Как подключить регулятор мощности
Перейти к содержимому

Как подключить регулятор мощности

Симисторный регулятор мощности с микроконтроллерным управлением

Однажды для одного небольшого домашнего проекта мне потребовался регулятор мощности, пригодный для регулировки скорости вращения электромотора переменного тока. В качестве основы использовалась вот такая плата на базе микроконтроллера STM32F103RBT6. Плата была выбрана как имеющая честный RS232 интерфейс и имеющая при этом минимум дополнительных компонентов. На плате отсутствует слот под литиевую батарейку для питания часов, но приживить его — дело пятнадцати минут.

Итак, начнём с теории. Все знакомы с так называемой широтно-импульсной модуляцией, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД. Лишняя мощность в таком случае просто не будет потребляться, вместо того, чтобы рассеиваться в виде тепла, как при линейном регулировании, представляющем собой не более чем усложнённый вариант реостата. Однако, по ряду причин такое управление, будучи выполненным «в лоб», не всегда подходит для переменного тока. Одна из них — бо́льшая схемотехническая сложность, поскольку требуется диодный мост для питания силовой части на MOSFET или IGBT транзисторах. Этих недостатков лишено симисторное управление, представляющее собой модификацию ШИМ.

Симистор (TRIAC в англоязычной литературе) — это полупроводниковый прибор, модификация тиристора, предназначенный для работы в качестве ключа, то есть он может быть либо открыт, либо закрыт и не имеет линейного режима работы. Основное отличие от тиристора — двусторонняя проводимость в открытом состоянии и (с некоторыми оговорками) независимость от полярности тока (тиристоры и симисторы управляются током, как и биполярные транзисторы) через управляющий электрод. Это позволяет легко использовать симистор в цепях переменного тока. Вторая особенность, общая с тиристорами, — это свойство сохранять проводимость при исчезновении управляющего тока. Закрывается симистор при отключении тока между основными электродами, то есть, когда переменный ток переходит через ноль. Побочным эффектом этого является уменьшение помех при отключении. Таким образом, для открывания симистора нам достаточно подать на управляющий электрод открывающий импульс небольшой, порядка десятков микросекунд, длительности, а закроется он сам в конце полупериода переменного тока.

Симисторное управление учитывает вышеперечисленные свойства этого прибора и заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Заштрихованная на рисунке часть — результат этой процедуры. Таким образом, на выходе вместо синусоиды мы будем иметь что-то, в известной степени напоминающее пилу:

AC

Теперь наша задача — вовремя отпирать симистор. Эту задачу мы возложим на микроконтроллер. Приведённая ниже схема является результатом анализа имеющихся решений а также документации к оптронам. В частности, силовая часть взята из документации на симисторный оптрон производства Texas Instruments. Схема не лишена недостатков, один из которых — мощный проволочный резистор-печка, через который включён оптрон, детектирующий переход через ноль.

schematics

Как это работает? Рассмотрим рисунок.

waves

На положительном полупериоде, когда ток через оптрон превышает некоторое пороговое значение, оптрон открывается и напряжение на входе микроконтроллера опускается практически до нуля (кривая «ZC» на рисунке). Когда же ток снова опускается ниже этого значения, на микроконтроллер снова поступает единица. Происходит это в моменты времени, отстоящие на dz от нуля тока. Это dz ощутимо, в моём случае составляет около 0.8 мс, и его необходимо учитывать. Это несложно: мы знаем период T и длительность импульса высокого уровня h, откуда dz = (h — T / 2) / 2. Таким образом, нам необходимо открывать симистор через dz + dP от переднего фронта сигнала с оптрона.

О фазовом сдвиге dP стоит поговорить отдельно. В случае c ШИМ постоянного тока среднее значение тока на выходе будет линейно зависеть от скважности управляющего сигнала. Но это лишь потому, что интеграл от константы даёт линейную зависимость. В нашем случае необходимо отталкиваться от значения интеграла синуса. Решение простого уравнения даёт нам искомую зависимость: для линейного изменения среднего значения тока необходимо менять фазовый сдвиг по закону арккосинуса, для чего достаточно ввести в управляющую программу LUT таблицу.

Всё, о чём я расскажу в дальнейшем, имеет прямое отношение к архитектуре микроконтроллеров серии STM32, в частности, к архитектуре их таймеров. Микроконтроллеры этой серии имеют разное число таймеров, в STM32F103RBT6 их семь, из которых четыре пригодны для захвата и генерации ШИМ. Таймеры можно каскадировать: для каждого таймера одно из внутренних событий (переполнение, сброс, изменение уровня на одном из входных или выходных каналов и т.д.; за подробностями отсылаю вас к документации) можно объявить выходным и направить его на другой таймер, назначив на него определённое действие: старт, стоп, сброс и т.д. Нам потребуются три таймера: один из них, работая в т.н. PWM input режиме, замеряет период входного сигнала и длительность импульса высокого уровня. По окончании измерения, после каждого периода генерируется прерывание. Одновременно с этим запускается связанный с этим событием таймер фазового сдвига, работающий в ждущем режиме. По событию переполнения этого таймера происходит принудительный сброс таймера, генерирующего выходной управляющий сигнал на симистор, таким образом, через каждый полный период переменного тока подстраивается фаза управляющего сигнала. Только первый таймер генерирует прерывание, и задача обработчика сводится к подстройке фазового сдвига (регистр ARR ждущего таймера) и периода ШИМ таймера (также регистр ARR) так, чтобы он всегда был равен половине периода переменного тока. Таким образом, всё управление происходит на аппаратном уровне и влияние программных задержек полностью исключается. Да, это можно было сделать и программно, но грех было не воспользоваться такой возможностью, как каскадируемые таймеры.

Выкладывать на обозрение код всего проекта я не вижу смысла, к тому же, он далёк от завершения. Приведу лишь фрагмент, содержащий описанный выше алгоритм. Он абсолютно независим от прочих частей и легко может быть портирован в другой проект на совместимом микроконтроллере.

Регулятор мощности для индуктивной нагрузки на симисторе

Главное отличие симистора заключается в особенностях силовых выводов данного прибора, которые одновременно являются катодами и анодами, в то время как у тиристоров они строго разделены.

Различия в силовых выводах прибора принципиальны только в процессе включения, когда по отношению к главному электроду они являются условным анодом и условным катодом.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.


Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Назначение и устройство

Как уже упоминалось, регуляторы мощности, созданные на основе симисторов, в первую очередь предназначены для изменения параметров функционирования оборудования, подключенного к электросети.
Учитывая этот факт, подобные устройства могут выполнять следующие основные функции:

  1. Изменение яркости свечения ламп для регуляции степени освещения в помещениях.
  2. Контроль за работой отопительных приборов, осуществление изменения параметров нагрева их рабочей поверхности.
  3. Регулирование параметров работы вентиляционного оборудования в жилых или служебных помещениях.
  4. Регулировка мощности работы иного оборудования с возможностью изменения параметров функционирования от 0 (отключение) до 100 (максимальная мощность).
  5. Определение аварийных параметров для определенного оборудования, подключенного в сеть.
  6. Снижение количества потребляемой энергии.
  7. На основе данных приборов создаются диммеры – особая модификация выключателей света, отвечающая за его яркость.

Все подобные регуляторы мощности, изготовленные на основе симисторов, имеют специфическое устройство, которое описано ниже:

  1. В структуру входит 3 выводных электрода, один из них является главным управляющим элементом. Главный электрод имеет общепринятое обозначение G, а остальные элементы обладают маркировкой Т1 и Т2 либо А1 и А2.
  2. Количество слоев полупроводников всегда равняется 5, такая структура прибора позволяет ему пропускать электрический ток во всех направлениях. В целом, эта система напоминает устройство транзисторов p-n-p образца, но отличие заключается в увеличение количества областей, которым свойственна n-проводимость. При этом, 2 области, расположенные непосредственно около анода и катода, образуют четвертый полупроводниковый слой и отвечают за его функционирование. 5 слой образуется за счет n-проводниковой области, расположенной возле главного электрода.
  3. В корпусе самого симистора находится одновременно 2 различных полупроводника, что отличает его от предшественника – тиристора.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.


Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Тиристорный регулятор мощности схема на 12 вольтТиристорный регулятор мощности схема на 12 вольтТиристорный регулятор мощности схема на 12 вольтТиристорный регулятор мощности схема на 12 вольтТиристорный регулятор мощности схема на 12 вольтТиристорный регулятор мощности схема на 12 вольт

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.


Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.


Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Как подключить диммер

В общем случае диммер подключается подобно обычному выключателю, но есть условие: регулятор должен включаться только в разрыв фазы (выключатели можно устанавливать как в фазу, так и в «нуль»).

Принципиальная схема подключения диммера

Подключение диммеров выполняется подобно выключателям. Оба этих элемента монтируются последовательно с нагрузкой. Диммер можно смело ставить на место обычного выключателя. Для этого надо отключить сетевое питание, отсоединить провода от клемм старого выключателя, а на его место установить светорегулятор. Эта операция упрощается еще и тем, что установочные размеры диммеров соответствуют габаритам простых выключателей.

Принципиальная схема подключения диммера

Подключая диммер в электросети, помните: он должен включаться в разрыв фазового (L), а не нулевого (N) провода.

Схема с выключателем

Такие схемы чрезвычайно удобны: они позволяют управлять интенсивностью освещения из любого места квартиры. В спальне. Например, диммер целесообразно устанавливать рядом с кроватью — в таком случае пользователю не придется покидать теплую постель, чтобы уменьшить или увеличить силу света.

Схема подключения диммера с выключателем

Такую схему уместно применять в системах «умный дом». Эффективное управление светом позволяет выделять отдельные зоны помещения или детали интерьера. Простой выключатель устанавливают возле межкомнатной двери. Им пользуются при входе и выходе из комнаты — когда нужно включить или выключить свет.

Схема установки с двумя светорегуляторами

При необходимости можно обеспечить регулировку силы света с двух точек. в таком случае устанавливают два светорегулятора, а их первые и вторые клеммы соединяют между собой. К третьей клемме любого из диммеров подводят фазовый провод.

Схема подключения с двумя диммерами

Провод на нагрузку идет от третьей клеммы оставшегося светорегулятора. В результате таких манипуляций из распределительной коробки каждого из диммеров должно выходить по три провода.

Включение диммера с двумя проходными выключателями

Принцип действия данной схемы заключается в следующем: один выключатель устанавливается на входе в помещение, второй — на другом конце лестницы или коридора. В этом случае светорегулятор монтируется между выключателем и нагрузкой в фазовый провод.

Схема подключения диммера с двумя проходными выключателями

Между проходными выключателями диммер устанавливать нельзя.

Обратите внимание: если диммер в этой схеме выключен, ни один из проходных выключателей работать не будет

Подключение диммера к светодиодным лентам и лампам

Если к светодиодной ленте подключить светорегулятор, появится возможность изменять яркость ее свечения. Выбирают диммер по суммарной мощности светодиодных лент.

При реализации данной схемы с одноцветными лентами с диммером соединяют блок питания. Выводы светорегулятора подключают к самой нагрузке, соблюдая при этом полярность тока.

В случае применения светодиодных лент, имеющих каналы RGB, диммер тоже подключают к блоку питания, а его выводы — к контроллеру сигналов.

Мощность светорегулятора в любом из вышеописанных случаев должна на 20–30% превышать расчетную мощность потребления лент.

Обратите внимание: для работы со светодиодными лампами и лентами выпускаются специальные диммеры

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Но сначала разберемся, как диммер работает

Электроприбор имеет определенную мощность. Она выражается в громкости звучания, скорости вращения, яркости освещения. Например – лампа накаливания. При подаче напряжения (соответствующего параметрам), потребитель получает заданную яркость.

Для плавной регулировки уровня свечения, необходимо менять основной параметр – напряжение. Это отлично работает на лампах накаливания, яркость можно уменьшать практически до нуля.

Диммер своими руками

А каким образом реализовать это на практике?

Самый эффективный способ – авторансформатор. Более привычное название «ЛАТР». Напряжение регулируется контактным бегунком, который движется поперек витков вторичной обмотки. Плавность и точность выше всяких похвал. При этом практически нет потерь – КПД как у обычного трансформатора. Однако, бытовой диммер из такого громоздкого аппарата не выдерживает никакой критики.

Диммер своими руками

Как еще можно плавно понизить напряжение?

Используя закон Ома – с помощью резистора (в нашем случае переменного). Собственно, первые образцы именно так и выглядели. Поскольку при подключении ламп накаливания мощностью 60 или 100 Вт, токи для резисторов были нешуточными, использовались проволочные конструкции на керамических изоляторах (по совместительству рассеивателях тепла).

Диммер своими руками

Напряжение действительно снижалось, регулировка была плавной, но куда девалась «лишняя» мощность? В отличие от применения трансформатора, перераспределения энергии не происходит, поэтому излишки рассеиваются в виде тепла. Это крайне неэффективная схема подключения диммера. Регуляторы искрили, перегревались и быстро выходили из строя.

  • hi-electric.com
  • obinstrumente.ru
  • instrument.guru
  • xn——7kcglddctzgerobebivoffrddel5x.xn--p1ai
  • oldoctober.com
  • rinnipool.ru
  • remontkvartiri.me
  • kirpich174.ru
  • MyTooling.ru

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.


Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Принцип работы симисторных регуляторов мощности (напряжения) в цепях переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице Ссылка на страницу. Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал. Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения. Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой – в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь – как это всё работает? В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора – тем больше сдвиг по фазе. Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки. При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню. Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом). В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3. 5% от максимальной. Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором. Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.


Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени. При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть. Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов – самое то.

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В. Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки. Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

ДИММЕР ДЛЯ СВЕТОДИОДОВ 12В

Диммер своими руками

Диммер своими руками

Рисунок платы можно скачать в архиве. Схема питается от напряжения БП 12V с разъема CN2, этот разъем стандартный, с которым не будет никаких проблем подключить к специальному блоку питания, которые существуют на рынке. Светодиод D1 — это индикатор поступления питания и работы устройства.

Диммер своими руками

Принципиальная схема имеет несколько частей — это генератор с регулируемой шириной импульсов ШИМ, драйвер, и усилитель мощности с MOS-FET транзистором. Максимальная мощность нагрузки может составлять более 200 ватт, так как транзистор RFP50N06 держит ток до 50 ампер.

Диммер своими руками

Диммер своими руками

Варианты использования диммера

Диммер своими руками

Данной схемой можно управлять яркостью как мощных, до 100 ватт, светодиодов, ламп накаливания на 12 вольт, так и LED лентами с максимальной длинной до 20 метров, при потреблении тока 1 ампер на метр. Транзистор не забудьте поставить на радиатор средних размеров.

Регулятор мощности 2 кВт своими руками для многих бытовых нужд

Регуляторы мощности двигателя до 2 кВт можно сделать своими руками. Для этого потребуются доступные детали, которые продаются на любом радиорынке. Сборка подобного прибора совсем несложная. При помощи схемы можно управлять мощным трансформатором, нагревательными приборами и тп.

Основные материалы:

  • Симистор BTA41-600B — http://alii.pub/5o284l
  • переменный резистор 500 кОм — http://alii.pub/5o27v2
  • динистор DB3 — http://alii.pub/5o28g9
  • резистор 10 кОм — http://alii.pub/5h6ouv
  • конденсатор 100 пФ 275 В — http://alii.pub/5n14g8

Процесс изготовления регулятора

Для сборки регулятора берем любое жесткое основание, к примеру алюминиевый радиатор. На него прикручиваем симистор BTA41-600B с использованием диэлектрической прокладки, и винта с непроводящей ток втулкой.

Справа с небольшим отступом приклеиваем переменный резистор. Затем лудим контакты резистора и симистора. Теперь берем динистор DB3. Паяем его к правой ножке симистора и двум контактам переменного резистора, как показано на фото.

Между центральной ножкой симистор и правой переменного транзистора впаиваем резистор 10 кОм. Теперь берем конденсатор. Его необходимо припаять к ножке динистора со стороны переменного транзистора. Второй конец конденсатора через удлинитель из проволоки соединяем с первым контактом симистора.

К этому же контакту симистора подключаем один провод кабеля с викой. Второй его конец паяем к нагрузке. Это может быть лампочка или электродвигатель. Затем соединяем оставшийся провод от нагрузки с центральной ножкой симистора.

При подключении к этой схеме лампочки накаливания устройство работает как диммер, позволяющий регулировать яркость.

Если же присоединить электродвигатель мощностью до 2 кВт, то получаем регулятор оборотов.

В общем прибор универсальный, которым можно даже регулировать напряжение на трансформаторе.

Мощный симисторный регулятор мощности

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Мощный симисторный регулятор мощности на BTA41-600

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

Собираем диммер

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

BTA41-600

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

4000Вт регулятор

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Обратная сторона печатной платы покупного диммера

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Лужение силовых дорожек

Для сведения, медный провод сечением 2.5мм 2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Диммер

Диммер BTA41-600

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см 2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 90 0 С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.

Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.

Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.

Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Предохранитель в регуляторе мощности

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

Автоматический выключатель на 16 Ампер

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм 2 .

Тумблер на 25А

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

Регулятор мощности на 40А

Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Дополнительный резистор

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

Выводы симистора, при его монтаже, рекомендуется делать как можно короче.

Вывод.

Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *