Как работает ультразвуковой
Перейти к содержимому

Как работает ультразвуковой

Аппарат ультразвуковой терапии

Аппарат ультразвуковой терапии

Ультразвук является частью медицинской практики с начала 50-х годов, а также остается популярным и подтвержденным методом диагностики целого ряда клинических проблем.

Существуют различные терапевтические ультразвуковые аппараты. Перечень начинается с небольших портативных устройств, часто используемых в косметологии, и заканчивается целыми комплексами – мультимодальными машинами, которые используют ультразвук в лечебной практике.

Ультразвуковые аппараты отличаются по своим техническим характеристикам, хотя предназначение у них одно и тоже. Тем не менее, более мощные устройства могут точно определить существующие проблемы, а это ускоряет процесс лечения пациента.

Что такое аппарат ультразвуковой терапии?

Работа аппарата базируется на ультразвуковых частотах, которые оказывают воздействие на организм пациента. Ультразвук – это форма механической энергии, а значит этот метод не относится к электролечению, но попадает в группу электрофизических. Механическая вибрация при увеличении частоты известна как звуковая энергия.

Нормальный диапазон звука для человека составляет от 16 Гц до 15-20 000 Гц (у детей и молодых людей).

Выше верхнего предела механическая вибрация известна как ультразвук. Частоты, используемые в терапии, обычно составляют от 1,0 до 3,0 МГц (1 МГц = 1 миллион циклов в секунду).

Как работают ультразвуковые аппараты?

Основой ультразвуковой терапии является воздействие волн. Волны влияют на ткани тела двумя способами – термическим и механическим. Звуковые волны – это долгосрочные волны, которые выполняют два действия: сжимаются и распространяются. Частицы материала при воздействии звуковой волны будут колебаться вокруг неподвижной точки, а не двигаться с самой волной. По мере того, как энергия в звуковой волне передается материалу, она вызывает колебания его частиц.

Очевидно, что любое увеличение молекулярной вибрации в ткани может привести к выделению тепла, а ультразвук можно использовать для получения тепловых изменений в тканях. В дополнение к тепловым изменениям вибрация тканей, по-видимому, имеет эффекты, которые обычно считаются не термическими по своей природе. По мере того, как волна аппарата проходит через материал (ткани), уровни энергии внутри волны будут уменьшаться по мере ее передачи.

Чем отличаются аппараты ультразвуковой терапии?

Ультразвуковой аппарат косметологический

Есть несколько критериев, по которым различаются данные устройства:

  • частота ультразвуковых волн;
  • диапазон волны;
  • скорость передачи.

Обычно три этих показателя определяют мощность и новизну аппарата, а также его способность оказывать терапевтическое воздействие. Частота показывает количество раз, когда частица испытывает полный цикл сжатия/распространения за 1 секунду. Обычно 1 или 3 МГц (хотя есть устройства, которые работают в диапазоне кГц – см).

Диапазон или длина волны – это второй показатель, который демонстрирует расстояние между двумя эквивалентными точками в конкретной среде. В «средней ткани» длина волны 1 МГц составляет 1,5 мм, а 3 МГц – 0,5 мм. Немаловажным является и скорость, с которой она проходит через ткань. В солевом растворе скорость волны составляет приблизительно 1500 м/c по сравнению с приблизительно 350 м/c в воздухе (звуковые волны могут быстрее перемещаться в более плотной среде).

Эти три фактора связаны, но не являются подходящими для осмотра и лечения всех типов тканей. Чаще всего используются средние показатели. Врач, который проводит осмотр, подбирает специальные параметры аппарата индивидуально для каждого пациента.

Типичные частоты у терапевтического оборудования составляют 1 и 3 МГц, хотя на некоторых устройствах производятся дополнительные частоты (например, 0,75 и 1,5 МГц), а отдельные ультразвуковые устройства работают в пределах нескольких десятков кГц (обычно 40-50 000 Гц – более низкая частота, чем в традиционном аппарате, но все же вне человеческого слуха).

Кому противопоказан ультразвук?

Как и любое другое лечение, ультразвуковая терапия может быть противопоказана по ряду причин. Так как ультразвук оказывает очень сильный эффект на организм, “перестраховка” никогда не будет лишней. Дабы не навредить своему организму, необходимо вначале проконсультироваться со своим лечащим врачом и оговорить все возможные последствия будущей терапии.

Особенно осторожными следует быть женщинам в период беременности, так как мощные ультразвуковые волны могут навредить плоду. Это не относится к обычному обследованию ультразвуком. Каждый пациент должен понимать, что ультразвуковая терапия и диагностика – это две разные вещи.

Первое заключается в воздействии волн высокой мощности для лечения, второе – это легкое воздействие, которое помогает обнаружить существующую проблему. Ниже приведен полный перечень противопоказаний к ультразвуковому лечению.

Беременность

Вы не сможете проходить терапию, если у вас есть один из нижеуказанных пунктов:

  • беременность (не подвергайте эмбрион или плод воздействию терапевтического уровня ультразвуковых волн при лечении матки во время беременности);
  • злокачественная опухоль (не обрабатывайте ткань, которая считается на данный момент злокачественной);
  • ткани, в которых происходит кровотечение или те, которые склонны к кровотечению;
  • значительные сосудистые аномалии, в том числе тромбоз глубоких вен, эмболия и тяжелый артериосклероз/атеросклероз.

При лечении ультразвуком необходимо соблюдать меры предосторожности. Это гарантирует более эффективное и безопасное лечение. Всегда используйте самую низкую интенсивность, которая дает терапевтический эффект. Убедитесь, что аппликатор перемещен во время лечения (скорость и направление не являются проблемой).

Попросите вашего лечащего врача еще раз рассказать вам об этом методе. Вы должны знать о характере лечения и ожидаемом результате. Если предполагается тепловое лечение, убедитесь, что все противопоказания были рассмотрены.

Осторожность рекомендуется в непосредственной близости от кардиостимулятора или другого имплантированного электронного устройства.

Непрерывное ультразвуковое исследование считается неразумным над металлическими имплантатами – это также стоит учесть перед началом лечения.

Эффективность аппарата ультразвуковой терапии

Одним из терапевтических эффектов, для которых используется ультразвук, является улучшение заживления тканей. Предполагается, что применение действия аппарата к поврежденным тканям, среди прочего, ускорит скорость заживления и улучшит качество восстановления тканей. Терапевтические эффекты от ультразвукового аппарата бывают термическими и нетермическими.

В тепловом режиме устройства наиболее эффективны при нагревании плотных коллагеновых тканей и требуют относительно высокой интенсивности, предпочтительно в непрерывном режиме для достижения этого эффекта.

Многие курсы терапии сосредоточены на тепловую эффективность ультразвука, и поэтому он может эффективно применяться при выборе подходящей дозы (непрерывный режим >0,5 Вт см-2). Слишком обобщенно предполагать, что при использовании конкретного лечения могут быть либо термические, либо не термические эффекты. На доминирующий эффект будут влиять параметры обработки, особенно способ применения, т. е. импульсный или непрерывный метод терапии.

Эффект не всегда бывает положительным. Несоблюдение правил использования аппарата, нарушение дозы ультразвука или его параметров может привести к нежелательным последствиям. Появление реверсивных клеток крови проявляется в небольших кровеносных сосудах, если возникает стоячая волна при лечении рефлектором, например, поверхности мягкой ткани/кости при использовании стационарного аппликатора. Непрерывное движение обрабатывающей головки уменьшает эту опасность.

Перед началом процедуры медицинский сотрудник должен провести осмотр аппарата. Необходимо установить правильные его параметры: частоту, интенсивность, время, параметры импульса. Важно подготовить поверхность тела, которая подвергается терапии. Также врач должен проводить данную процедуру так, чтобы устранить любые непосредственные или неблагоприятные эффекты.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Тедеева Мадина Елкановна

Специальность: терапевт, врач-рентгенолог, диетолог .

Общий стаж: 20 лет .

Место работы: ООО “СЛ Медикал Груп” г. Майкоп .

Образование: 1990-1996, Северо-Осетинская государственная медицинская академия .

Принцип работы ультразвукового увлажнителя

Ультразвуковые увлажнители воздуха – высокоэффективное климатическое оборудование, которое при достаточно компактных габаритах и малой потребляемой мощности обладает высокой производительностью. Это приборы, предназначенные для увлажнения воздушных масс посредством распыления мельчайших частиц воды и поддержания комфортного микроклимата в помещениях бытового и промышленного назначения.

Ультразвуковой увлажнитель

  1. Водяной аэрозоль
  2. Распределительные трубки
  3. Распылительная камера
  4. Подача воды
  5. Трубка перелива
  6. Дренажный клапан
  7. Датчик уровня воды
  8. Накопительная емкость
  9. Плата управления
  10. Пьезоэлементы
  11. Электронного гигрометра для отслеживания уровня влажности воздуха.
  12. Вентилятор
  13. Дисплея для установки, отображения, регулировки параметров воздушной среды.

Как работают ультразвуковые увлажнители

Промышленные установки для увлажнения воздуха

Компания «Московский Инжиниринговый Центр» специализируется на продаже, доставке, установке климатических установок, включая бытовые и промышленные ультразвуковые увлажнители и мойки воздуха. Также осуществляем сертифицированный монтаж и сервисное обслуживание климатических систем. Мы предлагаем оборудование итальянского производителя Carel – надежные и функциональные мультизональные системы и канальные установки, которые могут функционировать в связке с фанкойлами и кондиционерами. Модельный ряд ультразвуковых увлажнителей Carel humiSonic представлен адиабатическими приборами с распределительной системой мощностью 40 Вт и производительностью порядка 1150 Вт. Это увлажнители для промышленных объектов, характеризующиеся небольшими габаритами, простотой пусконаладки и легкостью эксплуатации.

Как устроена и как работает ультразвуковая ванна

Последнее время оптики и ювелиры охотно предлагают услугу чистки ультразвуком. Для проведения процедуры используют специальный агрегат под названием ультразвуковая ванна (УЗ-ванна), где есть специальный резервуар для размещения обрабатываемых предметов. Полезные свойства ультразвука проявляются в специальной жидкости. Мастеру нужно положить предмет, включить прибор, затем помыть. Минимум действий!

Теоретически, такой ванной можно сделать любую емкость, используя специальное оборудование для создания и распространения ультразвука.

Применение

Очищение предметов – самый простой и банальный способ применения УЗ-ванны в большинстве отраслей. Большим спросом пользуется прибор в медицине, исследованиях – используя ультразвук ускоряют реакции, проводят тесты с веществами, стерилизуют инструменты. Необходим он для чистки труднодоступных мест, тонкой и мелкой работы, дополненной специальными реагентами. Широкое применение получил прибор в мастерских оргтехники, мобильных телефонов, у ювелиров, в автоиндустрии промывают фильтры и двигатели.

Поэтому некоторым индивидуальным предпринимателям очень полезно завести такую помощницу, которая будет проводить часть операций, освобождая время и руки мастера для более важной и сложной работы.

Очистка форсунок

В автосервисах применяется УЗ-ванна для разных чисток, помогая забраться вглубь и ускорить процесс ремонта. Например, очистка форсунок – довольно распространенная операция. Такой вариант не подойдет для керамических изделий.

Предварительно нужно разобрать детали, чтобы достать форсунки и проверить их на тестовом устройстве, а затем погрузить в емкость УЗ-ванны, наполненную специальным раствором. По окончании процесса делают повторную проверку.

Метод считается более действенным, чем просто промывка, вместе с тем износ деталей становится больше из-за кавитации. Из-за этого и технических нюансов чистка форсунок ультразвуком используется при большом пробеге и загрязненности.

О чистке форсунок инжекторов ультразвуком смотрите в следующем видео.

Устройство

Конструкция УЗ-ванны сводится к трем элементам (кроме емкости):

-Генератор, создающий УЗ-электроколебания;

-Излучатель, который превращает колебания в механическую вибрацию;

-Нагревательный элемент (дополнительная часть, которая улучшает эффективность) создает температурные условия для лучшего процесса, может разогревать жидкостные среды до 70°.

О том, как устроена купленная ультразвуковая ванна, смотрите в следующем видео

Ванны востребованы во многих отраслях, разница заключается в размере деталей, требующих очистку, частоте применения и объемах работы:

-Портативные – аккуратные устройства с емкостью до 1 л., применяются для частной или коммерческой чистки мелких деталей. Упрощенные модели отличаются незамысловатым дизайном, минимальным количеством функций. Для мастеров делают полупрофессиональные приборы с дополнительными опциями, электронным управлением, резервуаром из нержавеющей стали отменного качества.

-Промышленные УЗ-ванны отличаются габаритами: их рабочий объем может быть свыше 10 литров, минимальный – от 4 литров. Практически все они имеют функцию подогрева, таймеры и дополнительные опции очистки.

Об ультразвуке

Ультразвук – физический термин, характеризующий уровень звука или шума, вне человеческой слышимости, его диапазон определяется как 16 кГц — 1000 кГц.

При изучении УЗ-волн было установлено, что они вызывают своеобразное «закипание» жидких веществ, из-за которых пузырьки не всплывают, а взрываются, вызывая дополнительные волны. Условно этому процессу дали название «кавитация», которое и легло в основу работы УЗ-ванны.

Размер пузырьков зависит от частоты ультразвука: чем выше звук, тем мельче пузырьки. Поэтому такой способ позволяет выталкивать грязь и налет с поверхности более твердых предметов. Кавитация имеет обратную связь с высотой ультразвука: от мелких пузырьков сила давления возникающих волн меньше, поэтому при относительно низкой частоте кавитация сильнее. При этом могут оставаться «метки» на поверхности, изменяя ее на уровне мельчайших частиц. Получается, что чем выше показатель частоты, тем миниатюрнее пузырьки и меньше их следы.

Особенности

Там где требуются ювелирная точность и тонкая очистка, УЗ-ванны просто незаменимы, они имеют ряд достоинств по сравнению с любым другим механическим способом очищения:

-Нет необходимости лично участвовать в работе, после загрузки предмета в ванну остается только включить аппарат;

-Нет прямого контакта кожи с химией, нет негативного воздействия на здоровье;

-Очищается вся поверхность – мельчайшие сеточки, пазы, промежутки, куда не могут достать салфетки, щетки и т.д.;

-Ультразвук не оставляет следов, сколов и других грубых повреждений на поверхности.

Ультразвук способен очистить осадок, остатки пасты, любую коррозию, пленки, в том числе защитные. Некоторые камни и минералы имеют органическое происхождение или относятся к осадочным породам, это делает их несколько чувствительными к такой обработке. По этой причине нужно обратить внимание на кораллы, жемчуг, опалы, малахиты, изумруды, бирюза, танзаниты, ляпис, и исключить их из перечня работ: после УЗ-ванны «красота» камня, его огранка и полировка нарушается.

Дополнительные функции

Использование аксессуаров и специальных возможностей упрощает и облегчает работу прибора, в некоторых случаях – повышает эффективность.

Самые распространенные функции:

-Многорежимность. Простейшие бытовые УЗ-ванны работают с 1-2 режимами. Полупрофессиональные позволяют настраивать до 5 режимов. Разнообразие связано с характером работы и назначения очистки.

-Таймер отмеряет время работы и автоматически отключает прибор, предусмотрен почти на всех моделях, кроме самых простых и бюджетных домашних вариантов.

-Подогрев имеют практически все модели, он повышает эффективность и ускоряет процесс. Нагрев жидкости проводится максимум до 70°С, это даже больше необходимых значений. Оптимальной температурой нагрева являются 50°-60°С.

-Защита – отключит прибор без жидкости и спасет его от перегрева.

-Антистатика – свойство полезное при ремонте сотовых и оргтехники, его также добиваются, применяя специфичные очистители.

-Электронные панели управления, световые индикаторы. Конечно, это накрутки, которые повышают цену УЗ-ванны, но обходиться без них сложно.

-Аксессуары помогают сделать работу простой и легкой. Это сетки и корзинки для размещение и промывания деталей, они защитят стальную емкость от соприкосновения с предметами, повреждений и царапин. Это основательно продлит срок службы прибора. К аксессуарам можно отнести и прозрачные крышки. Это очень удобно, особенно при одновременной чистке нескольких мелких изделий.

Советы по выбору

Выбрать УЗ-ванну – шаг важный и ответственный, который полностью зависит от назначения чистки, области применения. Именно с оглядкой на них выбирают рабочие параметры:

-Объем УЗ-ванны связан с размером и количеством деталей, предметов, которые вы будете чистить. Запрещают класть эти предметы на поверхность ванны (есть вероятность резонанса и последующей поломки прибора), поэтому в комплект лучше приобрести корзину, чтобы до дна оставалось минимум 3 см.

-Частота волн – это понятие из прикладной физики. В зависимости от характера чистки и чувствительности материала подбирают рабочую частоту или выбирают УЗ-ванну с настроенным диапазоном.

20-50 кГц – относительно грубая чистка, применяется для промышленных объектов и деталей, в автомобильной промышленности. Частота в 20кГц может разрушать клеточные структуры, а вот 35-40 кГц – рабочий диапазон для бытовой чистки стойких поверхностей.

50-100 кГц – интенсивная и более мягкая чистка, используется в медицине и ювелирном деле. Подходит для частичной стерилизации.

Как сделать своими руками?

Творческие и способные техники могут сами создать «ультразвуковую ванну мечты». Для этого понадобится небольшой опыт электромеханики, смекалка и нехитрые приспособления: стойкая к воздействию прочная глубокая миска из нержавейки, ванночка из диэлектрика (например, фарфора или стекла), меньшая по размеру чем миска. Пригодится магнитная катушка, плоский магнит для радиотехники, не проводящий стержень, импульсный преобразователь и насос.

Трансформатор будет выступать как генератор, емкости образуют рабочий объем ванны, а излучатель делают из оставшихся запчастей: надо перемотать провод с бобины на приготовленную палку-диэлектрик, на ферритовый хвостик продевают магнит.

Сделав заготовку излучателя, соединяют миски, оставляя фарфор внутри металла. Нужно сделать дырку снизу для контакта с излучателем, а в керамической посудке два противолежащих «прохода» для жидкости. Если к ним подсоединить насос, то процесс обновления жидкости можно автоматизировать. Здесь излучатель расположен внизу, их может быть несколько, размещать возможно и на боках ванны. Соединив излучатель и генератор, нужно наполнить емкости жидкостью-очистителем и только потом включать в сеть. Преобразователь должен быть сильным и компенсировать возможные скачки напряжения. Для этого подойдет устройство для чувствительной техники, используемой в телеателье и ремонте компьютеров.

Применение ультразвуковой ванны для очистки предметов вы можете посмотреть в следующем видео.

Эксплуатация и уход

При работе с УЗ- ванной нужно помнить:

-Работа прибора может проходить только при наличии жидкости. Запуск пустой ванны приведет к поломке. По этой же причине нужно отслеживать уровень жидкости. А вот оставлять прибор, работающим или подключенным к сети нельзя: кроме скачка напряжения есть опасность в виде испарения жидкости. Чтобы продлить срок эксплуатации подключать УЗ-ванну непосредственно для манипуляций чистки.

-Если при работе ванны применяют жидкости-дезинфекторы, то функцию подогрева надо выключать. Многие из них содержат соединения хлора, опасные для вдыхания и безопасные в жидком виде.

-Поскольку в УЗ-ванне используют жидкости-реагенты, то после чистки необходима промывка. Ее можно проводить в емкости прибора, в отдельном резервуаре (посуде или раковине) очищенной или проточной водой, специальным составом. К очищенным относят обработанная от химии и активных ионов или дистиллированная вода.

В следующем видео вы можете посмотреть процесс ухода за ультразвуковой ванной.

Какие жидкости использовать?

Жидкости дополняют действие ультразвука, а значит делятся по сферам применения:

-Отмывочные жидкости (Вега, Лира, Zestron-FA) на спиртовой основе подходят для мастерских, очистки плат и пластин.

-Очистители универсальные и профильные отличаются по своему составу (щелочные, водные), в своем составе имеют ПАВ. Например, «Очиститель металлов ОМ/УЗ» подойдет для автомастерских, Очиститель ТМ Флай №2 – в ювелирных салонах, а вот Очиститель ТМ-РемСкал 30 Спец для изделий из серебра используют специалисты, возможно и домашнее применение, Очиститель ТМ-РемРад на водной основе – для ремонта оргтехники

-Шампуни-концентраты бережно относятся к поверхностям, снимают статическое электричество. Креолан применяется для чистки и дезинфекции в стоматологии, медицине, оптике и ювелирном деле. Экономик – универсальное средство.

Различаются концентрации веществ, и их фасовка 0,15 — 5 л.

Советы

Для коммерции (косметология, стоматология, ремонтные и ювелирные мастерские) УЗ-ванна необходима. Внимательно читайте инструкцию прибора и вспомогательных жидкостей. Важна рабочая концентрация, наличие запаха и воздействия на материалы. Кроме того, разные жидкости могут иметь разную длительность воздействия, поэтому этапы процесса очищения порой приходится подбирать самостоятельно.

Процедура чистки не заменяет полностью стерилизацию, а является этапом обработки, поэтому нельзя игнорировать рекомендации СанПиНа.

УЗ-ванна – это удачный пример приручения научных достижений для бытовых нужд, но как и любой электроприбор требует внимания и бережного отношения. Именно в этом заключается секрет успешного применения.

Принцип работы УЗИ

Если речь идет о техническом обслуживании, ремонте или работе на ультразвуковом оборудовании, в первую очередь необходимо понимать физические основы процессов, с которыми придется иметь дело. Конечно, как и в каждом деле, здесь есть очень много нюансов и тонкостей, но мы предлагаем Вам в первую очередь рассмотреть самую суть процесса. В данной статье мы коснемся следующих вопросов:

  1. Что такое ультразвук, каковы его характеристики и параметры
  2. Формирование ультразвука в современной технике на основе пьезокерамики
  3. Принципы работы УЗИ: цепь преобразований электрической энергии в энергию ультразвука и обратно.
  4. Основы формирования изображения на дисплее УЗИ-аппарата.

Обязательно посмотрите наше видео о том, как работает УЗИ

Наша основная задача — разобраться в том, что такое ультразвук, и какие его свойства помогают нам в современных медицинских исследованиях.

О звуке.

Мы знаем, что частоты от 16 Гц до 18 000 Гц, которые способен воспринимать слуховой аппарат человека, принято называть звуковыми. Но в мире также много звуков, которые мы услышать не можем, поскольку они ниже или выше диапазона доступных нам частот: это инфра- и ультра звук соответственно.

диапазон частоты ультразвука

Звук имеет волновую природу, то есть все существующие в нашей вселенной звуки — волны, как, в прочем, и многие другие природные явления.

С физической точки зрения волна — это возбуждение среды, которое распространяется с переносом энергии, но без переноса массы. Другими словами, волны — это пространственное чередование максимумов и минимумов любой физической величины, например — плотности вещества или его температуры.

Охарактеризовать параметры волны (в том числе и звуковой) можно через ее длину, частоту, амплитуду и период колебания.

Рассмотрим параметры волны более подробно:

Максимумы и минимумы физической величины можно условно представить в виде гребней и впадин волны.

звуковая волна ультразвука

Длиной волны называют расстояние между этими гребнями или между впадинами. Поэтому, чем ближе находятся друг к другу гребни — тем меньше длина волны и тем выше ее частота, чем гребни дальше друг от друга — тем длина волны выше и наоборот — тем ниже ее частота.

Еще один важный параметр — амплитуда колебания, или степень отклонения физической величины от ее среднего значения.

длина волны ультразвука

Все эти параметры связаны друг с другом (для каждой взаимосвязи есть точное математическое описание в виде формул, но приводить их здесь мы не будем, поскольку наша задача — понять основной принцип, а описать его с физической точки зрения можно всегда). Важна каждая из характеристик, но чаще всего Вам придется слышать именно о частоте ультразвука.

Ваш УЗИ аппарат предоставляет плохое качество визуализации? Оставьте заявку на вызов инженера прямо на сайте и он проведет бесплатную диагностику и настроит Ваш УЗИ сканер

Звук высокой частоты: Как вызвать несколько тысяч колебаний в секунду

Существует несколько способов получить ультразвук, но чаще всего в технике используются кристаллы пьезоэлектрических элементов и основанный на их применении пьезоэлектрический эффект: природа пьезоэлектриков позволяет генерировать звук высокой частоты под воздействием электрического напряжения, чем выше частота напряжения, тем быстрее (чаще) начинает вибрировать кристалл, возбуждая высокочастотные колебания в окружающей среде.

пьезоэлектрическиий кристал

Оказавшись в поле высокочастотных звуковых колебаний, пьезокристалл напротив начинает генерировать электроэнергию. Включив такой кристалл в электрическую цепь и определенным образом обрабатываю получаемые с него сигналы мы можем формировать изображение на дисплее УЗИ-аппарата.

колебания пьезоэлектрического кристала пьезоэлектрическиий кристал

Но чтобы этот процесс стал возможным, необходимо дорогое и сложно организованное оборудование.

Несмотря на десятки и даже сотни взаимосвязанных компонентов УЗИ сканер можно условно разделить на несколько основных блоков, участвующих в преобразовании и передаче различных видов энергии.

Все начинается с источника питания, способного поддерживать высокое напряжение заранее заданных значений. Затем, через множество вспомогательных блоков и под постоянным контролем специального программного обеспечения сигнал передается на датчик, основным элементов которого является пьезокристаллическая головка. Она преобразует электрическую энергию в энергию ультразвуковых колебаний.

Через акустическую линзу, сделанную из особых материалов и согласующий гель ультразвуковая волна попадает в тело пациента.

физика ультразвуковой волны

Как и любая волна, ультразвук имеет свойство отражаться от встречающейся на его пути поверхности.

Далее волна проходит обратных путь через различные ткани человеческого тела, акустический гель и линзу она попадает на пьезокристаллическую решетку датчика, которая преобразует энергию акустической волны в электрическую энергию.

как отражается ультразвуковая волна

Принимая и правильным образом интерпретируя сигналы с датчика мы можем моделировать объекты, находящиеся на различной глубине и недоступные человеческому глазу.

Принцип построения изображения на основе данных ультразвукового сканирования

Рассмотрим как именно полученная информация помогает нам в построении изображения на УЗИ сканере. В основе этого принципа лежит различный акустический импеданс или сопротивление газообразных, жидких и твердых сред.

Другими словами, кости, мягкие ткани и жидкости нашего тела пропускают и отражают ультразвук в различной степени, частично поглощая и рассеивая его.

На самом деле весь процесс исследования можно разбить на микропериоды, и лишь малую часть каждого периода датчик испускает звук. Остальное время уходит на ожидание ответа. При этом время межу передачей и получением сигнала напрямую переводится в расстояние от датчика до “увиденного” объекта.

Информация о расстоянии до каждой точки помогает нам построить модель изучаемого объекта, а также используется для измерений, необходимых при ультразвуковой диагностике. Данные кодируются цветом — в результате мы получаем на экране УЗИ необходимое нам изображение.

черно-белое узи изображение

Чаще всего это Черно-белый формат, поскольку считается, что к оттенкам серого наш глаз более восприимчив и с большей точностью. увидит разницу в показаниях, хотя в современных аппаратах используется и цветное представление, например, для исследования скорости кровотока, и даже звуковое представление данных. Последнее вместе с видеорядом в допплеровских режимах помогает поставить диагноз более точно и служит дополнительным источником информации.

цветное ультразвуковое изображение

Но Вернемся обратно к построению простейшего изображения и рассмотрим подробнее три случая:

Примеры простейших изображений будем изучать на основе B-режима. Визуализация костной ткани и других твердых образований представляет из себя светлые участки (в основном — именно белого цвета), поскольку от твердых поверхностей звук отражается лучше всего и почти в полном объеме возвращается к датчику.

В качестве примера мы можем отчетливо видеть белые области — камни в почках пациента.

камни в почках на УЗИ

Визуализация жидкости или пустот напротив представлена черными участками на снимке, поскольку не встречая преград звук проходит дальше в тело пациента и мы не получаем никакого ответа

жидкости на УЗИ

Мягкие ткани, как например, структура самой почки будут представлены областями с различной градацией серого цвета. Именно от качества визуализации таких объектов и будет во многом зависеть точность диагноза и здоровье пациента.

мягкие ткани на УЗИ

Итак сегодня мы с Вами узнали о том, что такое ультразвук и как он используется в УЗИ-сканерах для исследования органов человеческого тела.

Если на Вашем УЗИ аппарате плохое качество изображения, обращайтесь в наш сервисный центр. Инженеры ERSPlus с большим опытом и высокой квалификацией всегда готовы Вам помочь

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *