Производительность из воздуха — как правильно расположить кулеры
При выборе деталей для компьютера часто пытаются сэкономить на корпусе. Главное, чтобы побольше стекла и вентиляторы с подсветкой в комплекте. Много «вертушек», конечно, всегда хорошо (а подсветка — ещё лучше), тут сомнения нет, но важно знать, что как дизайн корпуса, так и расположение вентиляторов могут серьёзно повлиять на то, как часто вам нужно будет чистить «коробку». В некоторых случаях это даже может затронуть производительность в играх.
Пылесборник Шрёдингера
Пыль — один из главных врагов компьютера, и её слои на компонентах — лишь часть загадки. Пыль любит накапливаться на пластинчатых радиаторах, и если эти радиаторы регулярно не прочищать, то компоненты начнут перегреваться. Результат — более низкие частоты как на процессоре, так и на видеокарте. Соответственно, производительность упадёт вместе с ними, а это приведёт к снижению быстродействия.
Например, карты NVIDIA с их автоматическим «оверклоком» NVIDIA Boost очень чувствительны к повышению температуры. Спецы из Gamers Nexus говорят, что карты NVIDIA дают возможность повышать частоту до одного уровня, если температура чипа опускается до 70 градусов, а начиная с 60—63 «бусты» могут подняться ещё выше.
Стабильность частоты карты также важна — чем меньше колебаний, тем меньше fps будет «прыгать», а соответственно, игра будет плавнее. Если средняя температура вашей карты, например, 65 градусов, то постарайтесь её опустить до 62-61 — тогда у Boost будет возможность поднять частоту повыше.
Процессоры от Intel также легко спускают свои бусты, если чуют перегрев. В их случае падение начинается, когда процессор достигает максимальной разрешённой температуры. При использовании заводских кулеров достигнуть этой температуры очень легко в плохо вентилируемом и пыльном корпусе. При «задыхающемся» процессоре игры могут начать сильно «подвисать» без очевидной на то причины. Пыль может значительно ухудшить жизнь даже владельцев Pentium и Core i3, которые нормально работают под «стоковым» вентилятором.
Важность типа видеокарты и расположения блока питания
Дополнительный фактор, способный повлиять на температуры комплектующих, — дизайн кулеров самих компонентов, например видеокарт. Так, карты могут быть охлаждены самым простым вентилятором с направленным движением выдува — такие типы кулеров хорошо подходят в маленькие корпусы, так как большое количество тепла выводится сразу через задний выхлоп карты. Этот тип охлаждения часто дешевле, но работает громче, и средняя температура чипа в случае с ними превышает 80 градусов.
Карта с ненаправленным выхлопом же выдувает горячий воздух прямо в корпус, поэтому сам графический чип хоть и будет прохладнее, но компоненты материнской платы начнут перегреваться. В данном случае циркуляция воздуха в системнике крайне важна — горячий воздух нужно срочно выводить. Водяное охлаждение, конечно, самое удобное — горячий воздух сразу выдувается вентилятором наружу, но такие карты часто стоят намного дороже.
Конечно, не стоит забывать, что и блок питания (БП) двигает воздух. Его всегда следует ставить вентилятором вниз — тогда он не будет пытаться охладить себя горячим воздухом из «кейса». БП работают изолированно — холодный поток входит внутрь, а горячий сразу выходит. Именно поэтому наилучшее расположение этого компонента — в нижней части корпуса. К счастью, чаще всего «кейс» средних размеров с нижним расположением БП совмещают с картой ненаправленного выдува — в таком случае расположение вентиляторов играет важнейшую роль при контроле температур, регулируя циркуляцию воздуха и накопление пыли.
Как избежать накопления пыли?
Как же удостовериться в том, что этой самой пыли в корпусе копится по минимуму? Первым делом надо пылесосить дома. Пылесос сам по себе очень полезная вещь, которую мы часто используем слишком мало. И не держите компьютер на полу — там пыли, песку, волосам и всему остальному проще всего проникнуть внутрь. Кроме того, проверьте, сколько вентиляторов в корпусе, как они расположены, куда дуют и стоят ли перед ними пылевые фильтры. В случае с более дорогими корпусами самые важные места (передняя панель и под блоком питания) уже покрыты съёмными фильтрами, которые обязательно нужно чистить каждые пару месяцев, особенно если у вас дома есть питомцы или просто много пыли. Если у корпуса нет пылевых фильтров, то их достаточно легко сделать самостоятельно — надо достать сетку и магнитные наклейки, после чего просто вырезать по размеру.
Раньше к движению воздуха не относились серьёзно — хорошо, когда сзади был один выхлопной 80-миллиметровый вентилятор. Сегодня популярностью пользуются два главных типа регуляции циркуляции воздуха в корпусе — отрицательное и положительное давление.
Отрицательное давление
Отрицательное давление основывается на том, что из корпуса выдувается больше воздуха, чем втягивается. Соответственно воздуху нужно найти возможность попасть внутрь. Результат — каждая щель действует как место втягивания, и вся пыль, волосы и даже насекомые могут быть легко затянуты в корпус. Главная проблема такого подхода — невозможность поставить в эти щели пылевые фильтры: нужно иметь либо волшебный корпус без единой щели (такие есть?), либо заполнить всё вручную (зачем?). Главный плюс — не нужно волноваться о пылевых фильтрах, потому что корпус втягивает воздух не через вентиляторы, а через щели. Зато нужно беспокоиться обо всех этих слоях пыли внутри, как на компонентах, так и на проводах.
Если вы хотите создать в корпусе такое движение воздуха, советую хорошенько подумать. Отрицательное давление очень легко превратить в положительное — нужно лишь повернуть один-два вентилятора так, чтобы они втягивали внутрь. Тогда воздуха будет втягиваться больше, чем выдуваться. В результате каждая щель станет местом выхлопа, в том числе и горячего воздуха от процессора и видеокарты. Таким образом в корпусе создастся постоянное перемешивание и движение воздушных потоков, которое даст компонентам возможность не «задыхаться».
Положительное давление
Для создания положительного давления в переднюю часть корпуса чаще всего ставят два втягивающих, а в заднюю — один выдувающий вентилятор. Это, конечно, если корпус поддерживает такое расположение «вентов». Один из самых популярных корпусов прошлых лет, Corsair 200R, позволяет установить лишь один вентилятор спереди. В таком случае нужно поэкспериментировать с позицией второго — с горячей видеокартой можно пустить холодный воздух сбоку прямо на перегревающийся компонент, что значительно понизит температуру. А если перегревается процессор, то сверху. Посмотрите, как вентиляторы работают в вашем корпусе — куда дуют, где стоят, и в зависимости от этого попробуйте их подвигать. Каждый корпус индивидуален, поэтому универсального решения нет. Самое главное — сместить баланс в пользу втягивания воздуха. И опять-таки убедиться в том, что перед каждым втягивающим вентилятором есть пылевой фильтр.
Главный минус положительного давления заключается в том, что нужно следить за чистотой фильтров. Неправильное расположение некоторых вентиляторов может создать карманы циркулирующего горячего воздуха, что по-своему опасно. Эта проблема встаёт только в случае установки втягивающих и выдувающих вентиляторов близко друг к другу, так что опять-таки проверьте, как и где дуют «вертушки» у вас в корпусе.
В итоге как расположение вентиляторов, так и выбор корпуса могут повлиять на производительность в играх. Если у вас корпус с тремя вентиляторами спереди (отлично же!) и стеклянной панелью, но у воздуха нет пространства для входа, то польза от этих «вертушек» минимальна. Хороший корпус — с сеткой на передней панели, которая будет давать кулерам дышать, либо с боковым зазором больше 3 см, откуда тоже можно будет затягивать воздух. Так, Cooler Master была вынуждена обновить свой культовый корпус H500P, который разнесли критики. Компания выпустила H500M с сетчатой передней панелью, и его признали одним из лучших в этом году.
Будьте внимательны, когда выбираете корпус: стекло — это круто, но чистый и рабочий компьютер — всё же круче.
(Тема промежуточная)Вентилятор охлаждения, и его правильная работа!
Вообще тут срабатывает наша железяная логика, он там по идее конструкторов АвтоВАЗа стоит для охлаждения охлаждающей жидкости в радиаторе! И крутиться он должен опять же по железяной логике таким образом, чтоб затягивать холодный воздух с улицы, тем самым охлаждая выше описанную требуху! Но вот не задача, у меня он кутиться по принципу "охлаждать горячее, горячим"! То есть, мой моторчик крутиться и тем самым выталкивает горячий воздух из под капотного пространства, тем самым пытаясь охладить горячущий радиатор, горячущим воздухом! Отсюда и возник вопрос!
А как же он все таки правильно должен работать? "сосать" с улицы или "сосать" от мотора? И что будет если поменять полярность на моторчике, он будет крутиться в обратную сторону или сгорит?
Ребята, таким методом как у меня, можно и перегрев схватить, в Питерских тянучках стрелка температуры иногда доходит до грани кипения!
Как ставить вентилятор на вдув или на выдув и что эффективнее?
Здравствуйте, дорогие посетители моего блога! Сегодня обсудим, как лучше ставить вентилятор: на вдув или на выдув и почему. Также, в каком случае система охлаждения работает эффективнее и как понять, куда дует кулер.
О том, сколько именно вентиляторов обязательно нужно иметь в корпусе системного блока, вы можете почитать в этом посте.
Если понаблюдать за работой ПК, можно заметить, что на процессоре и на корпусе крыльчатки вращаются на выдув. Это не случайно: главная задача воздушной системы охлаждения, прежде всего, заключается в отводе лишнего теплого воздуха, и лишь по возможности необходимо обеспечить подачу холодного.
Неважно, если сверху на корпусе вы ставите дополнительные крыльчатки или снизу — принципы, которые я опишу далее, справедливы для любой компоновки.
Итак, если кулер работает на выдув, он создает разрежение внутри шасси. Нагретый воздух выталкивается оттуда крыльчаткой, а новый всасывается из-за перепада давления через технологические отверстия. Замечено, что в этом случае для непрерывной циркуляции воздуха нет препятствий, и проблем с охлаждением не будет.
При такой компоновке на выдув нужно ставить крыльчатку на тыльной крышке корпуса.
Если кулер работает на вдув и нет выдувающего вентилятора, в корпусе создается избыточное давление воздуха, что препятствует его нормальной циркуляции и чревато перегревом компонентов ПК. Кроме того, будет всасываться много пыли, поэтому «внутренности» ПК придется часто чистить.
В идеале лучше всего ставить 2 охладителя: на выдув на тыльной крышке и на всасывание на фронтальной панели. Если нет такой возможности, ставьте один на выдув на тыльной крышке корпуса.
Закономерный вопрос: как определить, в какую сторону будут вращаться лопасти?
Проще всего подключить охладители к блоку питания или системной плате и посмотреть, как именно он работает. Естественно, перед тем как узнать это, нужно снять боковую крышку, чтобы получить доступ ко всем коннекторам питания.
И есть еще один способ, понять куда идет основной поток — там где находится наклейка с моделью или наименованием, туда и будет дуть пропеллеры.
Подписывайтесь на меня в социальных сетях и не забудьте поделиться этим постом — буду весьма признателен. До встречи!
Руководство по раскрытию потенциала и тонкой настройке воздушного охлаждения персональных компьютеров
К сожалению простого и универсального рецепта, куда и как прикрутить вентиляторы не существует, аэродинамические процессы внутри корпуса проходят довольно сложные, к тому же сильно отличаются в зависимости от конфигурации и так просто на коленке их не рассчитать. Информация ниже может оказаться полезной не только для оптимизации охлаждения в готовом компьютере, но и при выборе нового корпуса.
п.1 Начну пожалуй со сравнения двух основных схем продува — с преобладанием выдувающих вентиляторов и нагнетающих. Существенных отличий между ними нет, обе способны обеспечить уверенную прокачку воздуха через корпус. Однако схема на выдувающих вентиляторах (так называемое отрицательное давление) сделает это чуточку эффективней, за счет более ламинарного (спокойного) движения воздушных масс. Нагнетающие в свою очередь создают завихрения, которые тормозят и перемешивают воздушный поток и негативно сказываются на производительности. С другой стороны, эти завихрения эффективнее снимают тепло с пассивных радиаторов и прочих греющихся элементов, не располагающих собственными вентиляторами. Таким образом улучшается охлаждение чипсета, оперативной памяти, NVMe накопителей.
п.2 Отбросив нюансы, отрицательное давление на мой взгляд предпочтительней, но это не повод отказываться от нагнетающих вентиляторов. Работая на оборотах ниже выдувных процентов на 20, они практически не будут добавлять шум, при этом заметно помогут им протягивать воздух через корпус, подталкивая его сзади. Или говоря научным языком — уменьшат аэродинамическое сопротивление системы «корпус».
п.3 Вопреки распространенному представлению, в корпусе нет четко выраженных потоков воздуха, работа любых вентиляторов внутри, прежде всего приводит к образованию областей низкого и высокого давления. Движение воздуха обусловлено его стремлением заполнить области с низким давлением (равно как покинуть области с высоким) и происходит это по пути наименьшего сопротивления. Сопротивление в свою очередь определяется влиянием соседних областей высокого и низкого давления, а также расстоянием до вентиляционных отверстий и их площадью. Рассмотрим эти процессы подробнее на примере стандартной двухвентиляторной видеокарты:
реклама
Как можно заметить, наряду со свежим воздухом снаружи корпуса, разряжение под видеокартой будет охотно заполняться её собственным подогретым выхлопом. В отсутствии других вентиляторов, помешать этому может лишь небольшая сила конвекции, тянущая теплый воздух вверх. Улучшить ситуацию призваны корпусные вентиляторы — либо нагнетающий со стороны передней панели, который будет уменьшать сопротивление тяги по этому направлению, либо выдувающий сверху, не давая отработанному воздуху затягиваться обратно:
При этом возникает другая проблема — излишняя перфорация корпуса вызывает паразитную тягу (на рисунке выделено розовым цветом), мешающую вентиляторам выполнять полезную работу, снижая их КПД. Её можно уменьшить, если соблюсти баланс притока и вытяжки (что не в каждом корпусе легко осуществимо), либо устранить, тщательно герметизируя все лишние отверстия.
реклама
п.4 Отдельное внимание следует уделить влиянию близрасположенных вентиляторов друг на друга, ведь это влияние может зачастую оказывать негативный эффект на их производительность. В качестве утрированного примера можно представить два одинаковых вентилятора, которые сложили бутербродом, направив в разные стороны. Они будут крутиться и шуметь, но при этом выполнять нулевую работу по перемещению воздуха. Естественно таких ситуаций в реальных сценариях использования не встречается, однако частичное проявление довольно распространено. Ниже приведен такой пример:
Аналогичные явления можно наблюдать и при вдуве, если один вентилятор установлен на передней панели, а другой на дне. А также с блоком питания, расположенным вентилятором вверх и видеокартой в нижних слотах, с неминуемым ростом температуры обоих компонентов. При перпендикулярной ориентации вентиляторов потери не столь критичны, но нужно учитывать, что во-первых, результирующая производительность будет ниже объема воздуха, который оба могут прокачать по отдельности. Во-вторых, желательно настраивать их на равную производительность, иначе более слабый вентилятор рискует оказаться в роли вентиляционного отверстия для другого, пропуская воздух в обратную сторону, что сводит смысл его применения на нет.
п.5 Основная задача к которой сводится организация вентиляции корпуса — обеспечить системы охлаждения каждого узла компьютера холодным воздухом в объеме равном их расходу (это сколько видеокарта и процессор прокачивают через себя). Хотя зачастую имеет смысл пойти на компромисс и позволить кулеру процессора частично использовать отработанный видеокартой воздух. Дальнейшее наращивание мощности вытяжки не дает почти никакой пользы. Чтобы добиться при этом минимального шума, важно соблюсти два условия — привести шум каждого вентилятора примерно к одному уровню и обеспечить им максимально возможный КПД. И все это полагаясь исключительно на силу своего воображения, моделируя в голове перемещение воздушных масс под воздействием перечисленных в статье факторов. Не самая простая задачка, но надеюсь многим читателям она покажется увлекательной.
реклама
п.6 Дополнения и примечания:
1) Чем большее сопротивление оказывает корпус, тем важнее роль герметизации паразитной перфорации и выходит на передний план такая характеристика вентиляторов (независимо от их ориентации), как создаваемое давление. Факторы увеличивающие сопротивление — глухие передняя панель и дно, массив корзин под жесткие диски в передней части, нагромождение кабелей. Трение воздуха о стенки корпуса тоже создает сопротивление, поэтому в широких корпусах воздуху двигаться немного легче.
2) При преобладании выдувающих вентиляторов, герметизировать в первую очередь нужно вредную перфорацию на крыше и задней стенке. При нагнетающих ровно наоборот.
3) Видеокарты нереференсного дизайна с традиционными вентиляторами формируют вертикальное движение воздуха, поэтому если увлекаться нагнетающими вентиляторами в верхней половине корпуса, они могут вступить в конфликт с СО видеокарты.
4) Чем слабее СО видеокарты, тем больший процент тепла будет рассеиваться пассивным образом с обратной стороны печатной платы. И тут могут подсобить завихрения от нагнетающих вентиляторов, но с учетом предыдущего пункта, работает это только с референсными турбинами.
5) Тягу через панель выводов материнской платы, при отрицательном давлении полностью не устранить, однако у современных плат в том месте установлен кожух, который направляет воздух через радиатор VRM, помогая его охлаждению.
6) Корпуса с единственным вытяжным вентилятором на задней стенке — не приговор для горячих систем, поскольку его КПД можно легко поднять почти до 100%. В противоположность этому, корпуса с верхним расположением БП — настоящее зло. Если поставить туда современный блок, который охлаждается низкоскоростным вентилятором, то в зависимости от оборотов заднего, тяга воздуха через БП рискует приблизиться к нулю, что может привести к разным неприятным последствиям.