Как сделать нагрузку 2 ампера
Простая электронная нагрузка для начинающих
Автор: KomSoft
Опубликовано 11.02.2015
Создано при помощи КотоРед.
Начну с цитаты: «Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампочки накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. (Лучше и не скажешь! Сам сталкивался с такой проблемой.) Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.» — https://radiohlam.ru/raznoe/nagruzka.htm
Эта статья является предисловием к более сложному устройству и предназначена для тех, кто постоянно тасует мощные резисторы и лампочки, используемые как нагрузка, а знаниями (опытом, решимостью) для сборки сложных схем еще не обладает.
Начиналось все с вышеуказаной статьи и вот такой схемы с расчетами (за описанием отсылаю к первоисточнику):
На основе этой схемы собрано устройство, практически идентичное авторскому, которое верой и правдой служило пару лет при напряжения на нем до 20-25В. Видно, что низкоомный резистор Rti собран аж из четырех! подручных.
К сожалению, при тестировании очередного блока и подаче с него напряжения более 30В нагрузка сгорела — пробился полевик, скорее всего из-за превышения напряжения затвор-сток. Кроме того, ток в этой схеме очень сильно зависит от поданого напряжения. Поэтому схема была немного доработана — добавлены стабилизаторы напряжения питания ОУ, опорного напряжения и индикатор высокого опасного (для схемы) напряжения.
Описывать здесь особо нечего. На стабилитроне VD2 собран источник опорного напряжения, который вполне сносно (достаточно для таких задач) работает при напряжениях от 7 до 30В. При напряжении менее 5В не выходит на режим стабилитрон VD2 и вследствие уменьшения напряжения на нем, а также недостаточного напряжения на выходе U1 максимальный ток, устанавливаемый нагрузкой снижается.
Операционный усилитель U1, транзистор Q1 и резисторы R6, R7 образуют источник стабильного тока, значение которого регулируется изменением напряжения, подаваемого с резистора R3.
Вспомогательными элементами схемы являются:
- диод VD1 защищающий схему от неправильной подачи питания;
- интегральный стабилизатор U2, ограничивающий напряжение питания микросхемы, вентилятора и напряжение на затворе полевого транзистора;
- светодиод HL1, индицирующий подачу питания;
- светодиод HL2, индицирующий опасно высокое входное напряжение.
Конечно, при входном напряжении менее 13В на выходе интегрального стабилизатора напряжение также будет снижено, но существенного вляиния на работу схемы это не оказывает.
Плата и расположение деталей (вид со стороны деталей, одна перемычка голубого цвета):
Рисунок платы — в прилагаемом файле, зеркалить не нужно.
Устройство собрано из того, что было под рукой вперемешку от блоков питания, мониторов и даже старых советских радиодеталей. Полевой транзистор практически любой такой структуры с током более 5А и напряжением более 30В, например IRFZ34, 44 и аналогичные — что есть под рукой. Диодная сборка — от блока питания AT(X). Радиатор и вентилятор — от процессора (побольше). Для подачи напряжения имеет разъемы — стандартный Molex от винчестера (папа) и два винтовых.
Минимальный ток определяется током вентилятора. Нагрузка достаточно уверенно держит 12В/4А т.е. рассеиваемую мощность около 50Вт. в течении 10 мин. После этого по запаху чувствуется, что не хватает охлаждения. При больших напряжениях желательно не устанавливать большие токи, чтобы не превышать эту мощность и не допустить перегрева транзистора, или применить больший радиатор и вентилятор.
Таким образом, получилось простое устройство, собираемое из «хлама», не требующее отдельного источника питания, не содержащее в себе импульсных преобразователей и в 95% случаем обеспечивающее потребности радиолюбителя при проверке и регулировке блоков питания.
А об аналогчной нагрузке с модульной структурой и расширеной функциональностью я расскажу в следующий раз.
Электронная нагрузка для блока питания своими руками
Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.
По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.
На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.
Схема электронной нагрузки для блока питания
Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.
Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.
В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.
Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.
С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.
Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.
Радиодетали для сборки
- Транзистор Т1 TIP41, MJE13009, КТ819
- Транзисторы Т2, Т3, Т4, Т5 TIP36C
- Стабилизатор напряжения L7812CV
- Конденсатор С1 1000 мкФ 35В
- Диоды 1N4007
- Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
- Радиаторы 4 шт. размер 100х63х33 мм
- Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
- Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания
Как своими руками сделать нагрузочную вилку для аккумулятора?
Нагрузочная вилка — прибор, необходимый для того, чтобы определять степень заряженности и исправности автомобильной аккумуляторной батареи. С ее помощью можно определять уровень напряжения АКБ на холостом ходу автомобиля и под нагрузкой. Нагрузочная вилка для аккумулятора своими руками также может быть изготовлена — при наличии определенных навыков и умения.
Что представляет из себя нагрузочная вилка
Стандартные нагрузочные вилки часто производятся в виде вольтметров с ручкой с возможностью подключения нагрузки параллельно самому вольтметру. Нагрузка выполняется в виде спирали, которая имеет функции подключения различными способами. Есть вилки, которые можно вывести на банки аккумулятора, есть приборы для тестирования 12-вольтовых аккумуляторов — когда нагрузка подсоединяется посредством гайки.
Современные вилки оснащены жидкокристаллическим дисплеем и, как правило, имеют несколько нагрузочных режимов. Для тестирования обычных аккумуляторов будет достаточно вилки, имеющей токовую нагрузку 100 А.
Любая нагрузочная вилка — это один из элементов замкнутой электрической цепи, который имеет довольно большой показатель мощности. Самый простой вариант такого прибора состоит из вольтметра, резистора из проволоки и двух зажимов.
Вариантов того, как сделать нагрузочную вилку самостоятельно, — много. Как говорится, «было бы достаточно хлама в гараже». Потому что часто ее мастерят именно из подручных средств, исходя из того, что используется она нечасто, и специально покупать ее вовсе не обязательно. Главное, чтобы электрическая схема была выстроена верно, в соответствии с простыми расчетами.
Самый простой способ изготовления нагрузочной вилки
Для того чтобы сделать самую простую вилку и тут же снять необходимые показания, вам понадобятся следующие подручные средства и действия:
- Любая спираль. Можно взять добротную спираль от завалявшейся в гараже старой электрической плитки.
- Спираль следует свернуть в несколько слоев (проволочных жил), добившись показателя сопротивления 0,1-0,15 Ом .
- Нужно взять сам аккумулятор (с напряжением до 15 В), автомобильную лампочку (например, снять ее с поворотников, мощностью 21 Вт). Такое самодельное сопротивление можно либо припаять, либо закрепить винтом и гайкой. Также понадобится мультиметр с диапазоном тока 10 ампер.
- Вся цепь собирается и подключается последовательно .
- Затем зажимы выводятся на клеммы АКБ .
- Мультиметр выдает показания тока, протекающего по цепи. Обычный показатель, в данном случае, равен ±1,78 А.
- Теперь убираем мультиметр и снова включаем всю цепь .
- Снимаем с его помощью показания напряжения на спирали , которая свита в несколько слоев. Здесь показатель будет уже в милливольтах, около 197 мВ.
- Рассчитываем нужное сопротивление по закону Ома — 0,197: 1,78= 0,11 Ом.
Таким образом, сопротивление самодельного резистора у нас составляет 0,11 Ом. Теперь нужно подсоединить его к батарее на 5-10 секунд с подсоединенным к ней мультиметром, который будет измерять показатели напряжения в диапазоне постоянки на 20 вольт. Снимаем показания, фиксируем их. Нагрузочная вилка, сделанная своими руками, срабатывает хорошо в том случае, если сборка цепи была осуществлена правильно.
Второй способ настолько же прост
Для этого потребуются «запчасти» от старых автомобилей.
Если они имеются в гараже, то изготовить самодельную нагрузочную вилку можно так:
- взять размыкатель массы от старого авто, например, от ГАЗЕЛи;
- извлечь «на свет» из гаража два допрезистора для вентилятора;
- добавить в схему зажимы и провода.
Общие технические характеристики такого устройства будут следующими: сопротивление резистора от 0,23 Ом (может быть чуть больше или меньше), показатель рабочей величины тока (учитывая охлаждение вентилятором) — 15 ампер , напряжение стандартное — 12 вольт . Что касается резисторов именно этого типа, их преимущество в том, что они имеют встроенные предохранители, срабатывающие в случае перегрева внутри цепи. Если используется один резистор, показатель нагрузки с ним будет 50 ампер, а если два идут в параллели, то, соответственно, 100 ампер.
Нестандартное решение вопроса
В данном случае нагрузочная вилка изготавливается еще более интересным способом, с помощью канализационной трубы, аккуратно разрезанной в продольном направлении.
Здесь приводится схема конструкции вилки, рассчитанная на проверку показателей сорпотивления аккумуляторов на 12 вольт с емкостью от нескольких десятков ампер-часов:
- константовая проволока , 12 витков со внутренним диаметром намотки 38 мм;
- к концам проволоки привариваются шпильки М8 ;
- все это может прекрасно подойти к канализационной трубе , если ее диаметр составляет 50 мм ;
- щель закрывается вторым куском такой же трубы;
- по бокам устанавливаются заглушки, и конструкция готова.
Технические параметры: показатель сопротивления около 0,1 Ом , ток при напряжении 12 вольт составляет от 110 до 120 ампер . Длительность нагрузки в этом случае должна быть минимальной, не более 3-5 секунд (к сожалению, устройство очень быстро нагревается). Все показатели аккумулятора измеряются так же, вольтметром любого типа. При создании такой вилки рекомендуется воспользоваться таблицей расчета сопротивлений проводов различной длины.
Общие рекомендации по конструированию самодельных нагрузочных вилок
Перед тем как начать собирать вилку самостоятельно, не забудьте измерить показатели напряжения в каждой банке аккумуляторной батареи и проверьте возможность доступа к банкам. Также не помешает заново прочесть инструкцию, прилагаемую к вашей батарее: в ней содержатся минимальные и максимально возможные для нее показатели тока под нагрузкой, что очень важно.
Зажимы, употребляемые при замерах, должны быть прочными, чтобы они могли выдержать большой ток, когда на батарею пойдет нагрузка. Лучше присоединять «крокодилы» к аккумулятору с помощью крепких проводов.
Все соединительные части электрической цепи должны быть крепко спаяны. Для этого вам понадобится хороший сварочный аппарат.
Для удобства применения всю цепь рекомендуется размещать на заранее подготовленном каркасе. Материалы каркаса следует изготавливать из металла, устойчивого к возгоранию.
И еще несколько важных советов:
- правильно рассчитывайте мощность во избежание перегрева;
- не присоединяйте самодельное устройство к АКБ во время ее зарядки;
- не храните самодельную вилку вблизи от аккумуляторов;
- проветривайте помещение до и после работы с вашим устройством;
- не держите вилку дольше, чем 3-5 секунд, во избежание порчи аккумулятора.
Как видите, нагрузочная вилка для аккумулятора своими руками изготавливается несложно. Важно вспомнить из школьного курса физики о том, как правильно рассчитывать показатели сопротивления, и правильно собрать электрическую цепь из подходящих подручных средств. Также при использовании самодельной нагрузочной вилки не переборщите с током и внимательно следите за его показателями.
Электронная импульсная нагрузка на базе TL494
Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.
Стали появляться любительские конструкции электронных нагрузок на базе полевых транзисторов, более пригодных к использованию в качестве электронного сопротивления, нежели их биполярные собратья: лучшая температурная стабильность, практически нулевое сопротивление канала в открытом состоянии, малые токи управления — основные преимущества, определяющие предпочтительность их использования в качестве регулирующего компонента в мощных устройствах. Более того, самые разнообразные предложения появились от производителей приборов, прайсы которых пестрят самыми разнообразными моделями электронных нагрузок. Но, так как производители ориентируют свою весьма сложную и многофункциональную продукцию под названием «электронная нагрузка» в основном на производство, цены на эти изделия настолько высоки, что покупку может позволить себе лишь весьма состоятельный человек. Правда, не не совсем понятно, — зачем состоятельному человеку электронная нагрузка.
Содержание / Contents
Камрад, рассмотри датагорские рекомендации
Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
↑ Преимущества электронного эквивалента нагрузки
Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств?
Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей «лаборатории» электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания — обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).
Кроме того, «действия» электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств — не в этой статье, и, быть может, от другого автора. А пока, — лишь о еще одной разновидности электронной нагрузки — импульсной.
↑ Особенности импульсного варианта ЭН
Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.
При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на «ура» в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.
Идея создания импульсной нагрузки появилась достаточно давно и впервые была реализована в 2002 году, но не в теперешнем ее виде и на другой элементной базе и для несколько иных целей и не было в то время для меня лично достаточных стимулов и прочих основаий для развития этой идеи. Сейчас звезды стоят иначе и что-то сошлось для очередного воплощения этого устройства. С другой стороны, устройство изначально имело несколько иное назначение — проверка параметров импульсных трансформаторов и дросселей. Но одно другому не мешает. Кстати, если кто-то захочет заняться исследованием индуктивных компонентов с помощью этого или аналогичного устройства, пожалуйста: ниже архивы статей маститых (в области силовой электроники) инженеров, посвященных этой теме.
Итак, что же представляет собой «классическая» (аналоговая) ЭН в принципе. Токовый стабилизатор, работающий в режиме короткого замыкания. И ничего больше. И будет прав тот, кто в порыве какой угодно страсти замкнет выходные клеммы зарядного устройства или сварочного аппарата и скажет: это — электронная нагрузка! Не факт, конечно, что подобное замыкание не будет иметь пагубных последствий, как для устройств, так и для самого оператора, но и то и другое устройство действительно являются источниками тока и вполне могли бы претендовать после определенной доводки на роль электронной нагрузки, как и любой другой сколь угодно примитивный источник тока. Ток в аналоговой ЭН будет зависеть от напряжения на выходе проверяемого БП, омического сопротивления канала полевого транзистора, устанавливаемого величиной напряжения на его затворе.
Ток в импульсной ЭН будет зависеть от суммы параметров в число которых будет входить ширина импульса, минимальное сопротивление открытого канала выходного ключа и свойства проверяемого БП (емкость конденсаторов, индуктивность дросселей БП, выходное напряжение).
При открытом ключе ЭН образует кратковременное короткое замыкание, при котором конденсаторы испытуемого БП разряжаются, а дроссели (если они содержатся в конструктиве БП) стремяться к насыщению. Классического КЗ, однако, не происходит, т.к. ширина импульса ограничена во времени микросекундными величинами, определяющими величину разрядного тока конденсаторов БП.
В то же время проверка импульсной ЭН является более экстремальной для проверяемого БП. Зато и «подводных камней» при такой проверке выявляется больше, вплоть до качества питающих проводников, подводимых к питающему устройству. Так, при подключении импульсной ЭН к 12-тивольтовому БП соединительными медными проводами диаметром жилы 0,8мм и токе нагрузки 5А, осциллограмма на ЭН выявила пульсации, представляющие собой последовательность прямоугольных импульсов размахом до 2В и остроконечными выбросами с амплитудой, равной напряжению питания. На клеммах самого БП пульсации от ЭН практически отсутствовали. На самой ЭН пульсации были сведены к минимуму (менее 50мВ) при помощи увеличения количества жил каждого питающих ЭН проводников — до 6. В «двухжильном» варианте минимума пульсаций, сопоставимого с «шестижильным», удалось достигнуть установкой дополнительного электролитического конденсатора емкостью 4700мФ в точках соединения питающих проводов с нагрузкой. Так что, при построении БП, импульсная ЭН очень даже может пригодиться.
↑ Схема
Регулировка частоты осуществляется переменным резистором R1; скважности — R2; термочувствительности — R4; ограничение тока — R14.
Выход генератора умощнен эмиттерным повторителем (VT1, VT2) для работы на емкости затворов полевых транзисторов числом от 4-х и более.
Генераторная часть схемы и буферный каскад на транзисторах VT1, VT2 могут быть запитаны от отдельного источника питания с выходным напряжением +12. 15В и током до 2А или от канала +12В проверяемого БП.
Выход ЭН (сток полевого транзистора) и соединяется с «+» проверяемого БП, общий провод ЭН — с общим проводом БП. Каждый из затворов полевых транзисторов (в случае их группового использования) должен быть соединен с выходом буферного каскада собственным резистором, нивелирующим разницу параметров затворов (емкость, пороговое напряжение) и обеспечивающим синхронную работу ключей.
На фотографиях видно, что на плате ЭН имеется пара светодиодов: зеленый — индикатор питания нагрузки, красный индицирует срабатывание усилителей ошибки микросхемы при критической температуре (постоянное свечение) или при ограничении тока (едва заметное мерцание). Работой красного светодиода управляет ключ на транзисторе КТ315, эмиттер которого соединен с общим проводом; база (через резистор 5-15кОм) с выводом 3 микросхемы; коллектор — (через резистор 1,1 кОм) с катодом светодиода, анод которого соединен выводам 8, 11, 12 микросхемы DA1. На схеме этот узел не показан, т.к. не является безусловно обязательным.
Не указанные на схеме номиналы резисторов и конденсаторов:
По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.