Павел Яблочков. Как свеча русского изобретателя осветила мир?
В 1877 году Лувр, Оперный театр и центральная улица Парижа озарились необычайным светом. Первое время парижане собирались у фонарей, чтобы полюбоваться их яркостью. А годом ранее издания европейских стран пестрели заголовками: «Россия — родина электричества», «Свет приходит к нам с Севера — из России».
«Свеча Яблочкова», дуговая лампа русского инженера, изменила представление о возможности электрического освещения. В апреле 1876 года в Лондоне открылась выставка физических достижений. Французскую фирму «Бреге» представлял русский изобретатель Павел Николаевич Яблочков, представивший миру свое детище — электрическую дуговую угольную лампу без регулятора. Это была лампа, состоящая из двух угольных стержней, размещенных рядом, но разделенных изоляцией из каолина. Изоляция не только скрепляла стержни, но и позволяла вольтовой дуге образовываться между их верхними концами.
Устройство «свечи Яблочкова». Фото: ru.wikipedia.org
Лондон ахнул, когда Яблочков поворотом рукоятки динамо-машины зажег сразу 4 светильника — лампы, установленные на постаментах. Аудитория озарилась необычайно ярким голубоватым светом.
Простотой эксплуатации лампа превзошла своих предшественниц. В ней не надо было регулировать расстояние между стержнями сложными и дорогостоящими устройствами. Это сделало её дешевой и доступной, а соответственно, и популярной. «Свеча Яблочкова» быстро распространялась по миру: Франция, Германия, Бельгия, Испания, Швеция, Португалия, Италия, Филадельфия, Персия, Камбоджи. В России она появилась в 1878 году. Стоила она 20 копеек, время горения — около 1,5 часов. Потом надо было вставлять в фонарь новую лампу. Позже появились приборы для автоматической смены «русской лампы». В апреле 1876 года Яблочкова избрали в действительные члены Французского физического общества. В апреле 1879 года учёного наградили именной медалью императорского Русского технического общества. …14 сентября 1847 года в Сердобском уезде Саратовской губернии, в семье обедневшего мелкопоместного дворянина родился мальчик Павел. С детства он увлекался конструированием и в 11 лет придумал счетчик для измерения расстояния на гужевом транспорте. Принцип его работы тот же, что используется в современных спидометрах. Саратовская мужская гимназия, Николаевское инженерное училище, которое он закончил в чине инженера-подпоручика, открывали перед юношей возможности военной карьеры. Год он служит младшим офицером в 5-м саперном батальоне, но потом увольняется под предлогом болезни.
П. Н. Яблочков в годы работы в Москве. Фото: ru.wikipedia.org
Для восполнения пробелов знаний в электротехнике он поступает в Техническое гальваническое заведение в Кронштадте, единственную школу военных электротехников. После окончания служит положенные 3 года, а потом увольняется из армии и переходит на гражданскую службу. Начальник службы телеграфа Московско-Курской железной дороги Павел Николаевич Яблочков совмещает работу и изобретательскую деятельность. Весной 1874 года ждали правительственный состав. Руководство дороги решило проявить верноподданническое рвение и осветить путь электрическим прожектором. Обратились к начальнику службы телеграфа. На паровоз установили дуговую лампу с регулятором Фуко. Всю дорогу Яблочков простоял на площадке паровоза, меняя угольные стержни и постоянно регулируя расстояние между ними. Задача не из легких, но Павел Николаевич справился. Однако внедрить в эксплуатацию такую лампу было невозможно.
Ипподром, освещённый свечами Яблочкова Фото: ru.wikipedia.org
Яблочков уходит со службы и открывает мастерскую физических приборов, где проводит опыты с электричеством. Ему приходит идея создания дуговой лампы без сложных регуляторов. Он отправляется в Филадельфию на Всемирную выставку. Но средств хватило только до Парижа. Там он и познакомился с академиком Бреге, который сразу оценил потенциал русского изобретателя, предложив ему работать в своих мастерских. Яблочков предложение принял. Именно от фирмы «Бреге» он и представил свою лампу на выставке в Лондоне. Век «свечей Яблочкова» оказался коротким. На парижской выставке 1881 года его изобретение получило высокую оценку, но на той же выставке были представлены лампы накаливания, способные бессменно работать до 1000 часов без замены. Яблочков начал работать над созданием мощного химического источника тока. Опыты с хлором приводят к ожогу слизистой оболочки легких, но работы продолжаются. В 1892 году он возвращается на родину. В Петербурге о нем забыли, и Яблочков переезжает в родовое поместье, намереваясь там продолжить работу. В деревне не было условий, и он перебирается в Саратов. После возвращения на родину он потратил все состояние на выкуп патентов своих изобретений, чтобы они принадлежали России. Дуговая лампа — не единственное его изобретение. Яблочков также создал первый в мире трансформатор. Элементы, понижающие напряжение переменного тока, используются и в настоящее время. Неожиданно вспомнили и о «свече Яблочкова», казалось бы, давно забытой: ксеноновый свет вновь использует электрическую дугу.
В марте 1894 года изобретатель скончался. Ему было 46 лет. Улицам многих городов присвоено имя русского изобретателя. Одна из центральных улиц Саратова — улица Яблочкова. Его именем назван Саратовский радиотехнический колледж.
Мемориальная доска на фасаде дома № 35 на углу улиц М. Горького и Яблочкова в Саратове Фото: ru.wikipedia.org
В 1970 году в честь Павла Николаевича Яблочкова был назван кратер на обратной стороне Луны.
Свеча Яблочкова: что известно об изобретателе первой дуговой лампы
Павел Яблочков — один из основателей электротехники, создатель дуговой лампы и первого в мире электрического трансформатора переменного тока. Благодаря изобретениям ученого в XIX веке Россию называли родиной электричества.
В Главархиве хранятся материалы, связанные с деятельностью Павла Яблочкова. Среди них документы об аренде изобретателем земли между Китайгородской стеной и домом Челышева под постройку электрической станции. Взамен ученый должен был бесплатно осветить Театральную площадь и будущее помещение городской думы на Воскресенской площади.
Павел Яблочков родился 14 сентября (2 сентября по старому стилю) 1847 года в родовом имении в Саратовской губернии. Он получил хорошее домашнее образование, особые успехи проявлял в точных дисциплинах. В 1858 году поступил в Саратовскую гимназию. В 1862 году одаренный подросток переехал в Петербург, где несколько месяцев занимался в пансионе заслуженного профессора фортификации и композитора Цезаря Кюи.
В 1863–1866 годах Павел Яблочков учился в Николаевском инженерном училище, по окончании которого получил звание инженера-подпоручика. Прослужив год в саперном батальоне инженерной команды в Киеве, был командирован на учебу в Техническое гальваническое заведение для офицеров в Кронштадте. Но будущего ученого привлекала не военная служба, а изобретательство, поэтому в конце 1871 года он уволился из армии и устроился в Москве на должность помощника начальника телеграфной службы. А в 1873 году его назначили начальником телеграфа Московско-Курской железной дороги. Все свободное время молодой ученый посвящал опытным занятиям в электротехническом кружке Политехнического музея.
В 1874 году Павел Яблочков впервые в истории электротехники применил электрическое освещение на железной дороге: он установил на паровозе императорской семьи, следовавшем в Крым, прожектор с дуговой лампой накаливания Фуко. В течение 20 часов ученый вручную регулировал аппаратуру и переносил ее с одного тягача на другой. Это занимало слишком много времени и сил, поэтому молодой изобретатель задумался над усовершенствованием дуговых ламп.
«Русская свеча». Как инженер Яблочков подарил миру электрический свет
Весной 1876 года мировые СМИ пестрели заголовками: «Свет приходит к нам с Севера — из России»; «Северный свет, русский свет — чудо нашего времени»; «Россия — родина электричества».
На разных языках журналисты восхищались русским инженером Павлом Яблочковым, чьё изобретение, представленное на выставке в Лондоне, изменило представление о возможностях использования электричества.
Изобретателю в момент выдающегося триумфа было всего 29 лет.
Прирождённый изобретатель
Павел Яблочков родился 14 сентября 1847 года в Сердобском уезде Саратовской губернии, в семье обедневшего мелкопоместного дворянина, происходившего из старинного русского рода.
Отец Павла в молодости учился в Морском кадетском корпусе, но по болезни со службы был уволен с награждением гражданским чином XIV класса. Мать была властной женщиной, державшей в крепких руках не только хозяйство, но и всех членов семьи.
Паша ещё в детстве увлёкся конструированием. Одним из первых его изобретений стал оригинальный землемерный прибор, которым затем пользовались жители всех окрестных деревень.
В 1858 году Павел поступил в Саратовскую мужскую гимназию, однако из 5-го класса отец забрал его. Семья была стеснена в средствах, и на образование Павла их не хватало. Тем не менее мальчика удалось определить в частный Подготовительный пансионат, где молодых людей готовили к поступлению в Николаевское инженерное училище. Содержал его военный инженер Цезарь Антонович Кюи. Этот неординарный человек, одинаково успешно занимавшийся вопросами военной инженерии и написанием музыки, пробудил у Яблочкова интерес к науке.
В 1863 году Яблочков блестяще сдал вступительный экзамен в Николаевское инженерное училище. В августе 1866 года он окончил училище по первому разряду, получив чин инженер-подпоручика. Его назначили младшим офицером в 5-й сапёрный батальон, расквартированный в Киевской крепости.
Внимание, электричество!
Родители были счастливы, поскольку считали, что сын может сделать большую военную карьеру. Однако самого Павла эта стезя не прельщала, и спустя год он уволился со службы в чине поручика под предлогом болезни.
Яблочков проявляет большой интерес к электротехнике, однако знаний в этой области у него было недостаточно, и, чтобы устранить этот пробел, он вернулся на военную службу. Благодаря этому, у него появилась возможность поступить в Техническое гальваническое заведение в Кронштадте, единственную в России школу, готовившую военных электротехников.
После её окончания Яблочков отслужил положенные три года и в 1872 году вновь уволился из армии, теперь уже навсегда.
Новым местом работы Яблочкова стала Московско-Курская железная дорога, где он был назначен начальником службы телеграфа. Работу он совмещал с изобретательской деятельностью. Узнав об опытах Александра Лодыгина по освещению улиц и помещений электрическими лампами, Яблочков решил заняться усовершенствованием существовавших тогда дуговых ламп.
Как появился прожектор для поездов
Весной 1874 года по Московско-Курской дороге должен был проследовать правительственный состав. Руководство дороги задумало осветить путь поезду в ночное время при помощи электричества. Однако, как это сделать, чиновники не очень понимали. Тут вспомнили об увлечении начальника службы телеграфа и обратились к нему. Яблочков согласился с большой радостью.
На паровоз впервые в истории железнодорожного транспорта установили прожектор с дуговой лампой — регулятором Фуко. Прибор был ненадёжный, но Яблочков прикладывал все усилия, чтобы заставить его работать. Стоя на передней площадке паровоза, он менял угли в лампе и подкручивал регулятор. При смене паровозов Яблочков перемещался на новый вместе с прожектором.
Поезд успешно дошёл до места назначения, к радости руководства Яблочкова, но сам инженер решил — такой способ освещения слишком сложный и затратный и требует усовершенствования.
Яблочков уходит со службы на железной дороге и открывает в Москве мастерскую физических приборов, где проводятся многочисленные опыты с электричеством.
Русская идея воплотилась в жизнь в Париже
Главное изобретение в его жизни родилось во время опытов с электролизом поваренной соли. В 1875 году во время одного из опытов по электролизу параллельно расположенные угли, погружённые в электролитическую ванну, случайно коснулись друг друга. Тотчас между ними вспыхнула электрическая дуга, на короткий миг осветившая ярким светом стены лаборатории.
Инженеру пришла в голову мысль о том, что можно создать дуговую лампу без регулятора межэлектродного расстояния, которая будет значительно надёжнее.
Осенью 1875 года Яблочков намеревался со своими изобретениями отправиться на Всемирную выставку в Филадельфии, дабы продемонстрировать успехи российских инженеров на ниве электричества. Но дела мастерской шли неудачно, денег не хватало, и добраться Яблочков смог только до Парижа. Там он познакомился с академиком Бреге, владевшим мастерскими физических приборов. Оценив знания и опыт русского инженера, Бреге предложил ему работу. Яблочков принял приглашение.
Весной 1876 года ему удалось закончить работу по созданию дуговой лампы без регулятора. 23 марта 1876 года Павел Яблочков получил французский патент № 112024.
Лампа Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем её предшественницы. Она представляла собой два стержня, разделённых изоляционной прокладкой из каолина. Каждый из стержней зажимался в отдельной клемме подсвечника. На верхних концах зажигался дуговой разряд, и пламя дуги ярко светило, постепенно сжигая угли и испаряя изоляционный материал.
Одним деньги, другим наука
15 апреля 1876 года в Лондоне открылась выставка физических приборов. Яблочков представлял и фирму Бреге, и одновременно выступал от своего имени. В один из дней выставки инженер представил свою лампу. Новый источник света произвёл настоящий фурор. За лампой прочно закрепилось название «свеча Яблочкова». Она оказалась чрезвычайно удобной в использовании. Фирмы по эксплуатации «свечей Яблочкова» стремительно открывались по всему миру.
Но невероятный успех не сделал русского инженера миллионером. Он занял скромный пост руководителя технического отдела французской «Генеральной компании электричества с патентами Яблочкова».
От получаемой прибыли ему доставался незначительный процент, но Яблочков не роптал — его вполне устраивало то, что он имел возможность продолжать научные исследования.
Тем временем «свечи Яблочкова» появились в продаже и начали расходиться в громадном количестве. Каждая свеча стоила примерно 20 копеек и горела около полутора часов; по истечении этого времени приходилось вставлять в фонарь новую свечу. Впоследствии были придуманы фонари с автоматической заменой свечей.
От Парижа до Камбоджи
В 1877 году «свечи Яблочкова» покорили Париж. Сначала они осветили Лувр, затем оперный театр, а затем одну из центральных улиц. Свет новинки был столь непривычно ярким, что парижане в первое время собирались, чтобы просто полюбоваться изобретением русского мастера. Вскоре «русское электричество» уже освещало и ипподром в Париже.
Успех «свечей Яблочкова» в Лондоне заставил местных бизнесменов попытаться добиться их запрета. Дискуссия в английском парламенте растянулась на несколько лет, а «свечи Яблочкова» продолжали успешно работать.
«Свечи» покорили Германию, Бельгию, Испанию, Португалию, Швецию, в Риме ими освещали развалины Колизея. К концу 1878 года лучшие магазины Филадельфии, города, в который Яблочков так и не попал на Всемирную выставку, также осветили его «свечи».
Подобными лампами осветили свои покои даже шах Персии и король Камбоджи.
В России первая проба электрического освещения по системе Яблочкова была проведена 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, «свечи Яблочкова» впервые осветили Большой (Каменный) театр в Петербурге.
Все изобретения Яблочков вернул России
Заслуги Яблочкова получили признание и в научном мире. 21 апреля 1876 года Яблочкова избрали в действительные члены Французского физического общества. 14 апреля 1879 года учёного наградили именной медалью императорского Русского технического общества.
В 1881 году в Париже открылась первая Международная электротехническая выставка. На ней изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса. Однако выставка же стала свидетельством того, что время «свечи Яблочкова» уходит — в Париже была представлена лампа накаливания, которая могла гореть 800–1000 часов без замены.
Яблочкова это нисколько не смутило. Он переключился на создание мощного и экономичного химического источника тока. Опыты в этом направлении были весьма опасными — эксперименты с хлором обернулись для учёного ожогом слизистой оболочки лёгких. У Яблочкова начались проблемы со здоровьем.
Ещё около десяти лет он продолжал жить и работать, курсируя между Европой и Россией. Наконец, в 1892 году он вместе с семьёй возвращается на Родину окончательно. Желая, чтобы все изобретения стали собственностью России, он практически всё своё состояние потратил на выкуп патентов.
Гордость нации
Но в Петербурге об учёном успели забыть. Яблочков уехал в Саратовскую губернию, где намеревался в деревенской тиши продолжить научные исследования. Но тут Павел Николаевич быстро понял, что условий в деревне для подобных работ просто нет. Тогда он отправился в Саратов, где, живя в гостиничном номере, занялся составлением плана электрического освещения города.
Здоровье, подорванное опасными опытами, продолжало ухудшаться. Помимо проблем с дыханием, беспокоили боли в сердце, опухали и совсем отказывали ноги.
Около 6 часов утра 31 марта 1894 года Павла Николаевича Яблочкова не стало. Изобретатель ушёл из жизни в возрасте 46 лет. Его похоронили на окраине села Сапожок в ограде Михайло-Архангельской церкви в фамильном склепе.
В отличие от многих деятелей дореволюционной России, имя Павла Яблочкова почиталось и в советские времена. В честь него были названы улицы в различных городах страны, включая Москву и Ленинград. В 1947 году была учреждена премия Яблочкова за лучшую работу по электротехнике, которая присуждается 1 раз в три года. А в 1970 году в честь Павла Николаевича Яблочкова был назван кратер на обратной стороне Луны.
Дуговая лампа (Свеча Яблочкова).Электрическая лампа была изобретена в 1802 г. В.В. Петровым.
Первая дуговая электрическая лампа была изобретена в 1802 г. русским физиком В.В. Петровым. Ее основу составляли два угольных стержня, располагавшиеся горизонтально. Один из них присоединялся к положительному полюсу электрической батареи, другой — к отрицательному. Разогреваясь, стержни начинали светиться, и между ними возникала светящаяся электрическая дуга. Чтобы получить такую дугу, следовало разводить угольные стержни на строго определенное расстояние, что было трудно осуществить технически.
В середине XIX в. французский физик Ж. Фуко придумал регулятор, который автоматически поддерживал необходимое расстояние между углями. Однако это усложнило конструкцию лампы. В конце XIX в. идея создания удобной в использовании электрической лампочки, что называется, витала в воздухе. П.Н. Яблочков одним из пер-вых принялся за решение этой проблемы.
«Свеча Яблочкова» отличалась простой конструкцией. Угольные электроды изобретатель расположил не горизонтально, как это делали до него, а ; вертикально, поместив между ними .изолятор (фарфоровую вставку). При пропускании через «свечу» электрического тока вверху возникала светящаяся дуга, зажигавшая электроды. Чтобы добиться равномерного освещения, Яблочков обмазывал электроды слоем каолина — бе-лой глины, выполнявшей роль изолятора. Лампы работали в течение часа, а затем сгорали. Чтобы лампа светила дольше, Яблочков увеличил толщину одного угольного стержня, а также использовал переменный ток.
К изобретателю пришла слава. В Париже его лампочками был впервые освещен магазин «Лувр». Газовые фонари на улицах французской столицы были демонтированы — их повсеместно заменили «свечи Яблочкова». Помещенные в белые матовые шары, они давали приятный яркий свет.
Лампы Яблочкова можно было встретить не только в Париже: они горели на центральных улицах всех европейских столиц, В залах и ресторанах лучших гостиниц, на аллеях крупнейших парков Европы. На предприятиях товарищества выпускалось по 10 тыс. лампочек в день, а раскупались они мгновенно (одна лампочка стоила 20 копеек, что было по тем временам не так уж дешево).
Но триумф русского изобретателя был недолгим. Вскоре стали утверждать, что на самом деле свет пришел не из России, а из Америки и что русский ученый специально сделал свои лампы недолговечными, чтобы разбогатеть. Но и объективно будущее принадлежало не дуговой лампе, а лампе накаливания, изобретенной нашим соотечественником А.Н. Лодыгиным и усовершенствованной Т. Эдисоном (именно такой лампой мы пользуемся до сих пор).
В 1879 г. П.Н. Яблочков вернулся в Россию. В Петербурге было налажено производство дуговых ламп, но запустить их в широкое потребление не удалось. Тем не менее заслуга изобретателя несомненна. Благодаря «свече Яблочкова» в жизни людей наступила новая эра: электрический свет перестал восприниматься как чудо. Сегодня мы вспоминаем о П.Н. Яблочкове с глубоким уважением к его многотрудной жизни и его изобретению.
Дуга электрическая
Дата изобретения: 1802 г.
Разработчик: Петров Василий Владимирович
Дуга электрическая, вольтова дуга — один из видов самостоятельного дугового разряда в газе, в котором разрядные явления сосредоточены в узком ярко светящемся плазменном шнуре.
При горизонтальном расположении электродов этот шнур под действием восходящих потоков нагретого разрядом газа принимает форму дуги. Дуга электрическая в воздухе между двумя угольными электродами впервые наблюдалась (1802) и была описана (1803) русским учёным В. В. Петровым и английским учёным Г. Дэви (1808—09), который назвал её вольтовой дугой.
Развитию теории электрической дуги и изучению проблемы её применения в промышленности были посвящены работы русских учёных Н. Н. Бенардоса (сварка с применением угольных электродов, 1882, а также сварка на переменном токе) и Н. Г. Славянова (сварка с применением металлических электродов, 1888—91).
Дуга электрическая может иметь место в любом газе при давлениях от близких к атмосферному и выше. Температура плазмы в шнуре при атмосферном давлении и силе тока в несколько а около 5000 К, при высоких давлениях и силе тока — до 12000 К, при обдувании шнура мощным потоком газа температура достигает 50000 К.
Магнитное поле, образованное током, взаимодействуя с током дуги, вызывает сжатие (стягивание) шнура. С увеличением давления в окружающей среде сила тока возрастает, а поперечные размеры её шнура уменьшаются. Вблизи электродов шнур суживается ещё больше, образуя на их поверхности яркие катодные и анодные пятна. Плотность тока у катода зависит от материала катода и природы газа и обычно составляет 104—105 а/см2, но при особых условиях может достигать 107 а/см2.
Вольтамперная характеристика электрической дуги — падающая: увеличение тока сопровождается уменьшением напряжения между электродами.
Дуга электрическая применяется в электрометаллургии для получения чистых и тугоплавких металлов, в светотехнике и особенно широко в электросварке. В некоторых областях техники (например, в технике высоких напряжений) с явлением электрической дуги приходится бороться.
Для гашения электрической дуги, возникающей при разрыве цепей высокого напряжения, применяют выключатели с различными дугогасительными устройствами, в том числе выключатели масляные, воздушные, элегазовые, с гашением дуги магнитным полем и др.
Давление электромагнитного излучения (давление света)
Дата изобретения: 1899 г.
Экспериментально световое давление впервые исследовал П. Н. Лебедев в 1899 г. В его опытах в вакуумированном сосуде на тонкой серебряной нити подвешивались крутильные весы, к коромыслам которых были прикреплены тонкие диски из слюды и различных металлов. Главной сложностью было выделить световое давление на фоне радиометрических и конвективных сил (сил, обусловленных разностью температуры окружающего газа с освещённой и неосвещённой стороны).
Кроме того поскольку в то время не были разработаны вакуумные насосы, отличные от простых механических, Лебедев не имел возможности проводить свои опыты в условиях даже среднего, по современной классификации, вакуума. Путем попеременного облучения разных сторон крылышек Лебедев нивелировал радиометрические силы и получил удовлетворительное (±20 %) совпадение с теорией Максвелла. Позднее, в 1907—1910 гг. Лебедев провёл более точные опыты по изучению давления света в газах и также получил приемлемое согласие с теорией
Давление электромагнитного излучения является следствием того, что оно, как и любой материальный объект, обладающий энергией E и движущийся со скоростью v, также обладает импульсом p = Ev/c². А поскольку для электромагнитного излучения v = c, то p = E/c. В электродинамике давление электромагнитного излучения описывается тензором энергии-импульса электромагнитного поля.
Если рассматривать свет как поток фотонов, то, согласно принципам классической механики, частицы при ударе о тело должны передавать ему импульс, другими словами — оказывать давление.
С точки зрения волновой теории света электромагнитная волна представляет собой изменяющиеся и взаимосвязанные во времени и пространстве колебания электрического и магнитного полей. При падении волны на отражающую поверхность, электрическое поле возбуждает токи в приповерхностном слое, на которые действует магнитная составляющая волны. Таким образом, световое давление есть результат сложения многих сил Лоренца, действующих на частицы тела.
Возможными областями применения являются солнечный парус и разделение газов, а в более отдалённом будущем — фотонный двигатель. В настоящее время широко обсуждается возможность ускорения световым давлением, создаваемым сверхсильными лазерными импульсами, тонких (толщиной в 5-10 нм) металлических плёнок с целью получения высокоэнергичных протонов
Александра Римская 08.03.2015 г., 663 , Anno Domini. Xikrik to river Novogor