. Затем он модулируется несущей частотой и превращается в эфирный телесигнал.
На приемной стороне радиочастотный сигнал в результате демодуляции преобразуется в композитный видеосигнал, из которого в свою очередь в результате ряда преобразований получают компоненты RGB и HV.
Компонентный сигнал YPbPr преобразуется в RGB + HV в обход многих цепей видеотракта. Разделение цветоразностных сигналов Pb и Pr по отдельным каналам существенно повышает точность передачи фазы цветовой поднесущей, а настройка цветового тона не требуется.
Сигналы телевидения высокой четкости (ТВЧ, HDTV) 720p и 1080i всегда передаются в компонентном формате, ТВЧ в композитном или s-video форматах не существует.
Когда зарождался формат DVD, было решено, что при оцифровке материала для записи на DVD именно компонентный сигнал будет переводиться в цифровой вид, а затем обрабатываться по алгоритму MPEG-2 сжатия видеоданнных. Сигнал RGB на выходе DVD-плеера получается из компонентного сигнала YUV.
Важно отметить различие между соотношением цветовых компонент в RGB и компонентном сигнале формата YUV (YPbPr). В цветовом пространстве RGB относительное содержание (вес) каждой цветовой компоненты одинаково, тогда как в YPbPr оно учитывает спектральную чувствительность человеческого глаза.
Соотношение компонент в цветовом пространстве RGB
Соотношение компонент в цветовом пространстве YPbPrОграничения по расстоянию передачи компонентных разновидностей видеосигнала от источников сигнала к приемникам сведены в таблицу 2 (для сравнения приведены и некоторые цифровые интерфейсы).
Тип сигнала Полоса пропускания, МГц Тип кабеля Расстояние, м UXGA (компонентный)
HDTV/1080i (компонентный)170
70Коаксиальный 75 Ом 5
5-30Компонентный UXGA (с усилением) 170 Коаксиальный 75 Ом 50-70 Стандарт (цифровой SDI)
HDTV (цифровой SDI)270
1300Коаксиальный 75 Ом 50-300
50-80DVI-D 1500 Витая пара 5 DVI-D (с усилением) 1500 Витая пара 10 IEEE 1394 (Firewire) 400(800) Витая пара 10 Видеосигналы VGA
Одна из широко распространенных разновидностей компонентного сигнала – формат VGA.
Формат VGA (Video Graphics Array) – это формат видеосигналов, разработанный для вывода на компьютерные мониторы.
По разрешающей способности форматы VGA принято классифицировать в соответствии с разрешением видеокарт персональных компьютеров, формирующих соответствующие видеосигналы:
- VGA (640х480);
- SVGA (800х600);
- XGA (1024х780);
- SXGA (1280х1024);
- UXGA (1600×1200).
В каждой паре чисел первое показывает число пикселей по горизонтали, а второе – по вертикали изображения.
Чем выше разрешение, тем меньше размеры светящихся элементов и более качественно изображение на экране. К этому всегда следует стремиться, однако с увеличением разрешения стоимость видеокарт и устройств отображения возрастает.
Видеотехника развивается стремительно, и некоторые компьютерные форматы, такие как MDA, CGA и EGA ушли в прошлое. Например, формат CGA, считавшийся в течение нескольких лет самым распространенным, обеспечивал изображение с разрешением всего лишь 320х200 при четырех цветах!
Самый «слабый» из используемых в настоящее время видео форматов, VGA, появился в 1987 году. Количество градаций каждого цвета в нем увеличено до 64, в результате чего число возможных цветов составило 643=262144, что для компьютерной графики имеет даже более важное значение, чем разрешающая способность.
Внешний вид блочной части разъема VGA
Разводка контактов блочной части разъема VGAНазначение контактов разъема VGA приведено в таблице.
Контакт Сигнал Описание 1. RED Канал R (красный) (75 Ом, 0,7 В) 2. GREEN Канал G (зеленый) (75 Ом, 0,7 В) 3. BLUE Канал B (синий) (75 Ом, 0,7 В) 4. ID2 Идентификационный бит 2 5. GND Земля 6. RGND Земля канала R 7. GGND Земля канала G 8. BGND Земля канала B 9. KEY Нет контакта (ключ) 10. SGND Земля синхронизации 11. ID0 Идентификационный бит 0 12. ID1 or SDA Идентификационный бит 1 или данные DDC 13. HSYNC or CSYNC Строчная H или композитная синхронизация 14. VSYNC Кадровая синхронизация V 15. ID3 or SCL Идентификационный бит 3 или такты DDC Кроме собственно видеосигналов (R, G, B, H и V) в разъеме (по спецификации VESA) предусмотрены также некоторые дополнительные сигналы.
Канал DDC (Display Data Channel) предназначен для передачи подробного «досье» дисплея процессору, который, ознакомившись с ним, выдает оптимальный для данного дисплея сигнал с нужным разрешением и экранными пропорциями. Такое досье, называемое EDID (Extended Display Identification Data, или подробные идентификационные данные дисплея), представляет собой блок данных со следующими разделами: бренд-нейм, идентификационный номер модели, серийный номер, дата выпуска, размер экрана, поддерживаемые разрешения и собственное разрешение экрана.
Таким образом, из таблицы видно, что если не использовать канал DDC, то сигнал формата VGA представляет собой, по сути дела, компонентный сигнал RGBHV.
В профессиональной аппаратуре вместо кабеля D-Sub с разъемом DB-15 обычно используют кабель с пятью разъемами BNC, что обеспечивает лучшие характеристики линии передачи. Такой кабель лучше согласован с приемником и передатчиком сигнала по импедансу, имеет меньшие перекрестные помехи между каналами, а следовательно лучше подходит для передачи видеосигнала с высоким разрешением (широким спектром сигнала) на большие расстояния.
Кабель VGA с разъемом DB-15
Кабель VGA с пятью разъемами BNC
В настоящее время наиболее широко используются устройства отображения с соотношением сторон 4:3: 800×600, 1024×768 и 1400×1050, однако существуют форматы с необычным соотношением сторон: 1152×970 (около 6:5) и 1280×1024 (5:4).
Распространение плоских панелей подталкивает рынок к более широкому использованию широкоэкранных дисплеев с соотношением сторон 16:9 с разрешением 852×480 (плазменные дисплеи), 1280×768 (жидкокристаллические дисплеи), 1366×768 и 920×1080 (плазменные и жидкокристаллические дисплеи).
Требуемая ширина полосы линии связи для передачи сигнала VGA или видеоусилителя определяется как результат произведения количества пикселей по горизонтали на количество строк по вертикали на частоту кадров. Полученный результат следует умножить на коэффициент запаса, равный 1,5.
Ш [Гц] = Гор * Верт * Кадр * 1,5
Частота строчной развертки есть произведение числа строк (или рядов пикселей) на частоту кадров.
Вид сигнала Занимаемый
спектр частот, МГцРекомендуемое макс.
расстояние передачи, мАналоговый видеосигнал NTSC 4,25 100 (кабель RG-6) VGA (640×480, 60 Гц) 27,6 50 SVGA (800×600, 60 Гц) 43 30 XGA (1027×768, 60 Гц) 70 15 WXGA (1366×768, 60 Гц) 94 12 UXGA (1600×1200, 60 Гц) 173 5 Таким образом, сигнал UXGA требует полосу пропускания 173 МГц. Это огромная полоса: она простирается от звуковых частот до седьмого телевизионного канала!
Как удлинить компонентный сигнал
На практике часто возникает необходимость передать видеосигналы на расстояния большие, чем указано в вышеприведенных таблицах. Частичным решением проблемы является использование коаксиальных кабелей высокого качества, с малым омическим сопротивлением, хорошо согласованных с линией, имеющих малый уровень помех. Такие кабели довольно дороги и не дают полного решения проблемы.
Если устройство-приемник сигнала находится на значительном расстоянии, следует использовать специализированное оборудование – так называемые удлинители интерфейса. Устройства этого класса помогают устранить изначальное ограничение на длину линии связи между компьютером и элементами информационной сети. Удлинители сигналов VGA действуют на аппаратном уровне, поэтому они свободны от каких-либо проблем с совместимостью программного обеспечения, согласованием кодеков или преобразованием форматов.
Если рассматривать пассивную линию (т.е. линию без активного оконечного оборудования), то кабель типа RG-59 способен передать без видимых на экране искажений композитное видео, телевизионный сигнал стандартов PAL или NTSC только на 20-40 м (либо до 50-70 м по кабелю RG-11). Специализированные кабели, например Belden 8281 или Belden 1694A, позволят увеличить дальность передачи примерно на 50%.
Для сигналов VGA, Super-VGA или XGA, полученных с графических плат компьютеров, обычный кабель VGA обеспечивает передачу изображения с разрешением 640×480 на расстояние 5-7 м (а при разрешении 1024×768 и выше такой кабель не должен быть длиннее 3 м.). Высококачественные промышленные кабели VGA/XGA обеспечивают дальность до 10-15, редко до 30 м. Кроме того, линия связи будет подвержена потерям на высоких частотах (High frequency loss), которые проявляются в снижении яркости до полного исчезновения цвета, ухудшении разрешения и четкости.
Для устранения этой проблемы можно использовать линейный усилитель-корректор, включенный ПЕРЕД длинным кабелем. В нем используется схема компенсации потерь на высоких частотах, именуемая EQ (Cable Equalization, коррекция кабеля) или управление высокочастотной составляющей – HF (High Frequency) control. Схема EQ обеспечивает частотно-зависимое усиление сигнала для «спрямления» амплитудно-частотной характеристики (АЧХ). Регулятор общего усиления позволяет парировать обычные (омические) потери в кабеле.
Такие линейные усилители позволяют (при использовании кабелей максимального качества) передать сигнал с разрешением до 1600х1200 (60 Гц) на расстояния до 50-70 м (и больше, при меньших разрешениях).
Однако не всегда этого достаточно: иногда нужны большие расстояния, иногда на длинный кабель могут наводиться помехи, с которыми линейный усилитель бороться не может. В этом случае обычный коаксиальный кабель VGA можно заменить на иной, более подходящий носитель. Сегодня для этого чаще всего используют недорогой и удобный кабель витой пары, устанавливая на концах кабеля специальные преобразователи (передатчик и приемник).
Передающее устройство такого удлинителя преобразует видеосигналы в дифференциальный симметричный формат, наиболее подходящий для витых пар. На принимающей стороне восстанавливается стандартный видеоформат.
Используется обычный кабель для локальных сетей Ethernet, категории 5 и выше. Для видеосигналов лучше подходит неэкранированный кабель (UTP). За счет дешевизны такого кабеля весь тракт передачи сигнала обычно не удорожается, несмотря на необходимость установки дополнительных приборов.
Данный метод удлинения сигнала VGA хорошо работает на расстояниях до 300 м.
Аналогичные методы можно использовать и для удлинения компонентных сигналов других типов (YUV, RGBS, s-Video), промышленность выпускает соответствующие разновидности приборов.
Заметим, что для передачи компонентного видео YUV обычно хорошо подходят и приборы для сигнала VGA (и это оговаривается в их описаниях), если использовать их каналы R, G, B для передачи каналов Y, U и V (каналы синхронизации H и V можно не использовать). Обычно для этого достаточно использовать кабели-переходники для согласования типа разъемов.
Средой передачи в удлинителях могут также быть оптическое волокно и беспроводный радиоканал. По сравнению с витыми парами, оптоволокно значительно увеличит стоимость, а беспроводная связь не обеспечит достаточной помехозащищенности и надежности, да и получить разрешение на ее использование непросто.
TV-OUT, часть 1. Стандарты
Устройства для вывода изображения с компьютера на телевизор появились достаточно давно. Они широко использовалось в персональных компьютерах начала 90 годов. Многие читатели ещё помнят такие названия как ZX Spectrum, Commondore 64, и многие другие. Однако, вскоре такие устройства остались практически не востребованными. Компьютерные мониторы и видеосистемы сильно обогнали лучшие телевизоры по разрешающей способности. Поэтому, работать с компьютером, выводя изображение на телевизор, стало практически невозможно. Конечно, остались специализированные устройства, которые могли выводить изображение на телевизор для выполнения своих специфических функций, но их число и их рынок на фоне общего количества компьютерной техники, оставалось исчезающе малым. Ситуация начала меняться, когда мощность компьютеров стала достаточной для того, чтобы показывать видео в реальном времени. Для показа видео недостаток телевизора, в виде малой разрешающей способности, перестал иметь решающее значение. Напротив, этот недостаток превратился в преимущество, потому что, благодаря размыванию отдельных точек, скрываются недостатки изображения, которые часто встречаются на сжатом цифровом материала (ведь, несмотря на все усилия разработчиков, до идеального формата сжатия, который полностью сохраняет качество исходного материала и обладает приличной степенью сжатия, ещё — ой как далеко). Кроме этого, к несомненным преимуществам телевизора над мониторам при просмотре фильмов относится то, что телевизор, как правило, больше размером, да и стоит более удобно. Где есть спрос, там появляется и предложение, поэтому сейчас каждый производитель видеокарт имеет в своём ассортименте модели видеокарт с телевизионным выходом, а иногда ещё и со входом. Но, как оказывается, не всегда достаточно просто купить такую видеокарту, сопряжение её с телевизором может оказаться проблемой, из за того, что на видеокарте для выхода используются одни виды разъёмов, а на телевизоре для входа совсем другие. А бывают ситуации, когда на видеокарте, которая полностью устраевает своего хозяина, вообще нет видеовыхода, или имеющийся не устраивает своим качеством. Что же делать в этих случаях, неужели нет никакого другого выхода, кроме как приобретение нового телевизора или видеокарты? К счастью, это совсем не обязательно, всё можно решить с гораздо меньшими затратами. Но, начнём всё по порядку. Этой статьёй я открываю небольшой цикл, посвящённый проблемам совместного сосуществования, телевизора и компьютера. И начать стоит, по моему глубокому убеждению, с рассмотрению того — что за сигналы, и каких форматов используются в телевизоре. И только после этого можно переходить к конкретным кабелям, помехам, и прочим проблемам, с которыми вы можете столкнуться.
Телевизионные сигналы и стандарты
Не стоит ожидать, что в одной короткой статье я дам полное и исчерпывающее описание всего того многообразия, которое составляют телевизионные стандарты, и связанные с этим технологии. Поэтому, да простят меня суровые профессионалы, если они не увидят здесь того, без чего, по их мнению, невозможен разговор про телевизионные технологии. Я не ставил своей целью написать учебник, я хочу просто познакомить читателей с тем, что же это такое «телевизионный сигнал» в самых общих чертах. Приступим. Обычно, телевизионный сигнал является композитным, то есть составным. В него входят три составляющих, сигнал яркости – Y, и два цветоразрастных сигнала называемыми U и V. Прежде чем продолжать, необходимо сделать небольшое отступление, об особенностях человеческого зрения. Большинству читателей, безусловно известно, что любые цвета, которые видит человек, могут быть получены комбинацией трёх цветов, красного (RED), зелёного (GREEN) и синего (BLUE), которые называются опорными. Поэтому, именно эти три цвета (RGB) и используются для формирования цвета в электронной технике. Вооружённые этим знанием, рассмотрим составные телевизионного сигнала поподробнее.
Сигнал яркости, Y. Указывает яркость точки, от чёрной до белой. То есть, он полностью формирует чёрно-белое изображение, и только его воспринимают чёрно белые приёмники.
Цветоразрастные сигналы, U и V. В сочетании с Y сигналом, они позволяют восстановить исходные RGB цвета. Делается это достаточно просто
Y сигнал формируется из RGB сигнала по следующей формуле:
Y = 0.299R + 0.587G + 0.114B
U и V сигналы формируются так:
U = R — Y, а V = B – Y
При приёме сигнала происходит обратный процесс:
Красный сигнал восстанавливается так:
G = Y — 0.509U — 0.194V
Примечание: цветоразнастные сигналы получили своё название потому, что их можно получить и простым вычитанием яркости из цвета, R-Y для U и B-Y для V
Есть две основные причины, почему были придуманы эти сложности. Во первых, такая схема сохраняет совместимость со старыми чёрно-белыми приёмниками (что было одной из задач, когда разрабатывались принципы по которым работает цветное телевидение). Они просто отображают яркостный сигнал, и выкидывают все остальные. Во вторых, так можно сэкономить пропускную полосу сигнала. Дело в том, что из за особенностей человеческого зрения, изменения цвета не так заметны, как изменения яркости, что даёт возможность передавать U и V сигналы в половинном, по сравнению с Y сигналом, разрешении без сколько-нибудь заметных потерь в качестве. Кроме YUV, в телевизионный сигнал входят так называемые синхроимпульсы, которые сообщают о том что одна строка закончилась, и началась следующая, когда закончился один кадр, и начался другой. Эти особенности видеосигнала обуславливаются тем, как формируется изображение на телевизоре.
Цветность
Как уже говорилось, человеческий глаз менее чувствителен к изменению цвета, чем к изменению яркости. Поэтому, в большинстве телевизионных сигналов цвет передаётся в меньшем разрешении, чем сам сигнал. Внутри компьютера эти сигналы представлены в цифровом виде, и эти особенности аналоговых сигналов вылились в несколько возможных форматов цвета. Формат цвета у цифрового сигнала обозначается набором из трёх цифр, например 4.2.2, или 4.2.0. Эти странные цифры часто ставят в тупик новичков, и о том, что они означают, многие имеют самое общее представление. Несмотря на то, что некоторые знают (или читали где-нибудь), что они показывают насколько меньшее разрешение имеет сигнал цветности, как именно это происходит, часто остаётся непонятым. На самом деле, всё достаточно просто. С тем, что обозначают цифры, можно ознакомиться на схеме:
Светлыми треугольниками обозначены точки, на которых происходит изменение яркостного сигнала, что всегда происходит в полном разрешении, а чёрными треугольниками точки, на которых меняется сигнал цветности, для которого возможны варианты. Как видно из схемы, первая цифра относится к яркостному сигналу, и именно поэтому она 4 практически во всех реально используемых форматах, ведь обычно, как уже говорилось, яркостный сигнал передаётся в полном разрешении. Каждая следующая цифра отвечает за две строчки, 1 и 3, или 2 и 4. А значение этой цифры определяет, сколько точек в каждой из линии меняют своё значение. 4 означает, что меняются по 4 точки в каждой из линий; 2 означает, что меняются только 2 точки (то самое половинное разрешение, про которое говорилось выше), а 1 означает, что меняется всего одна точка в каждой из строк. Наиболее популярным форматом на сегодня является 4.2.2, потому что при его использовании человеческий глаз почти не в состоянии отличить картинку от 4.4.4.
Изображение на телевизионном экране формируется в результате свечения люминофора, обстреливаемого электромагнитными пушками, точно так же, как и на любом CRT устройстве. Всего их три, по одной на каждый из опорных цветов. Картинка на телевизоре рисуется построчно, причём за один проход рисуются чётные строки, а за второй нечётные. Опять же, из-за особенностей человеческого зрения, его инерционности, и времени послесвечения люминофора, это незаметно, и картинка воспринимается как единое целое. Тем не менее, на самом деле, каждый полный кадр делится пополам, на два полукадра, называемых полями. Одно поле состоит из чётных строк, другое их нечётных. Такое изображение называется черезстрочным или interlaced. Именно устройствами с черезстрочной развёрсткой являются подавляющее большинство телевизионных приёмников, которые можно встретить в домах уважаемых читателей.
Кроме чрезстрочных устройств вывода изображения, есть устройства с прогрессивной развёрсткой, коими являются, например, компьютерные мониторы. В отличии от чрезстрочных устройств, прогрессивные устройства выводят весь кадр целиком, что является, безусловно, более правильным. И первые телевизионные приёмники, и телевизионный сигналы, которые передавались на заре телевидения были именно прогрессивными. Но изображение, показанное на CRT экране с частотой обновления 25-30 герц, мерцает настолько сильно, что заметит это даже слепой. Уровень техники в то время не позволял эффективно бороться с этим печальным явлением, поэтому разработчикам пришлось просто разделить один телевизионный кадр на два, и пускать по очереди половинку каждого кадра. Таким образом. получалась частота регенерации в 50-60 герц, что смотрелось уже гораздо лучше. Только теперь, с развитием электронной техники появились и возможности обрабатывать чрезстрочное изображение в реальном времени, и устройства для вывода изображения с только прогрессивной развёрткой (плазменные или LCD панели). Но мы несколько отвлеклись.
Сегодня есть несколько видов сигналов, в которых может подаваться телевизионный сигнал, и которые могут вам встретиться. Это:
Композитный сигнал. Именно он присутствует в VHS, VHS-C, Video-8, и именно его мы получаем через телевизионную антенну, именно с его помощью вещают в эфире. Это один единственный составной видеосигнал, в котором совмещены и яркостный сигнал, оба цветоразностных, и синхроимпульсы. Для подачи такого сигнала надо всего два провода. Из плюсов этого сигнала можно отметить его стандартность (есть практически везде), и наименьшие требования к пропускной способности канала, по сравнению с другими сигналами. Из минусов – наихудшее качество изображения из всех, что обусловлено тем, что сигналы, из которых он состоит, ограничиваются по ширине полосы. А это приводит к снижению чёткости изображения, реальное разрешение получается в районе 230 — 280 ТВЛ.
S-Video. Этот сигнал используется в S-VHS, S-VHS-C и Hi-8. Здесь уже подаётся два сигнала, яркостный (Y), в который входят и синхроимпульсы, и цветности (Chrominance, или С), в который входят оба цветоразностных. Такие сигналы используются, как правило, на видеовоспроизводящей аппаратуре хорошего качества. Требования к пропускной способности канала здесь гораздо либеральнее (ведь через эфир его подавать не надо), поэтому, сигналы не ограничиваются по ширине, и качество изображения получается очень хорошее, реальное разрешение в районе 400 — 500 ТВЛ. Внешне разъёмы для этого сигнала выглядят, обычно, как miniDIN, на 4 или, что реже, на 7 ножек.,
RBG+Sync. Все четыре сигнала подаются по отдельности. Иногда сигнал синхронизации добавляется к G сигналу. Такой сигнал подаётся на SCART выход. Это такой длинный разъём на 21 контакт, который есть на многих современных телевизорах. Кроме этого, RGB выход может иметь вид маленькой фишки (миниждек) с 8 ножками. С его помощью можно добиться максимально возможного качества изображения. Формат изображения подаваемый через RGB всегда 4:4:4. Из других плюсов такого сигнала можно отметить, что он не обрабатывается встроенным в телевизор тюнером, а сразу подаётся на экран. Это благотворно влияет на качество изображения, но имеет и оборотную сторону. Из за такой схемы на многих телевизорах, при работе с RGB сигналом изображение не регулируется средствами самого телевизора. Источником для RGB сигнала может служить либо компьютер, либо DVD плеер, или другая техника подобного класса, потому что в домашних условиях больше негде найти источник сигнала такого качества. К сожалению, современный компьютер нельзя просто так подключить к телевизору по RGB, несмотря на то, что на выходе видеокарты компьютера можно найти все те же сигналы, отдельно R, G, B и Sync. Главная проблема в том, что компьютер работает на слишком высоких частотах, и со слишком большим разрешением. Большинство современных телевизоров просто физически не способны показать такую картинку.
Что такое ТВЛ? Если без излишних подробностей, то это количество строк, которые реально показывается на телевизоре. Ведь теоретические значения недостижимы, во многих случаях даже в теории. Основной причиной этого являются ограничения по пропускной способности сигнала. К примеру, на композитный сигнал формата VHS приходится всего-навсего 3 MHz, во что физически, в самых идеальных условиях, невозможно впихнуть больше 300 строк. Для S-Video частота поднимается до 5-6 MHz, поэтому и реальная разрешающая способность получается выше, в такую полосу можно «впихнуть» и 500 линий, в идеальных условиях
Все вышеперечисленные сигналы передают старый добрый YUV, который состоит из трёх независимых сигналов, яркостного сигнала Y с синхроимпульсами и двух независимых цветоразностных сигналов, U и V. Для YUV сигнала уже не существует понятия системы, в которой он кодирован, PAL, SECAM, NTSC или что-то ещё. Именно YUV сигнал получается в телевизионных приёмниках в результате декодирования любого другого сигнала, закодированного по любой системе. Качество YUV сигнала считается профессиональным, и именно с YUV сигналом работает профессиональная видеоаппаратура. И компьютер. Таким образом, почти любые сигналы, которые описаны выше, легко переводятся один в другой, для чего не надо никакой дополнительной аппаратуру. Разве что пара конденсаторов или сопротивлений, чтобы привести электрические характеристики сигнала в соответствии с тем, что должно быть на соответствующих входах. Но, самом собой, любые трансформации сигнала не приведут к тому, что результат станет лучше исходника. Однако, обычно телевизор пропускает сигнал через встроенный в него тюнер, и не работает с YUV сигналом напрямую. Исключение составляет только RGB+Sync. Во всех остальных случаях, сигнал, подаваемый на телевизор, должен соответствовать тому или иному стандарту.
Телевидение развивалось очень быстро и, в какой то степени, спонтанно, поэтому сегодня существует множество разных телевизионных стандартов, которые хоть и основаны на абсолютно одинаковых общих принципах, но имеют весьма существенные различия. При работе с видео на компьютере Вам придётся сталкиваться с одним или другим стандартом, а то и с несколькими, поэтому рассмотрим их поподробнее. Наиболее распространёнными являются всего три:
Это первый формат цветного телевидения который получил широкое распространение. Полностью стандарт был сформулирован 17 Декабря 1953 года в Соединённых Штатах Америки Федеральной Коммуникационной Комиссией (FCC), и регулярные трансляции в этом формате начались 23 Января 1954 года. За разработку NTSC мы должны быть благодарны National Television System Committee (NTSC), аббревиатура которой и дала название стандарту, в который входили крупнейшие, на то время, электронные компании, такие как RCA, General Electric, и многие другие. Одной из задач, которая ставилась при разработке NTSC. являлась совместимость с существовавшим на то время форматом чёрно белого вещания. Это и определило разрешение в 525 строк с частотой 30 кадров, или 60 полей в секунду. Из за особенностей большинства телевизионных приёмников, на самом деле, обычно, видится всего 480 строк.
Основой формата является яркостный, Y сигнал, который формируется из RGB цветов по следующей формуле:
Y (luma) = 0.299R + 0.587G + 0.114B
Как вы уже поняли, именно этот сигнал воспринимается старыми чёрно-белыми приёмниками (совместимость с которыми была одним из обязательных условий при разработке формата), и именно он формирует изображение. Для передачи цвета в NTSC используются I (зелёно-фиолетовый) и Q (оранжево-цианитовый) сигналы, которые формируются так:
I = 0.737U — 0.268V
Сделано это для того, чтобы уменьшить ширину канала, необходимого для передачи цветовой информации, даже по сравнению с YUV сигналом. Оборотной стороной этого является то, что из за некоторых особенностей формирования сигнала при использовании NTSC формата, при обратном декодировании не удаётся полностью разделить сигнал на составляющие, цветовые сигналы смешиваются с яркостным. Это приводит к тому, что в зависимости от яркости участка изображения, оно несколько меняет свой цветовой тон. В настоящее время NTSC используется практически во всех странах Северной и Южной Америк, а так же в Японии, Южной Кореи и на Тайване.
Сложно, если вообще возможно, назвать день, когда этот стандарт сформировался окончательно. С 1953 по 1967 год в Европе параллельно развивались несколько чёрно-белых телевизионных стандартов, которые работали в 625 строках с частотой 25 кадров, или 50 полей в секунду. Как и в случае с NTSC, особенности большинства телевизионных приёмников приводят к тому, что реально мы видим всего 576 строк. Вещание c использованием Phase Alternation Line (так расшифровывается PAL) формата началось в 1967 году в Германии и Великобритании, причём несмотря на одинаковое название, системы несколько различались. Так осталось и поныне, только вариантов PAL систем стало ещё больше. Для решения проблем с разделением сигнала на составляющие, через строку меняется знак амплитуды сигнала U. Поэтому, колебания яркостного сигнала влияют только на небольшое изменение цветовой насыщенности. Эта методика, по сути, вдвое снижает вертикальное разрешение. Впрочем, это несколько компенсируется большим количеством строк, по сравнению с NTSC. PAL система используется в большинстве стран Западной Европы, Африки, Азии, в Австралии и Новой Зеландии.
SECAM
Sequential Couleur Avec Memoire (SECAM), или Секвенсный Цветной с Памятью формат был разработан во Франции, и регулярное вещание с его использованием началось в том 1967 году, в Франции и СССР. Так же как и PAL, SECAM работает в 625 строках с частотой 25 кадров, или 50 полей в секунду. И так же как и в PAL, из за особенностей большинства телевизионных приёмников, реально видно всего 576 строк. Но, в SECAM другой метод кодирования цвета. Цветовая информация передаётся поочерёдно, одна линия R-Y, и следующая B-Y. В декодере данные восстанавливаются путём простого повторения строк. Как и в случае с PAL, это вдвое снижает вертикальную чёткость. Зато SECAM позволяет полностью отделить цветовые сигналы от яркостного, что позволяет добиться более правильной цветопередачи. Используется SECAM в Франции, Монако и Люксембурге, в странах бывшего CCCP, Восточной Европе, в некоторых арабских странах, и некоторых странах Африки. В общем, в основном в тех странах, где влияние CCCР было особенно сильно. В настоящее время многие из этих стран либо рассматривают возможность перехода в PAL систему, либо уже перешли в неё. Причём, причина этого вовсе не политические игры, а в том, что гораздо проще найти обученный персонал и аппаратуру для работы в PAL системе, что обусловлено широчайшей распространённостью этого стандарта.
Конечно, на самом деле всё гораздо сложнее, ведь есть ещё и звук, есть возможность передавать множество телевизионных программ одновременно, и многое другое. Да и видов и вариаций телевизионных стандартов гораздо больше. Но это выходит за рамки этой статьи, поэтому не буду забивать голову читателя излишними подробностями. Но, как видно даже из столь скудного описания, наибольшие проблемы всегда вызывало именно кодирование цвета. Действительно, если яркостный сигнал (Y) везде кодируется практически одинаково, и формируется по уже знакомой вам формуле (Y (luma) = 0.299R + 0.587G + 0.114B), то цветоразностные сигналы кодируются по разному. Это обуславливает то, что даже при использовании аппаратуры не поддерживающей тот или иной стандарт, обычно удаётся увидеть хотя бы чёрно-белую картинку. Впрочем, вряд ли читателям придётся серьёзно страдать из за этой проблемы, каким бы способом они не выводили видео с компьютера, у них почти гарантировано будет возможность выбрать как минимум из двух форматов, PAL или NTSC. То же самое касается и телевизоров, на которые подаётся сигнал, если в телевизоре есть вход, куда можно подать сигнал, то почти наверняка он поддерживает хотя бы один из этих двух стандартов. Клинические случаи, вроде старых советских телевизоров, 15-20 лет от роду можно не рассматривать, всё равно на них нет фишек нормального формата, к которым можно подключиться. А про то, какие фишки всё-таки бывают, и как к ним подключаться (особенно когда фишка на компьютере совсем на такая, как на телевизоре), мы поговорим в следующий раз.