Магнетизм абсолюта
Каждый ученик в школе, изучая свойства магнита знает, что одноименные полюса отталкиваются, а разноименные притягиваются и схема такого представления выглядит очень просто:МИНУС притягивается к ПЛЮСУ и ПЛЮС притягивается к МИНУСУ, а ПЛЮС с ПЛЮСОМ и МИНУС с МИНУСОМ отталкиваются.
В работе разноименных полюсов мы видим работу дуальности двоичного кода, где имеет место быть одно зеркальное отражение с одной сменой полярности, где минус становится плюсом, а плюс минусом.
Так же в этой схеме можно увидеть, что в одном случае минус становится наличием качества количественного наполнения плюса, в другом случае плюс становится наличием качества количественного наполнения минуса.
Здесь можно увидеть работу и других характерных проявлений этой схемы, но я не буду углубляться в эту схему до абсолютной глубины абсолюта.
Я буду более подробно рассматривать дуальную схему этой дуальности, т.е. создам второе зеркальное отражение первой дуальности и получу схему двойной дуальности, которая будет выглядеть так:
( МИНУС — + ПЛЮС).(ПЛЮС + -МИНУС)
Эта двойная дуальная схема имеет статус последовательного проявления, которая меня мало интересует.
Сразу сделаю оговорку и скажу, что я не ученый в области физики. Я свободный философ собственных проявлений, поэтому у меня есть право не придерживаться каких бы то ни было общепризнанных концепций бытия.
Меня больше интересует параллельность проявления этой схемы, в которой я хочу показать как она работает на примере образа шарообразной земли в её общепризнанной концепции образного восприятия.
Итак:
ВЕРХНИЙ МИНУС -это верхняя шапка земли, СЕВЕРНЫЙ ПОЛЮС, где лежат вечные снега и жуткий холод. АРКТИКА.
ПЕРВЫЙ ПЛЮС -это средняя часть земли, ЭКВАТОР, где вечная жуткая жара.
ВТОРОЙ ПЛЮС -это тоже самое, только зеркально отраженное.
НИЖНИЙ МИНУС-это нижняя шапка земли, ЮЖНЫЙ ПОЛЮС, где тоже лежат вечные снега и жуткий холод. АНТАРКТИДА.
Общеизвестно, что при минусовой температуре происходит сжатие, где работают центростремительные силы, а при плюсовой происходит растяжение, где работают центробежные силы.
Теперь представьте, чтобы стало с землей, если бы на её экваторе не было плюса. Представили? Да, получилось бы сжатие земли, а это значит, что два крайних одноименных полюса, два минуса, к друг другу притягиваются, а не отталкиваются.
Но в школе нам говорили, что отталкиваются.
Именно плюс на экваторе земли не дает двум крайним минусам сжать землю до абсолютного значения.
Одна дуальная схема с одним МИНУСОМ и плюсом создают верхнюю полусферу земли, друга дуальная схема с плюсом и МИНУСОМ создают нижнюю полусферу земли.
У нас получилось два магнитных поля, одно (МИНУС ПЛЮС), другое (ПЛЮС МИНУС). Одно
СЕВЕРНОЕ, другое ЮЖНОЕ.
Это, как ни странно горизонтальная схема магнитных полей. Странно то, что параллельность строится в вертикальном построении, а две параллельные линии строятся горизонтально в отношении друг друга.
Общеизвестно, что самые верхние точки земли Арктики и Антарктиды имеют недоступные для человека порталы входа внутрь земли. В этом случае начинают проявлять себя вертикальные магнитные поля, одно идет на запад, другое на восток.
Мы получили два горизонтальных магнитных поля и два вертикальных магнитных поля по сторонам света, север, юг, запад, восток. Общее количество магнитных полей -четыре.
Четыре магнитных поля мы видим на плоском изображении земли, но наша земля шарообразная. Тогда сколько магнитных полей у шарообразной земли?
Надо количество широт умножить на два и количество меридиан тоже умножить на два. Мы получим общее количество магнитных полей шарообразной земли.
Подсчитайте сами, я не буду это делать. Это не суть важно для моего данного размышления.
Что из этого следует?
При взаимодействии магнитных полюсов возникает электричество. Как оно возникает тоже не важно для моего размышления. С этим ни кто не будет спорить.
Таким образом мы получаем общее электро магнитное поле земли. Его ещё можно назвать биосферой земли, аурой земли и эфирным телом земли. Кому как нравится пусть так и называет.
Это было небольшое вступление в данную тему. А сейчас перейду непосредственно к теме.
Общее электро магнитное поле земли в АБСОЛЮТЕ воздействует на всё, что имеется на земле, абсолютно на всё.
Его воздействие замечено и видно, как на различных широтах произрастает разная растительность, разный животный мир, разные климатические условия, проживают разные по цвету кожи люди. Это ни что иное, как воздействие электро магнитного поля земли разных широт. Каждая широта имеет свою тонко организованную структуру электро магнитных полей с различной частотой вибрационных проявлений, поэтому на различных широтах проявляется разная матричная комбинация жизненных основ бытия.
Но как воздействуют электро магнитные поля на людей? Как проявляется магнетизм в отношениях людей друг с другом?
Магнитные притяжения и отталкивания во внешних отношениях людей я считаю условными. Для меня они условны, но они есть.
Притяжение разноименных полюсов, где мужчина минус, а женщина плюс, являются нормой жизни.
Если женщины родственницы -сестры, дочи и мать, подруги, это притяжение тоже считается нормой. Но притяжение их же на сексуальной основе считается не нормальным и пока ещё у нас в стране порицается обществом. В Европе уже ничего не порицается.
Тоже самое относится и к притяжению мужчин к друг другу.
Если долго смотреть в бездну, то бездна начинает смотреть на тебя. Она начинает смотреть на человека глазами бездны, потом начинает притягивать к себе и человек как притянутый магнитом, может оказаться в электро магнитом поле бездны.
Очень важно помнить и знать, что все мы находимся в электро магнитной матричной системе земли и всё на что мы обращаем внимание, как магнитом будет притягивать к себе человека или само придет в его жизнь.
Не балуйтесь магнитом, как маленькие дети, если не хотите притянуть в свою жизнь несчастья, болезни, смерть, страдания, негатив и т.д.
Зная, что желания могут исполняться и притягивать к себе желающего это желание, нужно иметь только благие желания, наполненные позитивными намерениями.
Если имеете цели, то имейте только благие цели, наполненные позитивными намерениями. И так во всем по этим аналогиями.
Каждый человек является сам для себя магнитом с разными полюсами, имея плюсовые и минусовые матричные проявления, поэтому помните и знайте о своем АБСОЛЮТНОМ МАГНЕТИЗМЕ. По этой причине человек сам может притянуть к себе всё позитивное плюсовое и всё негативное минусовое и при этом сам легко притягивается то к минусу, то к плюсу.
На основании знания об этом те, кому важна власть, управление и контроль за человечеством, используют эти знания в своих интересах.
Каждый человек имеет по образу земли своё электро магнитное поле, как свою ауру, как свою шарообразную человеческую неосферу. Каждый человек находится в эфирном теле, как в коконе, как матрешка в матрешке. Это его среда вечного существования, питания, получения информации и магнитизма проявления.
Эфирное тело человека как своя среда обитания и подпитки состоит из тех образных представлений, которые человеком представляются. Если это негативные образы, значит они его будут кормить и подпитывать. Если это позитивные образы, значит его эфирное тело будет подпитывать человека позитивом. Каждый может догадаться к чему приводит человека негативная среда обитания, его негативное мышление и образное представление.
Невежественная игра со своим магнетизмом приводит человека к негативным последствиям. Я же хочу вас предостеречь и предупредить: не балуйтесь со своими магнитами в своем невежественном проявлении.
Не притягивайте к себе негативные образы, иначе негативные образы притянут вас к себе и вы как прозомбированные кролики попадете удаву негативных образов в пасть.
Как определить полярность магнита
В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.
Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.
Количество источников, использованных в этой статье: 10. Вы найдете их список внизу страницы.
Количество просмотров этой статьи: 27 592.
Вы наверняка слышали фразу “противоположные полюса притягиваются”. Хотя это далеко не всегда справедливо для отношений между людьми, данное правило неизменно выполняется для магнитов. Мы все привыкли иметь дело с большим магнитом — Землей. Опыты с небольшими магнитами помогут вам понять, как действует магнитное поле Земли, которое защищает нас от космического излучения. [1] X Источник информации Хотите ли вы для удобства обозначить полюса магнита или провести интересный физический эксперимент, вам пригодится умение определять полярность магнитов.
Электромагнитные явления. Часть 1
Китайцы, как и греки, тоже замечали интересное свойство некоторых минералов притягивать к себе железосодержащие предметы. Слово «притягивать» китайцы ассоциируют со словами «прижиматься», «любить» и поэтому назвали такие минералы «чу-ши», что значит «любящий камень». Так как эти минералы создала природа, и человек не мог повлиять на естественное действие камней, их стали называть постоянными магнитами.
Теперь уже известно, что так интересно проявляется природный минерал магнитный железняк (магнетит). Это достаточно хрупкий черного цвета минерал, плотность его примерно 5000 кг/м 3 .
Древние люди приписывали магнитному железняку свойства «живой души». Минерал, по их словам, устремлялся к железу, как собака к куску мяса. Ученые объясняют отношение древних к явлениям природы незнанием физики.
На самом деле, все заключается в особом виде материи – поле.
Магнитное поле и притягивает к постоянному магниту железные предметы, ведь, например, мелкие гвоздики или кнопки устремляются к магниту даже без соприкосновения с ним, а на некотором расстоянии.
Магнетит (природный магнитный железняк) проявляет свойства притягивания не очень сильно. Человеком на его основе созданы искусственные магниты с более мощным магнитным полем. В качестве материала в них используются такие металлы, как кобальт, никель и, конечно же, железо. Такие металлы способны намагничиваться, попадая в магнитное поле, а потом становятся самостоятельными магнитами.
Разные формы искусственных магнитов. Источник
Какую бы форму не имел магнит, у него есть участки, где наиболее сильно проявляются магнитные свойства. Эти участки называют магнитными полюсами. У каждого, даже самого маленького магнита, есть два полюса. Современные технологии позволяют намагничивать металлические предметы так, что у них образуется и 4 и 6 полюсов.
Увидеть, как по-разному притягиваются железные опилки к магниту, можно на простейшем опыте с дугообразным школьным магнитом. Просто поднести к опилкам магнит, опилки тут же «прилипнут» к нему:
Полюсами такого магнита будут края дуги, где больше всего скопилось железных опилок.
У полосового магнита, форма которого прямоугольный параллелепипед, полюса находятся далеко друг от друга. Чем ближе к середине, тем меньше проявляются магнитные свойства.
Указатель юга и севера – компас. Полюсы магнитные
«Указатель юга» — так называли древние китайцы свое изобретение. Это был прибор в форме ложки, изготовленный из природного магнита. Ложка могла вращаться вокруг вертикальной оси.
Древний китайский компас.
Ручка ложки указывала южное направление. Она была северным полюсом ложки-магнита.
Развитие науки не остановилось, и современные компасы уже имеют другой вид:
Разные виды компасов.
Магнитная стрелка, главный элемент компаса, — это постоянный магнит и имеет два полюса. Конец стрелки, указывающий на географический Север, называют северным (N), а противоположный – южным (S) полюсом. Отсюда и название полюсов различных магнитов.
Раскраска магнитов в красный и синий цвета условна, реже используются и другие цвета. Существенным является то, что полюсы магнитов существуют только парами. Если распилить, например, полосовой магнит, получатся два полосовых магнита, и у них будет снова по два полюса: северный и южный.
В школьных лабораторных работах используются маленькие магниты на подставке, которые насаживаются на тонкую иглу и могут свободно вращаться вокруг этой иглы. Такие устройства называются магнитными стрелками, как подобие стрелок компасов.
С помощью стрелок изучается взаимодействие полюсов магнитов. Если приблизить стрелки друг к другу, они начинают поворачиваться и установятся по следующему правилу:
Земной шар является огромным магнитом, у которого есть свои полюсы. Но нельзя путать магнитные полюсы Земли с географическими. Согласно правилу, синий (северный) конец стрелки должен поворачиваться к Южному полюсу земного шара, так как притягиваются разноименные полюсы. Да, действительно, это так. Южный магнитный полюс Земли находится вблизи Северного географического полюса, но не в той же точке, а чуть в стороне, на острове Принца Уэльского. Северный магнитный полюс находится в Антарктиде, где и Южный географический.
Месторасположение магнитных полюсов Земли не остается постоянным. Полюсы смещаются на расстояние нескольких десятков километров в год.
Очень широк список областей, где применяются магниты:
- автомобилестроение;
- приборостроение;
- автоматика;
- телемеханика;
- тормозные системы;
- компасы;
- медицина;
- радиотехника;
- электротехника.
От изучения природных магнитных явлений человек давно шагнул к элетромагнитным явлениям, без чего невозможно развитие знаний об электричестве и электрическом токе.
Графическое изображение полей
Магниты действуют друг на друга и на железосодержащие предметы посредством магнитного поля. Поле не имеет цвета, запаха, его нельзя ощущать. Это особый вид материи, который проявляется по его действию на другое поле или на физические тела.
Условно изображают магнитное поле с помощью силовых линий, так же, как электрическое поле.
Эти линии замкнуты, то есть не имеют ни начала, ни конца. Направление, куда показывают северные полюсы магнитных стрелок, попавших в поле магнита, принято за направление силовых магнитных линий поля. Таковым оказывается направление от северного полюса к южному.
Хотя изображение силовых линий принято за условное, они все же проявляются в простом опыте с железными опилками. Если положить магнит на лист бумаги и посыпать мелкими опилками из железа, то можно увидеть, как они выстроятся вдоль определенных линий, как маленькие магнитные стрелки.
Частота линий вокруг магнита различна. Это подчеркивает более сильное действие магнитного поля около полюсов, где силовые линии плотнее.
Магнитное поле тока прямого проводника
Определить наличие магнитного поля можно, если к магниту поднести магнитную стрелку. Если поле есть, то стрелка повернется и займет положение по правилу взаимодействия полюсов. Северный полюс стрелки повернется к южному полюсу магнита.
Будет ли оказывать действие на стрелку электрический ток?
Проверить это можно с помощью опыта. Стрелка установлена на острие, над нею параллельно ее оси помещен проводник. Если замкнуть цепь, стрелка повернется в другое положение, при выключенной цепи вернется обратно.
Впервые проведя этот опыт в 1820 году, датский ученый Ганс Христиан Эрстед, не имея достаточно знаний о магнетизме, не сумел объяснить поведение стрелки около проводника с током. Это было сделано позднее, а опыт получил название «Опыта Эрстеда».
Получается, что электрический ток может быть источником магнитного поля, которое возникает вокруг движущихся зарядов (вокруг не движущихся зарядов есть только электрическое поле).
Нет ли противоречия в наличии магнитного поля вокруг тока, где направленно движутся частицы, и магнитного поля около постоянных магнитов? Оказывается, в магнитах существуют так называемые молекулярные токи, циркулирующие внутри молекул. Во времена Эрстеда природа таких токов была еще не открыта. Теперь же известно, что в атоме постоянно движутся электроны, поэтому и возникают магнитные свойства некоторых природных веществ, например, железа.
По примеру магнитов для графического изображения поля вокруг тока используют силовые магнитные линии. Направление их указывают северные полюсы магнитных стрелок, помещенных в это поле.
Расположение стрелок показывает, что:
Существует так называемое первое правило правой руки, по которому можно указать направление силовых линий магнитного поля вокруг проводника с током. При изменении направления тока меняется и направление силовых линий поля. Правая рука человека помогает разобраться в этих направлениях.
Конечно, правило применяется не буквально. Не нужно провод брать в руки, надо мысленно представить эту ситуацию с проводником и рукой.
Соленоид и его магнитные свойства. Электромагниты
Короткие провода применяются редко. Тем более, что при небольшом токе вокруг них возникает и небольшое магнитное поле. Для усиления магнитного действия прямой провод сворачивают в виде спирали на непроводящем трубчатом каркасе (дереве, пластмассе, керамике). Такое устройство называется соленоидом (от греч. «солен» — «трубка»). Проще говоря, это катушка с током.
Магнитные поля полосового магнита и катушки-соленоида очень похожи. Силовые линии катушки выходят с северного полюса, в южный полюс входят.
Определить полюсы соленоида можно, поднеся к краю катушки магнит. Если цепь замкнута, и по катушке идет ток, то магнит или притянется к соленоиду, или оттолкнется от него. Например, к катушке приблизили северный полюс магнита, подвешенный на нити.
Магнит оттолкнулся от края катушки. Но ведь отталкиваются одноименные полюсы. Значит, приблизили магнит к северному полюсу соленоида. С другой стороны будет находиться южный полюс.
Магнит будет притягиваться к катушке, значит, рядом с магнитом находится южный полюс катушки, так как притягиваются разноименные полюсы.
Направление линий магнитного поля катушки с током помогает определить второе правило правой руки.
Получается, что соленоид можно использовать как магнит, если подключить такой магнит к источнику тока. Это будет уже не постоянный магнит, а созданный с использованием электрического тока, который срабатывает при включении в электрическую сеть.
При изменении (увеличении или уменьшении) магнитного действия соленоида можно пойти тремя путями:
- регулированием силы тока цепи (можно с помощью реостата);
- увеличением (уменьшением) количества витков катушки;
- использованием внутри катушки сердечника (чаще всего из железа).
Приспособление, состоящее из катушки с током и сердечника внутри нее, называется электромагнитом. Это одна из главных частей большинства электротехнических приборов, систем и устройств:
- телеграфная связь;
- стационарные телефонные аппараты;
- электрические звонки;
- электродвигатели;
- трансформаторы;
- электромагнитные реле;
- домофоны;
- производственные электромагниты.
Домофон с электромагнитом.
Вентилятор с электродвигателем.
Самый первый электромагнит был изготовлен англичанином У. Стердженом в 1825 году. Его магнит массой 200 г сумел удержать тело в 3 кг 600 г. Через шесть лет американец Дж. Генри создал электромагнит, который поднимал уже 1000 кг.
Интересно и просто на основе электромагнита работает электрический звонок.
Цифрами на схеме обозначены основные детали звонка. Это;
- Провода, идущие через замыкающую кнопку к источнику тока.
- Контактная пластинка.
- Контактный винт.
- Якорь – тонкая железная пластинка.
- Обмотка катушки.
- Сердечник.
- Ударный элемент звонка – молоточек.
- Чаша звонка.
При нажатой кнопке звонка происходит замыкание цепи. По обмотке 5 идет ток, и катушка с сердечником 6 превращается в электромагнит. Якорь 4 притягивается электромагнитом к сердечнику 6. В этот момент молоточек 7 ударяет по чаше звонка 8, слышен звонкий удар звонка. Контактный винт в результате движения якоря отходит от контактной пластинки 2, и цепь размыкается. Якорь «отлипает» от сердечника, возвращается в исходное положение, соединяя тем самым контактный винт с контактной пластинкой. Цепь снова замкнута, электромагнит снова срабатывает и т.д. Происходит все очень быстро: цепь то замыкается, то размыкается, магнит то притягивает, то отпускает якорь, молоточек быстро стучит по чаше звонка. Частые удары сливаются в почти сплошной звук.
Электромагниты после отключения от сети быстро размагничиваются и не приносят особых хлопот в применении.
Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током
1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.
При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.
Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.
Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.
Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.
Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой \( B \) . Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.
2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.
Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.
Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.
3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.
Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).
Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).
4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.
Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.
Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.
Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.
5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).
Если в поле подковообразного магнита поместить проводник длиной \( l \) , подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.
Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника \( l \) и силе тока \( I \) в проводнике: \( F\sim Il \) . Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции \( B \) . Соответственно, \( F=BIl \) .
Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.
В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.
Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: \( B=\frac
Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.
Единица магнитной индукции \( [В] = [F]/[I][l] \) . \( [B] \) = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.
Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).
6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки \( ab \) , противоположна силе, действующей на сторону \( cd \) .
Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.
В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.