Какие функции может выполнять система фапч
Перейти к содержимому

Какие функции может выполнять система фапч

7. ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ

Системой фазовой автоподстройки частоты ( ФАПЧ ) называется система автоматического регулирования, обеспечивающая автоматическое регулирование частоты управляемого генератора в устройствах приема и обработки сигналов в соответствии с частотой входного сигнала и использующая в качестве измерительного элемента фазовый детектор.

Системы ФАПЧ используются для подстройки частоты гетеродина в супергетеродинных радиоприемных устройствах, выделения несущей частоты в демодуляторах систем передачи сообщений при реализации когерентного приема сигналов, измерения частоты с помощью узкополосных следящих фильтров при формировании высокостабильных колебаний в синтезаторах частот различных радиотехнических устройств и т. д. Системы ФАПЧ могут быть реализованы в аналоговом и цифровом виде.

Особенностью системы ФАПЧ (находящейся в состоянии синхронизации) является нулевая статическая ошибка по частоте, т. е. равенство частот колебаний подстраиваемого генератора (гетеродина) u г ( t ) = U г cos ω г t и эталонного (входного) колебания u c ( t ) = U c cos ω с t . Вместе с тем в электронных системах ФАПЧ существует статическая ошибка регулирования по фазе, т. е. статическое отличие фаз колебаний подстраиваемого генератора, управляемого напряжением (ГУН), и эталонного сигнала. Системы ФАПЧ обычно имеют сравнительно узкий диапазон начальных расстроек, в котором они осуществляют подстраивающее действие. При анализе работы системы ФАПЧ рассматривают режимы удержания и захвата.

Режимом удержания называется установившийся режим равенства частот ω с = ω г , соответствующий эффективной работе системы ФАПЧ при медленных изменениях начальной расстройки. При этом имеются в виду изменения, скорость которых много меньше скорости переходных процессов в системе.

Режимом захвата называется процесс, возникающий при скачкообразном изменении начальной расстройки и заканчивающийся установлением режима удержания. Характерным различием этих режимов является то, что в режиме захвата существенную роль играют переходные процессы.

Основными характеристиками систем ФАПЧ являются следующие:

 полоса удержания ΔΩ У – область начальных расстроек гУН, внутри которой система ФАПЧ эффективно работает в режиме удержания;

 полоса захвата ΔΩ З – область начальных расстроек гУН, внутри которой система ФАПЧ эффективно работает в режиме захвата;

 Устройства приема и обработки сигналов. Лаб. практикум

7. ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ

 время захвата t З – время перехода системы ФАПЧ в режим синхронизации, существенно зависящее от значения начальной расстройки между частотой входного колебания и частотой колебания гУН.

7.2. Принципыработысистемы фазовойавтоподстройкичастоты

Основными элементами структурной схемы системы фазовой автоподстройки частоты ( рис. 7.1 ) являются: фазовый детектор – ФД, фильтр низкой частоты – ФНЧ, усилитель – УС, управляющий элемент – УЭ и перестраиваемый (синхронизируемый) генератор – гУН.

Какие функции может выполнять система фапч

Фа́зовая автоподстро́йка частоты (ФАПЧ) — система автоматического регулирования, подстраивающая частоту управляемого генератора так, чтобы она была равна частоте опорного сигнала. Регулировка осуществляется благодаря наличию отрицательной обратной связи. Выходной сигнал управляемого генератора сравнивается на фазовом детекторе с опорным сигналом, результат сравнения используется для подстройки управляемого генератора.

Система ФАПЧ используется для частотной модуляции и демодуляции, умножения и преобразования частоты, частотной фильтрации, выделения опорного колебания для когерентного детектирования и в других целях.

ФАПЧ сравнивает фазы входного и опорного сигналов и выводит сигнал ошибки, соответствующий разности между этими фазами. Сигнал ошибки проходит далее через фильтр низких частот и используется в качестве привода для генератора, управляемого напряжением (ГУН), обеспечивающего отрицательную обратную связь. Если выходная чатота отклоняется от опорной, то сигнал ошибки увеличивается, воздействуя на ГУН в сторону уменьшения ошибки. В состоянии равновесия выходной сигнал фиксируется на частоте опорного.

ФАПЧ широко используется в радиотехнике, телекоммуникациях, компьютерах и других электронных устройствах. Данная система может генерировать сигнал постоянной частоты, восстанавливать сигнал из зашумлённого коммуникационного канала или распределять сигналы синхронизации часов в цифровых логических схемах, таких, как микропроцессоры. С тех пор, как интегральная схема может полностью реализовать технику ФАПЧ, она часто используется в современных электронных устройствах с тактовой частотой более ГГц.

Содержание

Аналогия

Настройка струны на гитаре может быть сравнена с процессом фазовой автоподстройки частоты. Используя камертон или камертон-дудку для получения опорной частоты, натяжение струны регулируется до тех пор, пока биения перестанут быть слышны. Это сигнализирует о том, что камертон и гитара вибрируют на одной частоте. Если представить, что гитара может быть идеально настроена на опорный тон камертона, и строй будет сохраняться, можно говорить о том, что струна гитары стабилизирована по фазе с камертоном.

История

Первые исследования, которые стали известны под названием фазовой автоподстройки частоты, относятся к 1932 году, когда британские учёные разработали альтернативу супергетеродинному радиоприёмнику Эдвина Армстронга — гомодинный или радиоприёмник прямого преобразования. В гомодинной или синхродинной системе, генератор настроен на выбранную входную частоту а его сигнал умножается на входной. Результирующий выходной сигнал несёт в себе информацию о модуляции звука. Целью является разработка схемы альтернативного приёмника, которая требует меньше электрических цепей, чем супергетеродинный приёмник. С того времени, как частота местного гетеродина приёмника быстро сдвинулась, сигнал автокоррекции подаётся на вход гетеродина, позволяя ему сохранять фазу и частоту такой же, как и у входного сигнала. Данная методика была описана в 1932 году в статьях Henri de Bellescize во французском журнале Onde Electrique. [1]

В аналоговых телевизионных приёмниках по крайней мере, начиная с конца 30-х годов прошлого века, система фазовой автроподстройки частоты горизонтальной и вертикальной развёртки настраивается по импульсам синхронизации сигнала вещания. [2]

Линейка монолитных интегральных схем, внедрённых en:Signetics в 1969, представляла собой чипы, полностью реализующие систему ФАПЧ. [3] Несколькими годами позже RCA внедрили «CD4046» CMOS, микроваттную ФАПЧ, что стало распространённой интегральной схемой.

Структура и функции

Устройства ФАПЧ могут быть реализованы как аналоговой, так и цифровой схемой. Обе реализации используют одинаковую принципиальную схему. Как аналоговая, так и цифровая схема ФАПЧ включает в себя 3 основных элемента:

  • фазовый детектор (часто включающая в себя делитель частоты)

Цифровая фазовая автоподстройка частоты

Цифровая фазовая автоподстройка частоты (ЦФАПЧ) работает схожим образом с аналоговой, но полностью реализуется с помощью цифровых схем. Вместо ГУН используются системные часы и счётчик-делитель под цифровым управлением. ЦФАПЧ более проста в разработке и реализации, меньше чувствительна к шумам напряжения (по сравнению с аналоговой), однако, обычно она допускает фазовый шум по причине наличия шума квантования при использовании цифрового генератора. Вследствие этого ЦФАПЧ непригодны для работы на высокой частоте или управления высокочастотными опорными сигналами. ЦФАПЧ иногда используются для восстановления данных.

Аналоговая фазовая автоподстройка частоты

Принципиальная схема

Аналоговые ФАПЧ состоят из фазового детектора, фильтра низких частот и генератора, управляемого напряжением, собранных в схему с отрицательной обратной связью. Также в схеме может присутствовать делитель частоты — в обратной связи и/или на пути опорного сигнала с целью получения на выходе частоты опорного сигнала, умноженной на целое число. Нецелое умножение опорной частоты может осуществляться путём перемещения элементарного умножителя частоты на обратную связь с программируемым счётчиком импульсов.

Генератор вырабатывает периодический выходной сигнал. Предполагается, что начальная частота генератора приблизительна равна опорной. Если фаза генератора запаздывает относительно фазы опорного сигнала, фазовый детектор изменяет управляющее напряжение на генератора, что приводит к его ускорению. Аналогично, если фаза смещается, обгоняя фазу опорного, фазовый детектор изменяет напряжение для замедления генератора. Фильтр низких частот сглаживает резкие изменения управляющего напряжения, можно показать, что такая фильтрация требуется для стабильных систем.

Что такое петля фазовой автоподстройки частоты?

Большинство из нас видело фразу «петля ФАПЧ» (петля фазовой автоподстройки частоты) или «PLL» (phase-locked loop). Однако я подозреваю, что относительно немногие из нас полностью понимают 1) внутреннюю работу петли ФАПЧ и 2) как это внутреннее поведение приводит к различным способам использования ФАПЧ. Моя цель в данной статье – дать ясное, интуитивно понятное объяснение основных характеристик ФАПЧ, а подробности мы продолжим изучать в последующих статьях.

Термины «петля фазовой автоподстройки частоты» и «phase-locked loop» встречаются в разных контекстах: микроконтроллеры, радиочастотные демодуляторы, модули генераторов, последовательная связь. Первое, что нужно понять, это то, что «ФАПЧ» или «PLL» не относятся к одному компоненту. ФАПЧ – это система, она состоит из нескольких компонентов, которые тщательно спроектированы и связаны между собой в схеме отрицательной обратной связи. Это правда, что ФАПЧ (или PLL) продаются как одна интегральная микросхема, и поэтому было бы естественно думать о них как о «компоненте», но не позволяйте этому отвлекать вас от того факта, что петля ФАПЧ аналогична схеме усилителя на базе операционного усилителя, а не самому операционному усилителю.

ФАПЧ ≥ ФД + ФНЧ + ГУН

Давайте начнем со структурной схемы.

Структурная схема петли фазовой автоподстройки частоты Структурная схема петли фазовой автоподстройки частоты

Схема настолько проста, насколько простой может быть петля ФАПЧ. Давайте обсудим три основных компонента.

  • Фазовый детектор (ФД) (к сожалению) на самом деле не является фазовым детектором, но это стандартная терминология. Фазовый детектор в ФАПЧ фактически является детектором разности фаз, то есть он принимает два периодических входных сигнала и выдает выходной сигнал, представляющий разность фаз между двумя входными сигналами.
  • Выходной сигнал фазового детектора не является простым аналоговым сигналом, который пропорционален разности фаз. Простой аналоговый сигнал где-то там есть, но он идет вместе с высокочастотными составляющими, которые делают этот сигнал очень отличающимся от того, что вы ожидаете увидеть. Поэтому здесь используется фильтр нижних частот: он подавляет высокочастотные составляющие и преобразует выходной сигнал фазового детектора в нечто, что может контролировать генератор, управляемый напряжением (ГУН).
  • Генератор, управляемый напряжением, (ГУН), как вы уже догадались, это генератор, который управляется с помощью напряжения. Более конкретно, напряжением управляется частота периодического сигнала, генерируемого генератором. Таким образом, ГУН является генератором с переменной частотой, который позволяет внешнему напряжению влиять на частоту его колебаний. В случае ФАПЧ управляющее напряжение представляет собой сигнал фазового детектора после фильтрации.

Сигналы

Прежде чем мы обсудим работу отрицательной обратной связи, давайте перенесем это обсуждение в практическую сферу. Мы рассмотрим некоторые сигналы, создаваемые цифровой петлей ФАПЧ. Вы можете представлять ФАПЧ как преимущественно аналоговую систему, и это правильно, но экспериментировать с цифровой системой (на мой взгляд) проще. Необходимо помнить, что как к аналоговым, так и к цифровым реализациям применимы одни и те же понятия. Если вы понимаете, что происходит с этими цифровыми сигналами, вы понимаете сигналы ФАПЧ в целом.

В цифровой петле ФАПЧ всё, что нужно для фазового детектора, – это элемент «исключающее ИЛИ» (XOR). Как вы знаете, элемент исключающее ИЛИ выдает на выходе логическую единицу только тогда, когда два входных сигнала различаются между собой. Если вы распространите это поведение на ситуацию, в которой оба входных сигнала представляют собой прямоугольные сигналы, исключающее ИЛИ становится «детектором несовпадения фаз»:

Сигналы на входах и выходе элемента исключающее ИЛИ (фазового детектора) Сигналы на входах и выходе элемента исключающее ИЛИ (фазового детектора)

Эти два прямоугольных сигнала имеют небольшую разность фаз, и, следовательно, они находятся в разных логических состояниях во время небольшой части периода. Когда логические состояния различаются, на выходе элемента исключающее ИЛИ высокий логический уровень. Если разность фаз становится больше, выходной сигнал элемента XOR находится в состоянии логической единицы больше времени.

Сигналы на входах и выходе элемента исключающее ИЛИ (фазового детектора) при увеличении разности фаз входных сигналов Сигналы на входах и выходе элемента исключающее ИЛИ (фазового детектора) при увеличении разности фаз входных сигналов

Вот как элемент исключающее ИЛИ работает в качестве фазового детектора. Когда разность фаз увеличивается, выходной сигнал больше времени в течение периода находится в высоком логическом состоянии. Другими словами, коэффициент заполнения и, следовательно, среднее значение выходного сигнала элемента исключающее ИЛИ прямо пропорциональны разности фаз.

Следующим шагом является использование этого среднего значения в качестве управляющего сигнала для ГУН, и именно здесь появляется фильтр нижних частот:

Сигналы на входах и выходе фазового детектора и на выходе фильтра нижних частот Сигналы на входах и выходе фазового детектора и на выходе фильтра нижних частот

Зеленая линия, которая является средним значением с небольшим количеством пульсаций, получается путем пропускания сигнала с фазового детектора через простой RC фильтр нижних частот (вы можете узнать эту методику, если использовали ЦАП на ШИМ, который представляет собой цифро-аналоговый преобразователь, который работает путем низкочастотной фильтрации сигнала с широтно-импульсной модуляции). Этот сигнал помечен на графике как «ctrl» (control, управление), потому что это сигнал, который мы можем использовать для управления (то есть изменения частоты) ГУН.

Замыкание петли

ФАПЧ можно использовать различными хитрыми способами, но основная функция заключается в «привязке» выходной частоты к входной частоте. (Петли ФАПЧ также привязывают выходную фазу к входной фазе, как и следует ожидать от названия PLL, «phase-locked loop», «петля фазовой синхронизации», но это другой тип синхронизации.) Работа привязки/захвата/синхронизации становится возможной благодаря отрицательной обратной связи, то есть путем направления выходного сигнала назад на фазовый детектор (как показано на приведенной выше схеме).

По моему опыту, попытка полностью понять точный процесс, с помощью которого ФАПЧ фиксирует выходную частоту по входной частоте, похожа на попытку схватить кусок тумана и удержать его в руке. Это прямо перед вами, и вы знаете, что это реально, и вы более или менее знаете, что это такое, но оно ускользает, когда вы действительно пытаетесь наблюдать и понимать его. Этот процесс мы обсудим в следующей статье. А пока я оставлю вам несколько важных замечаний, которые помогут вам обдумать этот интересный принцип действия.

  • Фазовый детектор будет создавать в выходном сигнале постоянный коэффициент заполнения (и, следовательно, постоянное среднее значение), только когда две входные частоты равны (как в примерах выше). Различающиеся частоты приводят к периодическим изменениям коэффициента заполнения: Результат работы фазового детектора при входных сигналах 2 кГц и 1,67 кГц Результат работы фазового детектора при входных сигналах 2 кГц и 1,67 кГц Результат работы фазового детектора при входных сигналах 2 кГц и 1,25 кГц Результат работы фазового детектора при входных сигналах 2 кГц и 1,25 кГц
  • Следовательно, управляющее напряжение будет продолжать увеличиваться и уменьшаться, пока выходная частота не станет равной входной частоте.
  • Чтобы выполнить захват, петля ФАПЧ должна делать большее, что выравнивание выходной и входной частот. Также необходимо установить фазовый сдвиг между входным и выходным сигналами, который приводит к соответствующему управляющему напряжению.
  • ФАПЧ не имеет возможности напрямую управлять фазой сигнала ГУН. Единственный способ подстраивать фазу ГУН – это подстраивать частоту; таким образом, изменения частоты будут продолжаться до тех пор, пока не будут достигнуты как синхронизация по частоте, так и синхронизация по фазе.

Заключение

Мы рассмотрели базовую структурную схему и некоторые подробности работы петли фазовой автоподстройки частоты, которая представляет собой систему с отрицательной обратной связью, и которая может генерировать периодический сигнал, который фиксируется и отслеживает частоту входного сигнала. Мы продолжим изучать работу и применение петли ФАПЧ в следующих статьях.

Применение системы фазовой автоподстройки частоты при отслеживании частоты и фазы сигнала

Нгуен, Суан Чыонг. Применение системы фазовой автоподстройки частоты при отслеживании частоты и фазы сигнала / Суан Чыонг Нгуен. — Текст : непосредственный // Молодой ученый. — 2020. — № 11 (301). — С. 51-54. — URL: https://moluch.ru/archive/301/68124/ (дата обращения: 15.10.2022).

В данной работерассматривается работа системы фазовой автоподстройки частоты, а также смоделирован и проанализирован её применения для отслеживания частоты и фазы сигнала.

Ключевые слова: фазовая автоподстройка частоты, PLL, отслеживание частоты и фазы.

В настоящее время система фазовой автоподстройки частоты (ФАПЧ) является ключевой технологией в многих схемах радиотехники и спутниковой связи. Схемы ФАПЧ используются в передатчиках и приемниках, при аналоговой и цифровой модуляции, а также при передаче цифровых сигналов. Схема ФАПЧ позволяет обеспечить точную настройку, частотную селекцию и фильтрацию без использования громоздких элементов фильтров, используемых в схемах детектирования. Система ФАПЧ находит широкое применение, ей поcвящено много книг и статей [1–4].

Описание системы

Фазовая автоподстройка частоты — система автоматического регулирования, подстраивающая фазу управляемого генератора так, чтобы она была равна фазе опорного сигнала, либо отличалась на известную функцию от времени. ФАПЧ сравнивает фазы входного и опорного сигналов и выводит сигнал ошибки, соответствующий разности между этими фазами. Сигнал ошибки проходит далее через фильтр низких частот и используется в качестве управляющего для генератора, управляемого напряжением (ГУН), обеспечивающего отрицательную обратную связь. Если выходная частота отклоняется от опорной, то сигнал ошибки увеличивается, воздействуя на ГУН в сторону уменьшения ошибки. В состоянии равновесия выходной сигнал фиксируется на частоте опорного. Существенной особенностью системы ФАПЧ, отличающей ее от большинства других систем автоматического регулирования, является то, что выходной величиной ГУН является частота, а входной величиной ФД — разность фаз управляющего сигнала и сигнала обратной связи, поступающего с выхода ГУН [5].

Рис. 1. Структурная схема системы ФАПЧ

Использование ФАПЧ для отслеживания частоты ифазы сигнала

С использованием системы ФАПЧ, данная схема моделирует систему управления с обратной связью, которая отслеживает частоту и фазу синусоидального сигнала с использованием внутреннего генератора частоты. Система управления регулирует частоту внутреннего генератора для поддержания разности фаз в 0.

Рис. 2. Схема системы ФАПЧ для отслеживания частоты и фазы сигнала

Входной сигнал смешивается с сигналом внутреннего генератора. Компонент постоянного тока смешанного сигнала (пропорциональный разности фаз между этими двумя сигналами) извлекается со средним значением переменной частоты. Пропорционально-интегрально-производный (ПИД) регулятор с опциональной автоматической регулировкой усиления (АРУ) поддерживает разницу фаз до 0, воздействуя на управляемый генератор. Выход ПИД, соответствующий угловой скорости, фильтруется и преобразуется в частоту в герцах, которая используется средним значением.

Моделирование ианализ результатов

Для моделирования системы ФАПЧ и оценки реализуемости метода в среде Simulink MATLAB [6] была разработана модель схемы (рис. 3). Данная схема в среде Simulink смодулирована с помощью стандартного блока Selector [7].

Рис. 3. Схема для моделирования работы ФАПЧ

В качестве источника использует блок «Трехфазный программируемый генератор» [8], который генерирует трехфазный сигнал с программируемым изменением во времени амплитуды, фазы, частоты и гармоник.

Блок ФАПЧ (схема блока показана на рис. 2) питается синусоидальным сигналом 70 Гц, который увеличивается до 71 Гц с 0,5 с до 1,5 с. Понятно, что здесь частота достигает новой частоты за короткое время отклика.

Блок ФАПЧ (3ф) питается трехфазными синусоидальными сигналами с частотой от 70 Гц до 71 Гц в диапазоне от 0,5 до 1,5 секунд.

Время выборки модели параметризуется с помощью переменной Ts (в данном случае выбран Ts = 50e-6, чтобы дискретизировать блок ФАПЧ).

Рис. 4. Результат моделирования, частота и фаза сигнала на выходе системы ФАПЧ

Из графиков видно, что частота ФАПЧ (3ф — трехфазный) достигает новой частоты быстрее, чем ФАПЧ, благодаря дополнительной информации о фазе. Фаза и частота, получены в результате моделирования соответствуют заданные параметры сигнала на входе схемы. Таким образом, получили применение системы ФАПЧ для отслеживания частоты и фазы сигнала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *