Как применяется 1 й закон кирхгофа в цепях переменного тока
Перейти к содержимому

Как применяется 1 й закон кирхгофа в цепях переменного тока

Законы Ома и Кирхгофа в цепях переменного тока

Переменный ток не имеет направления, однако для анализа и расчетов цепей переменного тока задаются условные направления токов в цепи и источников ЭДС. Тогда сложение и вычитание переменных токов, напряжений и ЭДС в схеме происходит с учетом этих направлений, что в свою очередь, позволяет применять при расчетах все законы постоянного тока.

Для расчёта токов, напряжений и других параметров ветви применяется закон Ома (в комплексной форме):

Комплексный ток (Д.

Комплексное сопротивление <2).

Комплексная проводимость (У).

Последовательное соединение элементов составляет не- разветвленную электрическую цепь. Ток, протекающий через эти элементы, один и тот же:

где ?? — комплексное сопротивление пассивного элемента; — комплексное падение напряжения на пассивном элементе.

Общее комплексное сопротивление ветви составляет:

В схеме рис.2.41 комплексные сопротивления ветвей

соответственно равны:

Если в последовательную цепь включены источники ЭДС, заданы направление тока в цепи и сопротивление отдельных элементов, то напряжение на участке цепи можно определить из обобщенного закона Ома для комплексных величин:

При вычисления Ц прежде всего задается (положительное) условное направление напряжения. Суммирование падений напряжения на отдельных элементах производится с учетом знаков:

ЭДС Е принимает знак » + » при совпадении условного обхода контура с положительным направлением источника ЭДС, в противном случае — знак

Ток / принимает знак «+» при совпадении условного обхода контура с направлением тока, в противном случае — знак

В схеме рис.2.41, в ветви -»б — 4-Е-С—Я

Параллельное соединение элементов имеет только два узла, к которым подключены все ветви электрической цепи. Если к этим узлам приложено напряжение Ц, то ток в каждой ветви соответственно будет равен:

где К,— комплексная проводимость ветви.

Общая проводимость параллельного соединения равна:

В схеме рис.2.41, ветви ->б 4 — Е — С — — Я — а-»,-»а — /?2 — б-> и-»а -1 — 2 — ?2 — 3 — Яз — б-»соединены параллельно. Соответственно комплексные проводимости ветвей будут равны:

Для расчета токов в узле применяют первый закон Кирхгофа — алгебраическая сумма комплексных токов / в любом узле электрической цепи равна нулю:

Со знаком «+» суммируются токи с условным направлением к узлу, а со знаком » — » токи с условным направлением от узла. Из первого закона Кирхгофа следует, что сумма комплексных токов, направленных к узлу, равна сумме комплексных токов, направленных от узла.

В схеме рис.2.41 сумма токов:

В узле «а» /1 — /2 — /3 = 0, в узле «б» — /1 +/2+/3 =0.

Для расчета токов и напряжений в замкнутом контуре применяют второй закон Кирхгофа в комплексной форме:

Алгебраическая сумма комплексных ЭДС (Е) в замкнутом контуре равна алгебраической сумме произведений комплексных значений тока (Г) на соответствующие комплексные значения полных сопротивлений и алгебраической сумме комплексных напряжений (Ц) в этом же контуре.

Знак «+» ?, / или Ц принимает в случае совпадения с условным направлением обхода контура, в противном случае Е, I или Ц принимает знак « — ».

Второй закон Кирхгофа применим только к одному контуру, поэтому для многоконтурной электрической цепи необходимо выделить независимые контуры, задать условные направления токов, напряжений и ЭДС, выбрать условное направление обхода контуров и учесть влияние смежных контуров. Для электрической схемы рис.2.41:

а) Контур б-4-?1-С-1-/?1-а-Л2-б получаем, исключив из схемы ветвь ->&- Ь- 2 — Ег -3 — Яз — б-*. Для этого контура при обходе в направлении тока |ц второй закон Кирхгофа:

б) Контур &-Ь-2-Ег-Ъ -Яг- 6-Яг- л получаем, исключив из схемы ветвь ->б — 4-Е-С—Я- а—>. Для этого контура при обходе в направлении тока /22 второй закон Кирхгофа:

в) Если рассматривать эти два контура совместно, то для контура б-4-?1-С-1-/?1-а-/?г-б необходимо учитывать ток ?21, направление которого противоположно току [ (направлению обхода),

а для контура а-Ь-2-Ег-3-Яз-б>-Яг- а необходимо учитывать ток /и, направление которого противоположно току 122 (направлению обхода)

Законы Кирхгофа — формулы и примеры использования

Законы Кирхгофа (правила Кирхгофа) устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа.

Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Наиболее частот законы Кирхгофа применяются для расчета разветвленных электрических цепей, так как вместе с законом Ома они позволяют определить величину и направление электрического тока в отдельных ветвях и величину электрического напряжения на зажимах отдельных элементов.

Анализ по законам Кирхгофа можно проводить как в цепях постоянного, так и переменного тока. В них напряжение и ток выражаются комплексными числами, которые представляют вектора, а полное сопротивление (импеданс) используется вместо электрического сопротивления.

Густав Роберт Кирхгоф

Густав Роберт Кирхгоф (1824 – 1887)

Законы были названы в честь их первооткрывателя немецкого физика Густава Роберта Кирхгофа, впервые описавшего их в 1845 году.

Оба закона могут быть непосредственно выведены из уравнений Максвелла, сформулированных только в 1864 г. Кирхгоф создал законы как обобщение результатов, полученных Георгом Симоном Омом.

Вне электротехники законы Кирхгофа также используются в теории графов для анализа потоков. Можно даже сказать, что теория графов как таковая уходит своими корнями в законы Кирхгофа.

В дополнение к законам Кирхгофа для электрических цепей существует также закон Кирхгофа о тепловом излучении и другие эмпирические законы Кирхгофа, описывающие спектры излучения.

Для чего нужны законы Кирхгофа?

Разветвленные электрические цепи анализируются с использованием законов, определенных Густавом Кирхгофом. Законы Кирхгофа служат для определения величины и направления электрического тока в отдельных ветвях, определения величины электрического напряжения на зажимах отдельных элементов. Вместе с законом Ома законы Кирхгофа составляют основу теории электрических цепей.

Первый закон Кирхгофа

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

Узел электрической цепи — это место, где встречаются не менее трех проводников. Проводящее соединение соседних узлов называется ветвью.

Первый закон Кирхгофа

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока. Он является выражением закона сохранения электрического заряда.

Сумма токов, втекающих в узел, равна сумме токов, выходящих из узла

Второй закон Кирхгофа

Второй закон Кирхгофа : алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Второй закон Кирхгофа

Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Пояснение ко 2 закону Кирхгофа

Простейшим примером замкнутого контура является простая последовательная цепь. Вообще говоря, замкнутый контур — это любой путь, ведущий к начальной точке через ответвления цепи. На рисунке вы видите часть сложной сети и в ней отмечены два разных контура.

Густав Кирхгоф

Молодой Густав Кирхгоф родился в относительно обеспеченной семье, что позволяло ему учиться в школе. Он получил образование в Кенигсбергском университете, нынешнем Калининграде. И поскольку ему повезло, его учителями были Карл Густав Якоб Якоби (брат Бориса Якоби) и Карл Фридрих Гаусс.

В возрасте двадцати двух лет молодой Кирхгоф сформулировал то, что сегодня мы называем законами, носящими его имя.

Он утверждал, что алгебраическая сумма токов в узле равна нулю. И что алгебраическая сумма напряжений в замкнутой части цепи равна нулю. Другими словами, то, что входит в узел, также выходит из него. И если в вашей схеме что-то пропадает, то наверняка нужно что-то туда добавить.

Хотя оба эти закона могут быть непосредственно выведены из так называемых уравнений Максвелла, сам великий Максвелл сформулировал их только двадцать лет спустя.

Густав Кирхгоф

Кирхгоф также обнаружил, что если электрический сигнал проходит по проводу с абсолютно нулевым сопротивлением, он движется со скоростью света.

Но его интересовало и многое другое: например, он помог создать и использовать метод, который мы сейчас называем спектральным анализом. А когда ученые использовали его для наблюдения за звездами, Кирхгоф и Роберт Бунзен открыли химические элементы цезий и рубидий.

Однако он также посвятил себя оптике, так называемым проблемам черного тела, решал уравнения Максвелла для различных случаев, а в конце жизни стал уважаемым членом различных ученых обществ.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.
Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Контур для построения потенциальной диаграммы

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, а= 0), выбираем обход контура и определяем потенциалы точек контура.

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Потенциальная диаграмма

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Применение законов Кирхгофа для цепей переменного тока.

Формулировка: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Или Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Здесь ток I1— ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла.

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-».

Баланс мощностейявляется следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

Условие баланса мощностей заключается в том, что сумма мощностей всех элементов цепи равна нулю. В цепи постоянного тока мощность участка цепи равна произведению силы тока на напряжение на этом участке. Если направление силы тока и напряжения на каком-либо участке не совпадает, перед соответствующим слагаемым ставится знак «–».

№3

Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи.

Назван в честь его первооткрывателя Георга Ома.
Закон Ома гласит:
Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.
И записывается формулой: I=U/R

Где: I — сила тока (А) , U — напряжение (В) , R — сопротивление (Ом) .
что закон Ома можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. ,

Применение законов Кирхгофа для цепей переменного тока.

законы Ома и Кирхгофа справедливы для мгновенных токов и напряжений.

Сумма комплексных токов в проводах, сходящихся в узле электрической цепи, равна нулю:

Сумма комплексных ЭДС, действующих в замкнутом контуре, равна сумме комплексных падений напряжений в ветвях этого контура:

ПОЛУЧЕНИЕ ЭДС

Простейший трёхфазный генератор состоит из трёх одинаковых обмоток, скреплённых между собой под углами 120° и вращающихся в однородном магнитном поле В с угловой скоростью ω (рис. 1). Это – фазные обмотки, или фазы генератора. Их обозначают буквами А, В, С, или же цифрами 1, 2, 3. В настоящей работе используется цифровое обозначение фаз.

В промышленных трёхфазных генераторах фазные обмотки являются неподвижными и размещаются под углами 120° в пазах статора, как показано на рис. 2. а вращающееся магнитное поле создаётся обмоткой возбуждения, уложенной в пазах ротора и питаемой от отдельного генератора постоянного напряжения. Ротор вращается каким-либо двигателем, например, гидро- или паротурбиной.

Для уменьшения количества проводов, необходимых для соединения нагрузки с источником питания, или же для уменьшения количества пульсаций в выпрямителях, или же повышения передаваемой мощности без повышения напряжения сети используют разные схемы соединения обмоток, как нагрузки, так и источника. Наиболее распространенными схемами соединения являются треугольник и звезда.

При соединении звездой концы обмоток фаз соединяются вместе в одной точке (в нашем случае показаны как x,y,z), которая носит название нейтральной точки или нуля, и обозначается буквой N. Также нейтральная точка (нейтраль) или ноль может быть соединена с нейтралью источника, а может быть и не соединена. В случае, когда нейтрали источника и приемника электрической энергии соединены, такая система будет называться четырехпроводной, а в случае если не соединены – трехпроводной.

А вот при соединении в треугольник концы обмоток не соединяются в общую точку, а соединяются с началом следующей обмотки. А именно, конец обмотки фазы А (на схеме указан х) соединяется с началом фазы В, а конец фазы (y) соединяется с началом фазы С, и, как вы наверно уже догадались, конец фаз С (z) с началом фазы А. Также следует помнить, что если при соединении в звезду система может быть как трехпроводной, так и четырехпроводной, то при соединении в треугольник система может быть только трехпроводной.

Принцип вращения ротора

Принцип работы ротора основан на электромагнитном законе Фарадея. Вращается он благодаря воздействию электродвижущей силы, возникающей в результате взаимодействия магнитных потоков и обмотки ротора. На деле это выглядит так: между статором, ротором и их обмотками существует некий зазор, сквозь который проходит вращающийся магнитный поток. В результате этого в проводниках ротора возникает напряжение, которое и является причиной образования ЭДС.

Двигатели с замкнутой цепью роторных проводников работают немного иначе. В этих типах двигателей используются короткозамкнутые роторы, в которых направление движения тока и электродвижущей силы задается правилом Ленца, согласно которому ЭДС противодействует возникновению тока. Вращение ротора происходит благодаря магнитному потоку, движущемуся между ним и неподвижным проводником.

Таким образом, для уменьшения относительной скорости, ротор начинает синхронное вращение с магнитным потоком на обмотке статора, стремясь к вращению в унисон. При этом частота электродвижущей силы ротора равняется частоте питания статора.

Трансформатор – статистический электромагнитный аппарат преобразующий систему переменного тока одного напряжения в систему переменного тока другого напряжения.

Назначение: трансформаторы служат для передачи и распределения электроэнергии потребителей.

Трансформаторы бывают: повышающие, понижающие однофазные, трех и многофазные. Силовые, измерительные, испытательные.

Активными элементами трансформатора являются

1. магнитопровод
2. обмотки
Магнитопровод с обмоткой помещается в бак с трансформатором маслом, которое служит для изоляции и охлаждения

Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней э. д. с. Если вторичную обмотку замкнуть на какой-либо приемник энергии, то под действием индуктируемой э. д. с. по этой обмотке и через приемник энергии начнет протекать ток

№11

ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА. КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

Работа трансформатора основана на явлении вза­имной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения. При подключении первичной обмотки трансформа­тора к сети переменного тока напряжением по обмотке начнет проходить ток, который создаст в магнитопроводе пе­ременный магнитный по­ток. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней, которую можно использовать для питания нагрузки.

. Отношение чисел витков обмоток трансформатора называют коэффициентом трансформа­ции k.

Таким образом, коэффициент трансформации по­казывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

В любой момент времени отноше­ние мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации.

Отношение напряжений на обмотках нена­груженного трансформатора указывается в его пас­порте.

ПРИНЦИП ДЕЙСТВИЯ подробный: Под действием подведенного переменного напряжения U1в первичной обмотке трансформатора возникает переменный ток I1, который, проходя по виткам обмотки трансформатора, возбуждает в сердечнике магнитопровода переменный магнитный потокФ1. Этот поток индуцируете1и е2в обмотках трансформатора. ЭДСе1 уравновешивает основную часть U1источника, ЭДСе2 создает напряжениеU2на выходных зажимах трансформатора. При замыкании вторичной цепи возникает токI2, который образует собственный магнитный потокФ2, накладывающийся на поток первичной обмотки. В результате создается общий магнитный поток Ф =Фmsin2pft (Фm— амплитудное значение магнитного потока трансформатора;f— частота переменного тока), сцепленный с витками обеих обмоток трансформатора. ПотокФназывается главным потоком или потоком взаимной индукции. При изменении этого потока в обмотках трансформатора индуцируются основные ЭДС —е1и е2.

Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, силы тока, сопротивления и т. д.).

Для силовых трансформаторов, ГОСТ 16110-82 определяет коэффициент трансформации — как «отношение напряжений на зажимах двух обмоток в режиме холостого хода», и «принимается равным отношению чисел их витков»

ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

В линиях электропередачи используют в основном трехфазные силовые трансформаторы.

Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещают­ся две обмотки одной фазы.

Для подключения трансформатора к линиям элек­тропередачи на крышке бака имеются вводы, пред­ставляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низ­шего напряжения — буквами а, b, с. Ввод нулевого провода располагают слева от ввода а и обозначают О.

Особенностью трехфазного трансформато­ра является зависимость коэффициента трансформа­ции линейных напряжений от способа соединения об­моток.

Применяются главным образом три способа соеди­нения обмоток трехфазного трансформатора:

1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а);

2) соединение первичных обмоток звез­дой, вторичных — треугольником (рис. 7.8, б);

3) со­единение первичных обмоток треугольником, вторич­ных—звездой (рис. 7.8, в).

Обозначим отношение чисел витков обмоток одной фазы буквой k, что соответствует коэффициенту транс­формации однофазного трансформатора и может быть выражено через отношение фазных напряжений:

при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, вы­бирая соответствующую схему соединения обмоток.

Специальные трансформаторы – это устройства, которые позволяют изменить характеристики электрического тока: сбалансировать фазы, снизить пульсации, изменить число фаз, стабилизировать ток, изменить частоту тока (умножители частоты) или выполнить усиление (магнитные усилители).

При пуске электрических двигателей а также различных лабораторных установок, в питании некоторых выпрямителей, в регулировании напряжения используют автотрансформаторы. Широко используют автотрансформаторы и в качестве бытовых электроаппаратов, предопределённых для повышения напряжения от 110 до 220 В или понижения его от 220 до 110 В.

Для понижения напряжения от 220 или же 380 В до 60-70 В рассчитан сварочный трансформатор (дуговая электросварка) или до 14 В (контактная сварка). На работу при больших силах тока – порядка 300 А, предназначены сварочные трансформаторы, и при режиме короткого замыкания

Для включения измерительных приборов, а также реле, в цепи высокого напряжения используют измерительные трансформаторы. Как правило, измерительные трансформаторы считаются понижающими трансформаторами. Вследствие чего они позволяют использовать обычные приборы для замера больших напряжений, токов, мощностей, увеличивая с этим безопасность работы обслуживающего персонала.

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.

Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса

Первый закон Кирхгофа

Формулировка: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Или Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Здесь ток I1— ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла.

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-».

Баланс мощностейявляется следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

Условие баланса мощностей заключается в том, что сумма мощностей всех элементов цепи равна нулю. В цепи постоянного тока мощность участка цепи равна произведению силы тока на напряжение на этом участке. Если направление силы тока и напряжения на каком-либо участке не совпадает, перед соответствующим слагаемым ставится знак «–».

№3

Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи.

Назван в честь его первооткрывателя Георга Ома.
Закон Ома гласит:
Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.
И записывается формулой: I=U/R

Где: I — сила тока (А) , U — напряжение (В) , R — сопротивление (Ом) .
что закон Ома можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. ,

Применение законов Кирхгофа для цепей переменного тока.

законы Ома и Кирхгофа справедливы для мгновенных токов и напряжений.

Сумма комплексных токов в проводах, сходящихся в узле электрической цепи, равна нулю:

Сумма комплексных ЭДС, действующих в замкнутом контуре, равна сумме комплексных падений напряжений в ветвях этого контура:

Правила Кирхгофа для цепей переменного тока

где импеданс $Z=R+i\left(\omega L-\frac<1><\omega C>\right)$ позволяет решать все задачи для переменного тока в цепи, которая содержит индуктивность, емкость, сопротивление. Роль этого закона такая же, как и закона Ома для цепей постоянного тока. Следовательно, схема анализа разветвленных цепей переменного тока аналогична, анализу цепей постоянного тока.

Представим, что имеем сложную цепь переменного тока. Мы должны рассматривать только квазистационарные токи, так как для их мгновенных значений справедливы законы Кирхгофа, что и для постоянных токов. Для любого замкнутого контура выполняется второе правило Кирхгофа:

где $<<\mathcal E>>_$ — комплексные амплитуды ЭДС генераторов, $Z_k$ — комплексные импедансы, $I_$ — комплексные амплитуды сил тока.

[Определение] Для каждой точки разветвления цепи переменного тока выполняется первое правило Кирхгофа:

Необходимо отметить, что законы постоянного тока применяются к комплексным амплитудам напряжения и ЭДС, тока и сопротивлений отдельных участков цепи. Получается, что любую задачу о расчете цепи переменного тока можно решить, если получить решение для схемы, по которой течет постоянный ток, а затем заменить все физические величины (токи, напряжения, ЭДС, сопротивления участков) на их комплексные аналоги.

Обобщение правил Кирхгофа на разветвленные цепи переменного тока было сделано Д.У. Рэлеем.

Готовые работы на аналогичную тему

Как уже говорилось, каждая величина, которая входит в правила Кирхгофа является комплексной и уже содержит фазу (следовательно, и знак), при составлении уравнений надо проставлять знаки, так как один участок может принадлежать разным контурам, и соответственно может быть пройден по разным направлениям. Решение уравнений дает возможность найти как амплитуды всех сил токов, так и их фазы. Так как величины, входящие в уравнения комплексные, то количество уравнений в два раза больше, чем было бы, если бы токи были постоянными.

Метод контурных токов

При расчете сложных цепей используют метод контурных токов. Этот метод является следствием правил Кирхгофа. Сложный контур рассматривается как совокупность простых замкнутых контуров. В данном методе принимается то, что на всех участках каждого замкнутого контура течет один и тот же ток. Эти токи называются котурнами. Суммарная сила тока, которая течет по участку контура, равна алгебраической сумме сил контурных токов, для которых этот участок общий. Уравнение Кирхгофа записывается через контурные токи. При этом количество уравнений для контурных токов равно числу неизвестных токов.

Схема расчета сопротивления в цепи переменного тока

Для получения сопротивления цепи переменного тока можно применять простое правило. Гипотетически заменить каждую индуктивность ($L$) на комплексное сопротивление вида $i\omega L$, каждую емкость ($С$) — на $\frac<1>$, все активные сопротивления оставить $R$. С полученными комплексными сопротивлениями провести те же операции, что и при вычислении сопротивления цепи постоянного тока, используя правила нахождения сопротивления параллельных и последовательных соединений. Полученная в результате комплексная величина $Z=X+iY$ будет комплексным сопротивлением цепи (импедансом). При этом $X$ — активное сопротивление цепи, $Y$ — реактивное сопротивление. Величина $\left|Z\right|$ — модуль импеданса:

есть сопротивление цепи переменного тока, оно определяет амплитуду силы тока при известной амплитуде напряжения на концах цепи. Аргумент импеданса определяет угол ($\varphi $), на который напряжение опережает ток в цепи:

Описанный метод расчета комплексных сопротивлений часто применяется в электротехнике. Он не требует вычисления сдвигов фаз (что требуется при построении диаграмм), так как они учтены в комплексных сопротивлениях. Кроме того этот метод позволяет проводить вычисления с любой точностью, тогда как методы графический и векторных диаграмм наглядны, но не точны.

При последовательном соединении импедансов он рассчитывается как сумма:

При параллельном, соответственно:

Задание: Найдите токи, которые текут в участках цепи, которая изображена на рис.1. Считать известными импедансы, которые указаны на рисунке.

Решение:

На рис.1 сложный контур состоит из трех простых контуров. В уравнении Кирхгофа при обходе замкнутого контура (между его узлами) используется сила тока, протекающая по этому участку. На каждом участке контура, в общем случае, сила тока отличается. Найдем полный импеданс для каждого участка контура между узлами (обозначим его соответствующим индексом). Положительное направление обхода обозначено стрелками.

Запишем уравнения, в соответствии с правилами Кирхгофа:

где $Z_<11>,Z_<22>,Z_<33>$ — собственные импедансы контуров, равные:

\[Z_<11>=Z_1+Z_2+Z_3(1.4),\ \] \[Z_<22>=Z_4+Z_5+Z_6+Z_2\left(1.5\right),\] \[Z_<33>=Z_3+Z_6+Z_2\left(1.6\right).\]

$Z_<12>$, $Z_<13>$. — взаимные импедансы контуров. Они равны импедансам участков контуров, причем их знак зависит от того в каком направлении проходит ток соответствующий участок по отношению к контурному току. В нашем случае:

Количество уравнений, которые мы записали, равно количеству неизвестных токов. Решим нашу систему уравнений:

где определитель системы равен:

Задача решена.

Задание: Цепь содержит конденсатор, емкость которого равна $C$, и активное сопротивление $R$ элементы соединены параллельно. Чему равен модуль импеданса? На какой угол напряжение опережает по фазе ток при таком соединении элементов?

Решение:

Заменим емкость $C$ на величину: $\frac<1>$, учитывая, что соединение элементов параллельное, суммарный импеданс найдем как:

Приведем выражение для импеданса к виду:

Для этого правую часть выражения (2.1) умножим и разделим на $\frac<1>-i\omega C$, получим:

Модуль импеданса равен:

Ответ: $\left|Z\right|=\frac<\sqrt<1+\omega^2C^2R^2>>,\varphi=-arc\left(\omega RC\right).$

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *