Из чего состоит катушка
Перейти к содержимому

Из чего состоит катушка

Дело в бобине: как устроена и как работает катушка зажигания

Катушка зажигания – «потомственный немец». В 1851 году механик из Германии Генрих Румкорф (проживавший, правда, в Париже) изобрел катушку с прерывателем, вырабатывающую импульсы высокого напряжения, а в 1925 году компания Роберта Боша начала массово применять её как элемент батарейной системы зажигания бензинового автомобильного мотора. Давайте посмотрим, в каком виде катушка зажигания дошла до наших дней, и каковы особенности ее работы.

Маслонаполненная бобина

Б олее чем полвека эволюции карбюраторных бензиновых моторов с контактной системой зажигания катушка (или как ее часто называли шоферы прошлых лет – «бобина») практически не меняла конструкцию и облик, представляя собой высоковольтный трансформатор в металлическом герметичном стакане, заполненном трансформаторным маслом для улучшения изоляции между витками обмоток и охлаждения.

002

Неотъемлемым партнером катушки был трамблер – механический коммутатор низкого напряжения и распределитель высокого. Искра должна была появляться в соответствующих цилиндрах в конце такта сжатия топливовоздушной смеси – строго в определенный момент. Трамблер осуществлял и зарождение искры, и синхронизацию ее с тактами работы мотора, и распределение по свечам.

003

Классическая маслонаполненная катушка зажигания — «бобина» (что по-французски и означало «катушка») — была чрезвычайно надежна. От механических воздействий ее защищал стальной стакан корпуса, от перегрева – эффективный теплоотвод через заполняющее стакан масло. Однако согласно малоцензурному в оригинальном варианте стишку «Дело было не в бобине – идиот сидел в кабине…», получается, что надежная бобина таки порой подводила, даже если даже водитель не такой уж идиот…

Если посмотреть на схему контактной системы зажигания, то можно обнаружить, что заглушенный мотор мог останавливаться в любом положении коленвала, как с замкнутыми контактами прерывателя низкого напряжения в трамблере, так и с разомкнутыми. Если при предыдущем глушении мотор остановился в положении коленвала, в котором кулачок трамблера замыкал контакты прерывателя, подающего низкое напряжение на первичную обмотку катушки зажигания, то когда водитель по какой-то причине включал зажигание, не запуская мотор, и оставлял ключ в таком положении надолго, первичная обмотка катушки могла перегреться и сгореть… Ибо через нее начинал проходить постоянный ток в 8-10 ампер вместо прерывистого импульсного.

Официально катушка классического маслонаполненного типа неремонтопригодна: после сгорания обмотки она отправлялась в утиль. Однако когда-то давно на автобазах электрики умудрялись ремонтировать бобины – развальцовывали корпус, сливали масло, перематывали обмотки и собирали заново… Да, были времена!

И лишь после массового внедрения бесконтактного зажигания, при котором контакты трамблера сменились на электронные коммутаторы, проблема сгорания катушек почти исчезла. В большинстве коммутаторов было предусмотрено автоматическое отключение тока через катушку зажигания на включённом зажигании, но не запущенном двигателе. Иными словами, после включения зажигания начинался отсчет небольшого временного интервала, и если водитель за это время не заводил мотор, коммутатор автоматически выключался, защищая и катушку, и самого себя от перегрева.

Сухие катушки

Следующим этапом развития классической катушки зажигания стал отказ от маслонаполненного корпуса. «Мокрые» катушки сменились на «сухие». Конструктивно это была практически та же самая катушка, но без металлического корпуса и масла, покрытая сверху слоем эпоксидного компаунда для защиты от пыли и влаги. Работала она совместно с тем же самым трамблером, и часто в продаже можно было встретить и старые «мокрые» катушки, и новые «сухие» на одну и ту же модель авто. Они были полностью взаимозаменяемыми, соответствовали даже «уши» креплений.

Для рядового автовладельца в изменении технологии с «мокрой» на «сухую» не было, по сути, никаких преимуществ или недостатков. Если последняя, конечно, была изготовлена качественно. «Профит» получали только производители, поскольку изготовить «сухую» катушку несколько проще и дешевле. Однако если «сухие» катушки иностранных производителей автомобилей изначально продумывались и изготавливались достаточно тщательно и служили почти столько же, сколько и «мокрые», советские и российские «сухие» бобины снискали дурную славу, поскольку имели массу проблем с качеством и выходили из строя достаточно часто без каких-либо причин.

Так или иначе, сегодня «мокрые» катушки зажигания полностью уступили место «сухим», а качество последних даже отечественного производства практически не вызывает нареканий.

0043

Были и катушки-гибриды: обычную «сухую» катушку и обычный коммутатор бесконтактного зажигания иногда объединяли в единый модуль. Такие конструкции встречались, к примеру, на моновпрысковых Фордах, Ауди и ряде других. С одной стороны, это выглядело в некоторой степени технологично, с другой – снижалась надежность и увеличивалась цена. Ведь два изрядно нагревающихся узла объединили в один, тогда как по отдельности они и охлаждались лучше, и при выходе из строя того или иного замена обходилась дешевле…

Ах да, еще в копилку специфических гибридов: на стареньких Тойотах нередко встречался вариант катушки, интегрированной прямо в распределитель трамблера! Интегрировалась она, конечно, не намертво, и при выходе из строя «бобину» можно было без труда снять и приобрести отдельно.

Модуль зажигания – отказ от трамблера

Заметная эволюция в катушечном мире произошла в период развития инжекторных моторов. Первые инжекторы имели в своем составе «частичный трамблер» – низковольтную цепь катушки уже коммутировал электронный блок управления двигателем, а вот искру по цилиндрам по-прежнему раздавал классический бегунковый распределитель, приводимый во вращение от распредвала. От этого механического узла стало возможным полностью отказаться, применив комбинированную катушку, в общем корпусе которой скрывались отдельные катушки в количестве, соответствующем числу цилиндров. Такие узлы стали называть «модулями зажигания».

Электронный блок управления двигателем (ЭБУ) содержал в себе 4 транзисторных ключа, которые поочередно подавали 12 вольт на первичные обмотки всех четырех катушек модуля зажигания, а те в свою очередь отправляли искровой импульс высокого напряжения каждая на свою свечу. Еще чаще встречаются упрощенные варианты комбинированных катушек, более технологичные и дешевые в производстве. В них в одном корпусе модуля зажигания четырёхцилиндрового мотора помещается не четыре катушки, а две, но работающие, тем не менее, на четыре свечи. В такой схеме искра на свечи подается попарно – то есть, на одну свечу из пары она приходит в нужный для воспламенения смеси момент, а на другую – вхолостую, в момент выпуска отработавших газов из этого цилиндра.

Следующим этапом развития комбинированных катушек стал перенос электронных коммутирующих ключей (транзисторов) из блока управления двигателем в корпус модуля зажигания. Вынос мощных и греющихся при работе транзисторов «на волю» улучшил температурный режим ЭБУ, а при выходе из строя какого-либо электронного ключа-коммутатора достаточно было заменить катушку, а не менять или паять сложный и дорогущий блок управления. В котором ещё часто прописаны индивидуальные для каждого авто пароли иммобилайзера и тому подобная информация.

Каждому цилиндру – по катушке!

Еще одно типичное для современных бензиновых автомобилей решение в сфере зажигания, существующее параллельно с модульными катушками, – это индивидуальные катушки для каждого цилиндра, которые устанавливаются в свечной колодец и контактируют со свечой непосредственно, без высоковольтного провода.

Первые «персональные катушки» были именно катушками, но потом в них переехала и коммутационная электроника – так же, как это произошло и с модулями зажигания. Из плюсов такого форм-фактора – отказ от высоковольтных проводов, а также возможность замены при выходе из строя только одной катушки, а не целого модуля.

Правда, стоит сказать, что в этом формате (катушки без высоковольтных проводов, монтируемые на свечу) существуют и катушки в виде единого блока, объединенные общим основанием. Такие, к примеру, любят использовать GM и PSA. Вот это воистину кошмарное техническое решение: катушки вроде бы отдельные, но при выходе из строя одной «бобины» приходится менять в сборе крупный и очень дорогой блок…

К чему мы пришли?

Классическая маслонаполненная бобина была одним из самых надежных и неубиваемых узлов в карбюраторном и ранних инжекторных автомобилях. Внезапный выход ее из строя считался редкостью. Правда, ее надежность, к сожалению, «компенсировал» неотъемлемый напарник – трамблер, а позже – и электронный коммутатор (последнее, правда, относилось только к отечественным изделиям). Пришедшие на смену «масляным» «сухие» катушки по надежности были сопоставимы, но все же несколько чаще выходили из строя без видимых причин.

Инжекторная эволюция заставила избавиться от трамблера. Так появились разнообразные конструкции, не нуждавшиеся в механическом высоковольтном распределителе – модули и отдельные катушки по числу цилиндров. Надежность таких конструкций еще более снизилась в связи с усложнением и миниатюризацией их «потрохов», а также крайне тяжелыми условиями их работы. Через несколько лет работы с постоянным нагревом от двигателя, на котором катушки были смонтированы, на защитном слое компаунда образовывались трещины, через них влага и масло попадали на высоковольтную обмотку, вызывая пробои внутри обмоток и пропуски зажигания. У отдельных катушек, которые установлены в свечных колодцах, условия работы еще более адские. Также не любят нежные современные катушки мойку моторного отсека и увеличенный зазор в электродах свечей зажигания, образующийся в результате длительной работы последних. Искра всегда ищет наиболее короткий путь, и нередко находит его внутри обмотки бобины.

В итоге на сегодняшний день наиболее надежной и правильной конструкцией из существующих и применяемых можно назвать модуль зажигания со встроенной коммутирующей электроникой, установленный на двигателе с воздушным зазором и соединенный со свечами высоковольтными проводами. Менее надежны раздельные катушки, установленные в свечных колодцах головки блока, и совсем неудачно, с моей точки зрения, решение в виде объединенных катушек на единой рампе.

Безынерционные катушки — как пользоваться и рейтинг лучших моделей

Ловля хищной рыбы всегда вызывала у рыбака особый интерес ввиду возможности проявить себя в борьбе с достойным и хитрым соперником. Изобретение способа спиннинговой ловли потянуло за собой его усовершенствование, одним из результатов которого стало изобретение безынерционной спиннинговой катушки.

Рыболовные катушки безынерционные

Безынерционная катушка пришла на смену менее удобному и производительному предшественнику — инерционной катушке. Этот аксессуар любил преподнести в подарок в процессе лова — бороду из лески, тем самым испортив всю рыбалку. Новое изобретение полностью решило эту проблему и упорядочило ещё ряд проблемных моментов, касающихся заброса приманки, её проводки и вываживания рыбы.

Из чего состоит катушка

Сегодня рыбака уже не удивит футуристический вид безынерционки, которая, в совокупности, представляет непростой комплексный механизм, собранный в прочном корпусе из пластмассовых или металлических материалов. Корпус имеет ногу для крепления механизма в седле удилища. На ось механизма, передающего на её вращательно-поступательные движения, насажена шпуля. Контроль спуска со шпули шнура и его наматывание контролируется откидной скобой лескоукладывателя. В механизме предусмотрен контролируемый тормоз или фрикцион и ручка для передачи вращения шестерням механизма.

Устройство безынерционной рыболовной катушки и принцип работы

Безынерционные катушки для спиннинга являются сложным механизмом, основанным на законах передачи движения посредством шестерёнчатых валов и подшипников. Рукояткой приводится в движение ротор и совмещённый с ним лескоукладыватель. Рукоятка передаёт движение с определённым передаточным числом за счёт взаимодействия различного размера шестерёнок. Скоба лескоукладывателя, вращаясь вокруг неподвижной шпули, укладывает на её поверхность сматываемую леску. Шпуля же, насаженная на основной вал всего механизма, совершает возвратно-поступательные движения, равномерно распределяя намотанный на бобину шнур. Сам принцип работы безынерционной катушки позволяет аккуратно и точно производить заброс, не контролируя сход шнура и не прослеживая его намотку. Эти действия полностью автоматизированы устройством катушки для спиннинга.

Безынерционная катушка на спиннинге

В корпусе мясорубки сосредоточена главная пара и подающее шпулю устройство. Совокупная конструкция этих двух элементов именуется роторным механизмом. Шестерёнка главного вала получает импульс движения от роторного колеса. Рукоятка, движимая рукой рыболова, является генератором движения колеса в роторном механизме. Крепится она на валу посредством граней и специально изготовленного под них отверстия.

Редуктором служит главная пара, именно она и имеет конкретное передаточное число. Сложная схема механизма ни в коей мере не доставляет трудностей и неудобств, в плане пользования спиннинговой катушкой на практике в момент рыбной ловли. Чем быстрее рыболовом вращается рукоятка, тем ещё быстрее, в результате взаимодействия с приводом, через подобранное передаточное отношение, увеличивается и скорость вращения ротора. Таким способом, в результате подбора, определённого по своим характеристикам, передаточного отношения механизма, обеспечиваются разнообразные условия по скорости проводки и сматывания шнура при осуществлении лова.

Как выбрать безынерционную катушку для спиннинга

Выбор катушки

Выбор безынерционной катушки для спиннинга основан на её конструкционных особенностях, повышающих производительность и комфорт при её использовании. Количество подшипников в устройстве механизма повышает плавность хода и долговечность его использования. Подшипники в добротной катушке заменяют все пластмассовые втулки, и их число может достигать тринадцати штук.

Фрикционный тормоз имеет важную составляющую в управлении движением шпули и созданием условий для уменьшения нагрузок при рывках рыбы и зацепах приманки. Может располагаться в задней части катушки или совмещаться с креплением шпули в её передней части. Безынерционная катушка оснащается шпулей, которая в идеальной комплектации механизма имеет ещё два запасных варианта.

В зависимости от условий лова шпуля имеет три разновидности по своей форме:

  • цилиндрическую;
  • конусную;
  • форму обратного конуса.

Шпуля катушки

Основание шпули изготавливается из трудно истираемых материалов. Шпули разнятся по величине вмещаемого шнура и имеют по этому критерию свою маркировку, обозначающую диаметр лески и возможное количество её укладки.

Характеристика передаточного числа определяет соотношение количества поворота рукоятки к количеству поворотов за этот же промежуток времени ротора. В зависимости от передаточного числа в устройстве безынерционной катушки, их делят на ранги: силовая (3,2 до 4,2 оборота), универсальная (4,5-6,1) и скоростная (6,2-7,2).

Для сбалансированности снасти рыболовные катушки должны обладать относительно невысокой массой. Масса напрямую зависит от материала, из которого изготовлены детали безынерционки. Более прочные материалы имеют и большую массу, поэтому изделие в качественном исполнении имеет вес, но вес адекватный своей форме. Сверхлёгкая конструкция вполне может сказать о некачественных деталях в устройстве. В среднем масса даже самой громадной мясорубки не превышает 600 грамм, мелкие представители колеблются в пределах 200.

Как подобрать катушку

К снасти безынерционка подбирается по принципу гармоничности и соответствия её параметров предполагаемому виду лова. Для троллинговой и фидерной ловли катушки подбирают, учитывая тяговые характеристики. Силовой тип катушки именно в эту тему. Кстати, катушка для морской рыбалки также принадлежит к её силовому варианту. Фрикционный тормоз в заднем расположении при медленной ловле более удобен и практичен.

В матчевой ловле, при оснащении болонской удочки и ловле на бомбарду предпочтительны катушки универсального типа. Шпули в виде конуса позволяют достаточно далеко забрасывать оснащение с наименьшим усилием. Фрикцион в передней части мясорубки даёт возможности его быстрой корректировки уже во время самого вываживания рыбы или зацепа.

Подбирая безынерционную катушку для зимней рыбалки, джига, твичинга и ультралайта, ориентируются на её размер и высокие скоростные характеристики. Здесь скоростные типы в приоритете. Обращают внимание на крепления катушки к спиннингу.

Важно! В раздвижное седло ножка катушки должна входить без ощутимого натяга, зажиматься без образования даже мизерного люфта.

Выбор лески для катушки

Вид шнура для оснащения рыболовной снасти подбирается в зависимости от вида ловли. Как правило, в фидерной ловле и в большинстве спиннинговых дисциплин применяют плетёные шнуры.

Важно! Шпуля должна вмещать достаточное для дальности заброса количество шнура, с таким расчётом, чтобы до конца её кромки, после его укладки, оставалось свободным пространство минимум в два миллиметра. Это расстояние позволяет забрасывать оснастку без хаотичного сброса колец.

Для матчевых и болонских снастей применяют в основном лески. Лески используют более мелких диаметров и иногда, для достижения оптимальной намотки объёма, применяют подкладочную подмотку, так называемое основание, из материала большего по диаметру, чем основная леска.

Важно! При покупке катушек в обязательном порядке обращают внимание на состояние поверхности шпули, которая должна быть гладкой и не иметь даже малейших шероховатостей. В противном случае данные несоответствия приведут к ощутимым дефектам и лески и шнура.

Как пользоваться безынерционной катушкой

Как уже говорилось выше, установка катушки на спиннинг производится в специальное приспособление, основанное на принципе прижима основания ножки механизма посредством винтовой передачи. После монтажа на удилище производится операция намотки шнура на шпулю. Шнур подаётся с кончика удилища, по кольцам, до шпули. Лескоукладыватель открывается, и леска или плетёнка привязываются к шпуле. Затем закрывают лескоукладыватель и производят намотку шнура в нужном количестве.

Важно! Наматываемый шнур должен быть предельно натянут. В этом случае первоначальное плотное расположение витков обеспечит дальнейшее правильное сбрасывание колец и такую же корректную смотку.

Не домотав леску порядка 2 мм до конца бортика шпули, наматывание заканчивают. Лескоукладчик закрывают. Леска при этом движении самостоятельно ложится на подающий ролик на дужке лескоукладывателя. Устанавливают настройки фрикциона на две трети усилия, от критического значения для разрыва шнура. Снасть готова к дальнейшим манипуляциям с оснасткой.

Заброс делается при открытой скобе. Леска прижимается указательным пальцем к бланку и производится ровный плавный замах с последующей подачей приманки в точку лова. Палец синхронно, в момент заброса, должен отпустить леску. Подав приманку, дужку лескоукладывателя закрывают и начинают проводку. Спиннинг с безынерционной катушкой в полной работе, осталось только дождаться поклёвки и заиметь в садке или на кукане долгожданный улов.

Уход за катушкой

В сравнении с инерционными катушками, безынерционки нуждаются в постоянном уходе и контроле за их техническим состоянием. Рекомендуется не менее одного раза в год, желательно перед открытием нового сезона, провести техническую профилактику механизма, которая заключается в очистке от загрязнений и смазывании шестерёнок и подшипников специальными смазочными материалами.

Смазки, предназначенные для ухода за катушками, лучше покупать в рыболовных магазинах. Не рекомендуется пользоваться автомобильными маслами и солидолом, так как они значительно отличаются по вязкости от требуемых для нежных деталей механизма смазывающих материалов и способны увеличить силы трения и привести к заклиниванию механизма и выходу его из строя.

Рейтинг популярных моделей катушек

Хотел бы представить рейтинг безынерционных катушек для спиннинга наиболее любимых у рыболовов, где можно выбрать недорогие, но в то же время качественные их варианты, и уже в зрелом рыбацком возрасте, с опытом, растратиться на элитарный аксессуар.

Важно! Бюджетные безынерционные катушки — отличный вариант для оснащения снастей начинающих рыболовов. Такой первоначальный выбор даст возможность научиться правильно работать с механизмом, невзирая на боязнь поломки от неправильной эксплуатации.

Катушка индуктивности

Что вы себе представляете под словом «катушка» ? Ну… это, наверное, какая-нибудь «фиговинка», на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

линии магнитного поля

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

катушка индуктивности с воздушным сердечником

И у нас получится вот такая картина с магнитными силовыми линиями:

катушка индуктивности магнитное поле

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

Катушка индуктивности

С научной же точки зрения, индуктивность — это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I — сила тока в катушке , А

U — напряжение в катушке, В

R — сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности — источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

катушка индуктивности с воздушным сердечником

Но где у нее сердечник? Воздух — это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

виды катушек индуктивности

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

ферритовые сердечники катушка индуктивности

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

катушка индуктивности с железным сердечником

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель — это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

дроссели

Также существует еще один особый вид дросселей — это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

сдвоенный дроссель

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

LC-метр и катушка индуктивности

Имеется ферритовый сердечник

Катушка индуктивности

Начинаю вводить катушку в сердечник на самый край

катушка индуктивности измеряем индуктивность

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

Катушка индуктивности

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

Катушка индуктивности

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

подстроечная катушка индуктивности

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Катушка индуктивности

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

Катушка индуктивности

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Катушка индуктивности

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

тороидальная катушка индуктивности

Катушка индуктивности

Отдалим витки катушки друг от друга

Катушка индуктивности

Катушка индуктивности

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Катушка индуктивности

Катушка индуктивности

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

катушка индуктивности на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

последовательное соединение катушек индуктивности

А при параллельном соединении получаем вот так:

параллельное соединение катушек индуктивности

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Катушка индуктивности, дроссель. ⁠ ⁠

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Как работает дроссель.

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.

Каково устройство дросселя, на чем основан принцип его работы?

Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам — индуктивности. Это явление легче всего понять, поставив несложный опыт.

Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Без дросселя, схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.

Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.

Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.)

Т. е — магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.

В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается — вторичной .

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений — Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор .

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is ). Это вызовет пропорциональное увеличение тока(Ip ) и в первичной обмотке. Будет верным соотношение:

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:

1. Допустимые токи и напряжения для первичной и вторичной обмоток.

2. Максимальную мощность трансформатора — мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.

3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор — получится очень интересный элемент радиотехники — колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С. используя электромагнитное поле — в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова — в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же — в различных схемах задающих генераторов.

Цветовая и кодовая маркировка индуктивностей.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.

Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *