О природе электрического тока и основах электротехники
В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.
1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)
1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).
Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.
1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.
Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже
рис 1. Генератор напряжения величиной U
рис 2. Генератор тока величиной I
На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь
рис 3. Генератор напряжения величиной U с нагрузкой R1
В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающий\перекрывающий трубу, сопротивление R1 — это кран\вентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.
Рассмотрим теперь цепь с генератором тока.
рис 4. Генератор тока величиной I с нагрузкой R2
Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))
2. Закон Ома.
Сначала c точки зрения генератора напряжения
Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R Теперь с точки зрения генератора тока
Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R
Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде
рис 5. Последовательное включение резисторов
Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.
Хотя пару важных практических случаев все таки рассмотрим.
1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))
3. Делитель напряжения
Схема имеет вид.
рис 6. Делитель напряжения
Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.
Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.
Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).
Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.
Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)
рис 7. Выходное сопротивление источника и входное сопротивление приемника.
Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.
Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.
Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!
В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.
Как определить фазу и ноль в розетке?
Чтобы разобраться в том, что такое фаза и ноль в розетке, обычному человеку (не специалисту) нет необходимости углубляться в электротехнические дебри. В качестве примера приведем обычную штепсельную розетку, куда поступает переменный ток.
К розетке идут два электропровода — нулевой и фазный. Ток поступает только по одному из них — фазному (еще его называют рабочей фазой). Второй провод — нулевой (или нулевая фаза).
Ноль и фаза в старых розетках
Чтобы подключить старую розетку, используют два проводника. Одни из них синего цвета (рабочий нулевой проводник). По этому проводу идет ток от источника электричества к бытовому прибору. Если взяться за токоведущий провод, но не дотрагиваться до второго провода, удара током не произойдет.
Второй провод в розетке — фазный. Он бывает самых разных цветов, в том числе синим, зелено-желтым или голубым.
Обратите внимание! Любое напряжение, превышающее 50 вольт, опасно для жизни.
Фаза и ноль в современной розетке
В устройствах современного типа есть три провода. Фаза бывает любого цвета. Помимо фазы и нуля имеется еще один провод (защитный нулевой). Цвет этого проводника — зеленый или желтый.
Через фазу подается напряжение. Ноль используется для защитного зануления. Третий провод нужен как дополнительная защита — для забора лишнего тока во время замыкания. Ток перенаправляется в землю или в обратную сторону — к источнику электричества.
Обратите внимание! Не имеет практического значения, справа или слева расположены фаза и ноль. Однако чаще всего фаза расположена слева, а ноль — справа.
Определение фазы и ноля мультиметром или отверткой
Мультиметр
Прибор представляет собой комбинированное электроизмерительное устройство, способное выполнять несколько функций. Минимальная комплектация включает вольтметр, омметр и амперметр. Отдельные модификации выполнены в виде токоизмерительных клещей. Выпускаются как аналоговые, так и электронные измерители.
Чтобы начать процесс замера, следует переключиться в режим измерения переменного напряжения. Замер осуществляется одним из нескольких методов:
- Зажимаем один из имеющихся щупов двумя пальцами. Второй щуп направляем к контакту, который расположен в выключателе или розетке. Если данные на мониторе несущественные (не превышают 10 вольт), речь идет о нуле. Если же прикоснуться к другому контакту, показатель будет выше — это фаза.
- Если имеются опасения относительно необходимости притрагиваться к щупу, есть другой путь. Один из стержней направляем в розетку. Вторым стержнем прикасаемся непосредственно к стене рядом с розеткой. Результат будет примерно таким же, как и в случае, описанном выше.
- Существует третий способ измерения с помощью мультиметра. Прикасаемся щупом к заземленной поверхности (например, корпусу оборудования). Вторым щупом касаемся измеряемой поверхности. Если провод является фазой, мультитестер обнаружит напряжение в 220 вольт.
Индикаторная отвертка
Индикатор — простой способ определения фазы, доступный даже человеку, впервые занявшемуся этим делом. Контрольная отвертка внешне напоминает стандартную. Отличие состоит в наличии внутреннего устройства у индикаторной отвертки. Рукоять отвертки производится из специального прозрачного пластика. Внутри находится диод. Верхняя часть изготовлена из металла.
Обратите внимание! Нельзя использовать индикаторную отвертку не по назначению. Она не предназначена для отвинчивания и закручивания винтов. Нецелевое использование контрольной отвертки станет причиной выхода ее из строя.
Чтобы найти фазу и ноль при помощи отвертки, нужно выполнить такую последовательность операций:
- Концом отвертки касаемся контакта.
- Нажимаем пальцем на металлическую кнопку вверху отвертки.
- Если светодиод загорелся, речь идет о фазе. Если он не реагирует — это ноль.
Обратите внимание! Индикаторная лампа, рассчитанная на 220–380 вольт, будет светиться при напряжении, превышающем 50 вольт.
При работе с индикаторной отверткой рекомендуется придерживаться следующих мер безопасности:
- Не дотрагиваться до нижнего конца отвертки во время проведения замеров.
- Держать отвертку в чистоте, иначе велик риск нарушения изоляции.
- Если нужно определить отсутствие напряжения, вначале проверить работоспособность прибора, совершенно точно находящегося под напряжением.
Совет! В сети постоянного тока полярность контактов определяется очень простым способом. Для этого достаточно опустить провода в емкость с водой. Возле одного из проводов станут образовываться пузыри — это минус. Второй провод — плюс.
Не следует путать индикаторную отвертку с приспособлением для прозвона. Отвертка для прозвона снабжена батарейками. При работе с таким устройством для определения нуля и фазы не нужно нажимать на кнопку, так как отвертка будет светиться в любой из возможных ситуаций.
Как течет ток
Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.
Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.
Электрический ток и поток электронов
Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.
Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.
Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.
У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.
Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).
Электрический ток в параллельной цепи
В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.
Вид цепи и напряжение
В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:
- Цепи постоянного тока;
- Цепи переменного тока.
Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).
На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.
Для цепей переменного тока характерны такие виды и значения напряжения, как:
- мгновенное;
- амплитудное;
- среднее значение;
- среднеквадратическое;
- средневыпрямленное.
Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)
Виды токов: постоянные и переменные
В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:
- Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
- Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.
Двунаправленное перемещение зарядов
Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).
Значение перемещения электронов в электрической схеме
Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,
диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.
Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.
Какой ток в розетке? Постоянный или переменный?
Электричество является одной из главных составляющих обеспечения повседневной жизни современного человека, но далеко не каждый обыватель имеет представление хотя бы о том, какой ток в розетке постоянный или переменный, не говоря уже о его других основных параметрах и свойствах, о которых надо знать.
Виды тока
Для того чтобы иметь представление о том, какой ток в розетке вашего дома, не стоит останавливаться на изучении физического понятия этого явления, эти данные можно получить из различной справочной литературы или из школьных учебников. Достаточно ограничиться знаниями, что человечество пользуется двумя его видами:
- Постоянный ток, источниками которого, как правило, являются аккумуляторы, гальванические элементы (электрические батарейки различных видов), солнечные батареи, термопары. Он находит широкое применение в бортовых сетях автомобильного и воздушного транспорта, электронных схемах компьютеров, систем автоматики, радио и телеаппаратуры. Постоянным током запитаны контактные сети железных дорог, он обеспечивает работу энергетических установок ряда кораблей и судов.
- Переменный ток. Более 90% всей электроэнергии, которая генерируется для нужд человечества, вырабатывается генераторами переменного тока. Столь широкое распространение объясняется тем, что переменный ток, в отличие от постоянного, имеет способность передаваться на большие расстояния, а трансформаторные подстанции изменять величины его напряжения до необходимых значений, без ощутимых потерь.
Вышеуказанное свойство переменного тока дает ответ на вопрос, почему основной вариант энергообеспечения выбран в его пользу. При этом нельзя принижать значение постоянного тока, он выполняет другие, но не менее значимые функции, главная из которых обеспечение работы электроники.
Параметры домашней электрической сети
После выяснения того, что ток в розетке наших домов переменный, необходимо знать его главные параметры, которым относятся величина напряжения, и частота. Напряжение домашних электрических сетей составляет 220в. Весь мир пользуется электричеством с частотой 50 Герц, за исключением США, где этот параметр имеет значение 60 Гц.
По проводу фактических значений напряжения и частоты необходимо знать:
- Частота 50 Гц задается генерирующим устройством электростанции и всегда соответствует заданному значению.
- Напряжение в отдельно взятом доме или квартире может отличаться от номинального значения 220 В. На это могут оказывать влияние техническое состояние, величина и распределение нагрузки сети, питающей многоквартирный дом или жилой район, степень загруженности ее трансформаторной подстанции. Эти отклонения, могут быть весьма значительными и достигать 20-25 Вольт. В этом случае целесообразно подключение домашней электросети производить через стабилизатор напряжения.
Токовая нагрузка
Каждая электрическая розетка снабжена маркировкой, ограничивающей ее токовую нагрузку. К примеру, «5 А» означает, что сила тока, возникающая в результате работы подключенного потребителя, не должна превышать 5 Ампер. Это очень важно, ибо невыполнение данных условий может преждевременно вывести из строя розетку или же вызвать ее возгорание.
Маркировки на розетках
Электрические приборы, выпускаемые промышленностью, снабжены паспортом с указанием потребляемой мощности, или же номинальной токовой нагрузки. К наиболее энергоемким бытовым потребителям относятся СВЧ-печи, сплит системы, автоматизированные стиральные машины, электрические кухонные плиты и духовые шкафы, подключение данных приборов необходимо производить к розеткам, обеспечивающим работу с нагрузкой не менее 16 Ампер.
Как быть, если некоторые электротехнические изделия снабжены только данными о мощности, а сведений о потребляемых амперах изготовитель не указывает. Определить приблизительные величины токовых значений очень просто при помощи формулы электрической мощности
Где W – мощность, U – напряжение, I – сила тока.
Мощность (указана в паспорте) и напряжение сети известны, для того чтобы найти потребляемый ток, необходимо значение мощности в Ваттах (не в килоВаттах) разделить на величину напряжения 220в.
Как трехфазный ток преобразуется в однофазный
Осталось разобраться, почему мы пользуемся однофазным током с напряжением, величина которого составляет именно 220 Вольт. Для этого необходимо проследить путь, и трансформацию электроэнергии от электростанции до розетки в доме потребителя.
Мощные электростанции вырабатывают напряжение порядка 200 300 тысяч вольт, затем эта электроэнергия передается по высоковольтным ЛЭП на групповые распределительные подстанции, обслуживающие города, районы, крупные промышленные предприятия. Здесь происходит понижение напряжения, как правило, до 6000 Вольт и дальнейшая подача электричества на понижающие подстанции, трансформаторы которых снижают высокое напряжение до 380 Вольт.
Схема распределения электроэнергии между домами
Низковольтная сторона понижающей трансформаторной подстанции 6000/380 выдает три фазы и нейтральный или, как говорят, нулевой провод. Напряжение, замеренное между фазами, называется линейным (Uл), в данном случае она имеет величину 380 В. Подключение отдельно взятых потребителей производится от одной фаза и нейтрального провода, в результате чего в дом поступает переменный однофазный ток с фазным напряжением 220в.