Методы и приборы контроля теплового излучения
Стенд лабораторный «Защита от теплового излучения БЖ Зм» позволяет ознакомиться с методами измерения плотности потока теплового излучения от нагретых поверхностей, а также оценить эффективность защитных свойств материалов, используемых для спецодежды и защитных экранов. Стенд представляет собой лабораторный стол, на котором размещаются бытовой электрокамин, индикаторный блок, линейка, стойки для установки сменных экранов, стойка для установки измерительной головки измерителя тепловых потоков. Бытовой электрокамин используется в качестве источника теплового излучения. Бытовой пылесос используется в качестве источника «воздушной завесы» и устанавливается под полом стенда. Стойки для установки сменных защитных экранов обеспечивают оперативную установку и замену экрана. Стандартное металлическое миллиметровая линейка предназначена для измерения расстояния от источника теплового излучения до измерительной головки и закреплена на столешнице.
Приборы для измерения интенсивности теплового излучения
Для измерения интегральной интенсивности теплового излучения используется приборы чувствительные к инфракрасной и видимой области спектра — термоэлектрический актинометр, радиометр, болометр и т.п..
Принцип действия термоэлектрического актинометра (РИС4)основан на различной поглощающей способности зачерненных и блестящих полос серебряной фольги. Вследствие различия температуры зачерненных и незачерненных участков серебряной фольги, в расположенных под ними термобатарее возникает электрический ток. Сила тока прямо пропорциональна интенсивности теплового излучения, значения которого считываются со шкалы прибора. Диапазон измерений Е 0-14000Вт/м , погрешность измерения ±175 Вт/м .
Рис.4 Приборы для измерения нагретых поверхностей
Для измерения температуры нагретых поверхностей оборудования применяются контактные термометры и термопреобразователи сопротивления (термопары) или дистанционными (пирометры и др.).
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Порядок выполнения работы и оформление отчета
1. Подключить стенд к сети переменного тока, а источник теплового излучения к розетке пульта управления.
2. Включить источник теплового излучения (верхнюю часть) и измеритель теплового потока ИПП-2м.
3. Установить головку измерителя теплового потока в штативе таким образом, чтобы она была смещена относительно стойки на 100мм. Вручную перемещать штатив вдоль линейки, устанавливая головку измерителя на различном расстоянии от источника теплового излучения, и определять интенсивность теплового излучения в этих точках (определять как среднее значение не менее 5 замеров). Данные замеров занести в таблицу. Построить график зависимости среднего значения интенсивности теплового излучения от расстояния.
4. Устанавливая различные защитные экраны, определить интенсивность теплового излучения на заданных расстояниях. Оценить эффективность защитного действия экранов по формуле (2). Построить график зависимости среднего значения интенсивности теплового излучении от расстояния.
5. Установить защитный экран (по указанию преподавателя). Разместить над ним широкую щетку пылесоса. Включить пылесос в режиме отбора воздуха, имитируя устройство вытяжной вентиляции, и спустя 2-3 минуты (после установления теплового режима экрана) определить интенсивность теплового излучения на тех же расстояниях, что и в пункте 3. Оценить эффективность комбинированной тепловой защиты по формуле (2). Построить график зависимости интенсивности теплового излучения от расстояния. По результатам измерений определить эффективность «вытяжной вентиляции» (количество уносимого пылесосом тепла). Эту же эффективность определить, измеряя температуру теплозащитного экрана с помощью датчика температуры измерителя ИПП-2м в режиме с использованием «вытяжной вентиляции» и без нее.
6. Перевести пылесос в режим «воздуходувки» и включить его. Направляя поток воздуха на поверхность защитного экрана (режим «душирования»), повторить измерения в соответствии с пунктом 5. сравнить результаты измерений п.п. 5 и 6.
7. Закрепить шланг пылесоса на одной из стоек и включить пылесос в режиме «воздуходувки», направив поток воздуха почти перпендикулярно тепловому потоку (немного навстречу) — имитация «воздушной завесы». С помощью датчика температуры ИПП-2м измерить температуру воздуха в месте размещения тепловых экранов без воздушной завесы и с завесой.
Пирометр — бесконтактный цифровой термометр
Современное инженерное устройство для определения температуры любого предмета, основывающееся на инфракрасном датчике, называется пирометром. Также он известен под названиями термодетектора, даталоггера температуры, цифрового термометра или инфракрасного пистолета. В основе действия прибора заложен принцип определения температурного значения поверхности объекта по тепловому электромагнитному излучению его поверхности. Пирометр улавливает невидимое инфракрасное излучение, преобразует его в градусы, и полученный результат выводит на дисплее. Бесконтактный и быстрый метод исследования необходимых объектов позволяет специалистам избежать возможных травм.
Цветовые пирометры
В отечественных цветовых пирометрах использован метод красно-синего отношения. Для измерения обоих монохроматических яркостей используют один приемник излучения (фотоэлемент или фотосопротивление) с общим каналом усиления измеряемых сигналов.
Преимущество метода цветовой пирометрии перед другими бесконтактными оптическими способами измерения температуры состоит в том, что в качестве объекта измерения не обязательно иметь АЧТ. Кроме того, исключается влияние излучений, изменения рельефов поверхности, расстояния от пирометра, неселективных поглотителей лучистой энергии, расположенных между объектом измерения и пирометром (сеток, стекол, диафрагм, призм и т.п.).
Типичными образцами цветовых пирометров являются приборы ЦЭП – 3М (рис. 3.10.) и ЦЭП – 4.Комплект прибора состоит из трех блоков: датчика, блока электроники, включающего усилительную и решающую схемы, показывающего или регистрирующего прибора.
Рисунок 3.9 – Устройство пирометра с телескопом ТЭРА – 50:
1 – линза; 2 – установочный фланец; 3 – сменная втулка; 4 – термобатарея; 5 – компенсационная катушка; 6 – камера термобатареи; 7 – крышка; 8 – отверстие для наблюдения; 9 – ввод проводов
Рисунок 3.10 – Принципиальная схема измерения температуры цветовым пирометром
1 – оптическая схема; 2 – диск со светофильтрами; 3 – фотоэлемент; 4 – блок измерения; 5 — самописец
Принцип действия прибора основан на автоматическом измерении логарифма отношения спектральных яркостей в красном и синем участке спектра. Вычислительное устройство автоматически осуществляет логарифмирование отношения яркостей. Логарифм спектрального отношения яркостей пропорционален обратным значениям цветовой температуры.
Измеряемое излучение попадает на фотоэлемент через оптическую систему прибора и через обтюратор, вращаемый синхронным двигателем. Обтюратор выполнен в виде диска с отверстиями, закрытыми красными и синими светофильтрами таким образом, что при вращении диска на фотоэлемент попеременно попадает то красная, то синяя энергетическая яркость. Импульсы фототока, пропорциональные красной и синей спектральным энергетическим яркостям, усиливаются и подаются на вход измерительной системы. Фотоэлемент термостатирован. Все эти устройства смонтированы в головке прибора. Усиленный ток подается в измерительный блок, в котором после соответствующих преобразований сигнал поступает в электронную логарифмирующую систему, позволяющую получать линейную шкалу.
В головке датчика находятся также устройства для ручной и автоматмческой регулировки уровня энергетической яркости, индикаторы и органы управления. Для удаления пыли и дыма из поля зрения при измерении температуры открытых объектов в бленду, надеваемую на тубус объектива, подается сжатый воздух. Диапазон измерений температуры составляет 1400—2800°С. Прибор имеет от 3 до 5 поддиапазонов с интервалом 200—400сС. Показания прибора переводятся в градусы Цельсия спомощью градуировочного графика для данного поддиапазона. Градуировку прибора проводят по образцовым температурным лампам. Предельная ошибка измерения цветовой температуры 2000°С равна ±30°С.
Метод бихроматической цветовой пирометрии для измерения и регулирования температуры заключается в том, что на выходе приемника излучения получают два сигнала, пропорциональные спектральным энергетическим яркостям и со значениями длин волн .
В методе бихроматической цветовой пирометрии сигнал для регулирования определяется разностью двух спектральных энергетических яркостей.
Данный метод регулирования цветовой температуры исключает необходимость применения какой-либо схемы или логометра, измеряющего отношение яркостей. На этом принципе работает пирометр РЭД-1, имеющий один фотоэлемент и разделяющий сигналы, пропорциональные соответствующим спектральным энергетическим яркостям во времени, с помощью вращающегося диска со светофильтрами.
Область применения
Достаточно широкое применение нашлось для пирометров на тех производствах, где установлено большое количество нагревательных приборов. В области строительства и теплоэнергетики они используются для расчета теплопотерь конструкций, в том числе пирометр помогает выявить повреждения теплоизоляции.
В промышленности подобные приборы дают возможность подвергать анализу температуру всевозможных процессов дистанционно. Это бывает необходимо, например, в машиностроении, металлургии и в прочих отраслях промышленности.
Так, электрики проверяют уровень нагрева мест соединения проводов, а автослесари проверяют нагрев деталей машины. Ученым пирометры приходят на помощь во время осуществления различных исследований или опытов: так они определяют верность показателей температуры веществ и тел.
В быту люди применяют подобные устройства для определения температуры тела, воды, еды и др.
Типы и классификация
В зависимости от функционального признака, выделяют несколько классификаций пирометров.
По существенному методу, используемому в работе:
- Инфракрасные;
- Оптические.
Оптические пирометры подразделяются на:
- Яркостные;
- Цветовые, или мультиспектральные.
По образу прицеливания различают устройства с оптическим или лазерным прицелами.
По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.
По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).
Виды пирометров
Для определения температуры различных объектов пирометры делятся на 2 типа:
- Оптические пирометры
- Инфракрасные / радиационные пирометры
Оптические пирометры
Оптические пирометры используются для регистрации теплового излучения видимого спектра. Температура измеряемых горячих объектов будет зависеть от излучаемого ими видимого света.
Фото — пример оптического пирометра
Оптические пирометры визуально сравнивают откалиброванный источника света и поверхность целевого объекта.
Когда температура нити накала и поверхности объекта одинакова, тогда интенсивность теплового излучения, вызванного нитью накала, сливается с поверхностью целевого объекта и становится невидимой.
Когда происходит этот процесс, ток, проходящий через нить накала, преобразуется в уровень температуры.
Инфракрасные
Инфракрасные или радиационные пирометры предназначены для обнаружения теплового излучения в инфракрасной области, которая обычно находится на расстоянии 2–14 мкм.
Фото — пример инфракрасного пирометра
Этот тип пирометра измеряет температуру целевого объекта по испускаемому излучению.
Это излучение можно направить на термопару для преобразования в электрические сигналы. Поскольку термопара способна генерировать более высокий ток, равный выделяемому теплу.
Инфракрасные пирометры состоят из пироэлектрических материалов, таких как:
- поливинилиденфторид (PVDF);
- триглицинсульфат (TGS);
- танталат лития (LiTaO3).
Устройство и принцип действия
Основу структуры пирометра составляет детектор инфракрасного излучения. Данные преобразуются посредством встроенной электронной системы и отображаются на дисплее.
Типовой пирометр по форме напоминает пистолет с небольшим дисплеем. Компактная панель управления, наводка лазером и высокая точность при близком взаимодействии с объектом объясняют востребованность инструмента среди работников инженерных и технических сфер.
Основными рабочими элементами пирометра считают линзу, приёмник, а также дисплей, на который выводится результат измерения. Принцип действия пирометра следующий: от изучаемого объекта исходит инфракрасное излучение и посредством линзы оно фокусируется и отправляется в приемник (термобатарея, полупроводник, термопара).
Если используется термопара, в момент нагрева приемника меняется напряжение. Сопротивление — в случае использования полупроводников. Эти изменения преобразуются в показания температуры.
Для того, чтобы провести измерение, необходимо просто навести пирометр на объект, привести его в действие и отметить полученный результат. Используя специальную кнопку, вы можете регулировать формат измерения температуры — по шкале Цельсия или Фаренгейта.
Принцип работы пирометра
Основными частями инфракрасного устройства являются: линза, ИК-приемник и дисплей температурных показаний. Инфракрасное излучение, идущее от горячего объекта фокусируется линзой и подается на ИК-приемник.
Упрощенное изображение ИК-датчика и горячего объекта ИК-приемник ИК-температурного датчика может представлять собой полупроводниковый материал, термопару или термобатарею (группа термопар, соединенных вместе последовательно). Схема термобатареи
Когда ИК-приемник температурного датчика нагревается, то генерируется напряжение (имеется ввиду, что это термопара или термобатарея) или меняется сопротивление (если речь идет о полупроводниковом материале). Изменение величины напряжения и сопротивления затем преобразуется в соответствующие температурные показания и отображаются на шкале прибора. Если температура объекта уменьшается, то его инфракрасное излучение уменьшается и в данном случае меняющаяся величина сигнала сопротивления и напряжения, посылаемого в приемник будет отображена на шкале как уменьшение температуры.
Для того, чтобы определить температуру объекта бесконтактный цифровой термометр направляется на объект и нажимается спусковой механизм. Показания температуры отображаются на дисплее прибора. С помощью кнопки на приборе можно отображать оказания либо по шкале Цельсия, либо по шкале Фаренгейта.
Технические характеристики
Пирометр обладает рядом параметров, которые характеризуют его функциональность. Выбор желаемой модели аппарата осуществляется по их значениям. Обратимся к основным из них.
Оптическое разрешение
Так называют показатель отношения диаметра пятна инструмента к расстоянию до предмета. Эта функция зависит от угла объектива устройства: чем он больше, тем значительную площадь он сможет охватить. Важнейшим фактором точности измерения является наложение пятна исключительно на материал поверхности. Если площадь превышена, измеренное значение скорее всего будет неточным.
СПРАВКА. У каждой модели пирометра разное оптическое разрешение. Разница между ними внушительная, например, от 2:1 до 600:1. Последнее соотношение характерно для профессиональных устройств. Как правило, используются они в тяжелой промышленности. Оптимальным показателем для бытовых и полупрофессиональных пирометров считается 10:1.
Рабочий диапазон
Диапазон действия прибора зависит от пирометрического датчика и, зачастую, варьируется от -30 °С до 360 °С. Так, для бытового использования подойдут почти все виды пирометров, если учесть максимальную температуру теплоносителя в системе отопления до 110 °С.
Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии |
Стартовая страница | О системе | Технические требования | Синтез | Обучающий модуль | Справка по системе | Контакты |
Общий каталог эффектов
- Научно-технические эффекты (НТЭ)
Прибор для измерения температуры тел, у которых коэффициент поглощения постоянен в оптическом диапазоне спектра.
Описание
(от греч. pýr — огонь и… метрия) — группа методов измерения температуры. Раньше к пирометрии относили все методы измерения температуры, превышающей предельную для ртутных термометров; с 60-х гг. 20 в. к пирометрии всё чаще относят лишь оптические методы, в частности основанные на применении пирометров, и не включают в неё методы, в которых применяются термометры сопротивления, термоэлектрические термометры с термопарами, и ряд др. методов. Почти все оптические методы основаны на измерении интенсивности теплового излучения (иногда — поглощения) тел.
— приборы для измерения температуры непрозрачных тел по их излучению в оптической диапазоне спектра. Тело, температуру которого определяют при помощи пирометра, должно находиться в тепловом равновесии и обладать коэффициентом поглощения, близким к единице. Распространены яркостные, цветовые и радиационные пирометры.
Принцип действия цветовых пирометров
основан на измерении отношений
интенсивностей излучения
на двух
длинах волн
, выбираемых обычно в красной и синей областях
спектра
. Поскольку измерения производятся на двух длинах волн
λ1
и
λ2
, то соответствующие им значения
энергий
определяются соотношением:
Искомое значение температуры
может быть найдено путем решения уравнения вида:
В связи с этим в состав цветового пирометра должно входить специализированное вычислительное устройство, либо оцифрованный сигнал с пирометрического датчика должен подаваться на персональный компьютер, на монитор которого выводится результат измерения.
В том случае, если коэффициенты неполноты излучения равны для обеих длин волн λ1
и
λ2
, измеренная цветовым пирометром температура тела равна истинной температуре тела. Это обстоятельство является одним из существенных преимуществ цветовых пирометров. Вторым важным преимуществом цветовых пирометров по сравнению с радиационными и яркостными является независимость результата измерения от расстояния до объекта измерения и от поглощения радиации в среде.
При измерении температур до 2500°С значения e1
и
e2
могут быть определены предварительно экспериментальным путем. Но при измерениях температур порядка десятков и сотен тысяч градусов значения
e1
и
e2
неизвестны. В этом случае используется измерение интенсивностей излучения не на двух, а на четырех длинах волн (применяется 4 светофильтра). Располагая для составления четырех независимых уравнений, и решая их совместно, можно определить
e1
и
e2
, а затем вычислить и измеряемую температуру Т.
Конструкция датчика цветового пирометра представлена на рисунке 1.
Конструкция датчика цветового пирометра
От объекта измерения 1, излучение проходит фокусирующий объектив
2, а затем – на
катод фотоэлемента
4. Перед фотоэлементом 4 расположен вращающийся от двигателя 5 диск 3 со светофильтрами, выделяющими два участка спектра излучения. Поэтому в обоих участках спектра излучение воспринимается и усиливается усилителем 6 и одинаково. При этом отношение интенсивностей излучения не изменяется от изменения чувствительности измерительного канала. Поочередно воспринятые и усиленные излучения в каждом из участков спектра, поступает на вход устройство цифровой обработки результатов измерений 7.
- фокусирующий объектив
- спектр
- пирометр
- энергия
- длина волны
- излучение
- интенсивность
- цветовой пирометр
- температура
- пирометрия
- фотоэлемент
- катод
Области техники и экономики
- Оптическая техника
- Приборы для измерения оптических и светотехнических величин и характеристик
- Приборы для измерения электрических и магнитных величин
- Квантовая электроника
Цветовые пирометры обладают рядом преимуществ по сравнению с остальными типами:
1. В цветовых пирометрах принципиально невозможны ошибки за счет использования неправильно определенной излучательной способности измеряемого объекта;
2. При одинаковом показателе визирования цветовые пирометры позволяют измерять объекты с гораздо меньшими размерами, чем одноканальные приборы;
3. Цветовые пирометры менее критичны к точности наведения прибора на измеряемый объект;
4. При наличии защитных экранов или поглощающей промежуточной среды цветовые пирометры, в отличие от любых инфракрасных термометров, яркостных пирометров, пирометров полного или частичного излучения, позволяют производить измерения практически без потери точности;
5. Показания цветовых пирометров, в отличие от любых одноканальных инфракрасных термометров и пирометров, принципиально не зависят от расстояния между пирометром и измеряемым объектом;
6. Показания цветовых пирометров, в отличие от любых инфракрасных термометров, яркостных пирометров, пирометров полного или частичного излучения, принципиально не зависят от площади поверхности измеряемого объекта;
7. Благодаря отсутствию необходимости вводить в цветовой пирометр значение излучательной способности, работа с ним намного проще, чем с любым яркостным пирометром, пирометром полного или частичного излучения.
По сравнению с другими устройствами для измерения температуры пирометры позволяют определять ее бесконтактно при теоретически неограниченном верхнем пределе измерения; определять высокие температуры в газовых потоках при высоких скоростях и так далее.
В промышленности пирометры широко применяют в системах контроля и управления температурными режимами разнообразных технологических процессов.
Энергия, которую испускает нагретое тело, зависит не только от температуры этого тела, но и от материала, из которого оно сделано. Различные материалы излучают по–разному, и это учитывается коэффициентом, называемым излучательной способностью. Излучательная способность показывает, какую часть от излучения, испускаемого идеальным излучателем (абсолютно черным телом, АЧТ), находящимся при равной с нашим объектом температуре, излучает наш объект. Значение излучательной способности лежит в пределах от 0,01…0,02 (у полированных металлов) до 0,9…0,98 (дерево, строительные краски, поверхность земли, человеческая кожа и т.д.).
Учет излучательной способности в одноканальных пирометрах осуществляется путем предварительного ввода ее значения в пирометр. В процессе измерения пирометр тем или иным способом компенсирует ослабление излучаемого сигнала, вызванное отличием излучательной способности от 1, после чего отображает измеренную температуру.
Проблема состоит в том, что в цеховых условиях излучательная способность измеряемых объектов чаще всего неизвестна или известна с очень большой погрешостью. Измерить же ее непосредственно с приемлемой точностью потребитель по тем или иным причинам нередко оказывается не в состоянии. В связи с этим вводимое в одноканальный пирометр значение излучательной способности нередко содержит ошибки, что приводит к погрешностям измерений, во много раз большим, чем основная погрешность используемого пирометра.
Сказанное может быть проиллюстрировано следующим примером. Предположим, для измерения температуры 1000–градусного объекта мы используем пирометр частичного излучения с пироприемником, работающим в спектральном диапазоне 8…14 мкм. Основная погрешность пирометра пусть будет равна 1% от измеренного результата. Далее, пусть излучательная способность объекта равна 0,63, а мы ошибочно будем считать, что ее значение равно 0,6. Нетрудно показать, что подобная несущественная на первый взгляд ошибка в значении вводимой величины излучательной способности приведет к тому, что в результате измерения вы получите не 1000°С, а 1037°С, т.е. погрешность измерения окажется практически вчетверо больше основной погрешности прибора.
В отличие от одноканальных, пирометры спектрального отношения вообще не требуют знания излучательной способности и предварительного ввода ее в прибор. Поэтому в цветовых пирометрах принципиально невозможны ошибки за счет использования неправильно определенной излучательной способности измеряемого объекта. Кроме того, благодаря отсутствию необходимости вводить в него значение излучательной способности, работа с цветовым пирометром намного проще, чем с любым яркостным пирометром, пирометром полного или частичного излучения. Все сказанное, естественно, распространяется также и на так называемые инфракрасные термометры, которые, как правило, являются все теми же пирометрами полного или частичного излучения.
При работе с одноканальными пирометрами (инфракрасными термометрами) принципиально необходимо, чтобы размер измеряемого участка поверхности объекта был больше поля зрения пирометра на выбранном расстоянии и полностью перекрывал его. Если это оказывается не так, то прибор занизит показания, причем занижение может быть довольно значительным.
В качестве примера рассмотрим все тот же уже упоминавшийся пирометр с пироприемником. Предположим, что его поле зрения на расстоянии 2 м от прибора составляет круг диаметром 2 см. Предположим далее, что мы с его помощью измеряем металлическую полосу большой длины толщиной 18 мм. Нетрудно показать, что поскольку такая полоска занимает не все 100% поля зрения прибора, а лишь 96,3% от него, в результате измерения вы получите вместо 1000°С всего 973°С, что втрое превышает основную погрешность измерения используемого пирометра.
В отличие от одноканальных, пирометры спектрального отношения не требуют полного перекрытия измеряемым объектом своего поля зрения. Обычно для пирометров спектрального отношения считается нормальным всего 50%–е заполнение измеряемым объектом его поля зрения, и при этом в большей части диапазона измеряемых температур возникающая за счет этого дополнительная погрешность не превышает 1%. Сравните – 4–процентное неперекрытие поля зрения одноканального пирометра приводит к появлению 3%–й дополнительной ошибки, в то время как у цветового пирометра 50–процентное неперекрытие приводит к втрое меньшей дополнительной ошибке.
Отсюда, в частности, следует, что при одинаковом показателе визирования цветовые пирометры позволяют измерять объекты с гораздо меньшими размерами, чем одноканальные приборы. Кроме того, цветовые пирометры менее критичны к точности наведения прибора на измеряемый объект.
Независимо от фирмы-производителя, все одноканальные пирометры и инфракрасные термометры чувствительны к наличию между измеряемым объектом и прибором прозрачных защитных экранов, водяных паров, углекислоты и некоторых других газов, пыли, взвесей. Например, 8–мм защитный экран из стекла К–8 ослабляет излучение измеряемого объекта таким образом, что результат измерения может оказаться заниженным на 3…5%. На 1000°С это составляет от 30 до 50 градусов. Показания цветового пирометра в этих условиях чаще всего остаются неизменными, поскольку сигналы на выходе обоих каналов ослабляются примерно в одинаковое число раз.
Отсюда следует, что при наличии защитных экранов или поглощающей промежуточной среды цветовые пирометры, в отличие от любых яркостных пирометров, пирометров полного или частичного излучения, позволяют производить измерения практически без потери точности.
Все одноканальные пирометры и инфракрасные термометры характеризуются зависимостью результатов измерений от расстояния между пирометром и объектом. Причина этого состоит в том, что освещенность приемника излучения падает пропорционально квадрату расстояния от объекта до пирометра, а площадь поверхности объекта, излучение с которой попадает на приемник, растет медленнее, чем падает освещенность. В итоге, если не приняты специальные меры, при удалении одноканального пирометра от измеряемого объекта результат измерения будет монотонно снижаться, хотя температура объекта будет оставаться неизменной.
Показания цветового пирометра в этих условиях остаются неизменными, поскольку сигналы обоих каналов с ростом расстояния до объекта ослабляются точно в одинаковое число раз. Отсюда следует, что показания цветовых пирометров, в отличие от любых яркостных пирометров, пирометров полного или частичного излучения, принципиально не зависят от расстояния между пирометром и измеряемым объектом.
Поскольку любая оптическая система неидеальна, она всегда захватывает некоторое количество лучей от тех частей измеряемого объекта, которые лежат далеко за пределами поля зрения пирометра. Вследствие этого при измерении одноканальными инфракрасными термометрами и пирометрами (независимо от того, яркостными, частичного и полного излучения) нагретых объектов большой площади показания этих приборов оказываются заметно завышенными.
Показания цветового пирометра в этих условиях остаются неизменными, поскольку сигналы обоих каналов возрастают при измерении нагретых объектов большой площади точно в одинаковое число раз.
Отсюда следует, что показания цветовых пирометров, в отличие от любых яркостных пирометров, пирометров полного или частичного излучения, принципиально не зависят от площади поверхности измеряемого объекта.
1. Физическая энциклопедия / гл.ред. Прохоров А.М. — М.: Большая российская энциклопедия. 1994.
2. Кременчугский Л. С., Ройцина О. В. Пироэлектрические приемники излучения. — Киев: Наук. думка, 1979.
Стартовая страница О системе Технические требования Синтез Обучающий модуль Справка по системе Контакты | |
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина |
Преимущества и недостатки
Как и любой другой прибор, пирометр обладает своими достоинствами и недостатками. Их наличие объясняется нюансами устройства и условиями применения.
- Мобильность, малогабаритность и весьма простая конструкция;
- Доступная низкая стоимость, обусловленная использованием минимального количества элементов в конструкции;
- Высокий уровень надежности;
- Достаточно широкий диапазон измерения.
- Прямая зависимость показаний пирометра от излучаемой способности исследуемого предмета;
- Точность результатов измерений может быть ниже из-за особенности физического состояния поверхности объекта;
- Функция внесения поправки в показатели и установления погрешности предусмотрена только на самых новых приборах;
- Расстояние играет большую роль в точности измерения.
Наиболее популярные модели
ЭОП-66
Пирометр ЭОП-66 применяется при осуществлении научно-лабораторных исследований. Рассчитан он на измерение показателей поверхностей предметов при температуре от +900 до +10000°С,
Данная стационарная модель оснащена телескопом, который состоит из объектива и окулярного микроскопа. Двухлинзовый объектив располагает возможностью фокусировки на дистанции до 25,4 см, а его оптическое разрешение составляет 3:1. Обратите внимание: телескоп данного прибора фиксируется на основании и плавно передвигается в горизонтальной плоскости.
Кельвин ИКС 4-20
Это пирометр высокой точности, который обладает универсальным спектром определения температурных показателей: от -50 до +350 °С, весьма высокая скорость действия – 0,2 с. Применение инструмента предусмотрено в диапазоне 8-14 мкм.
Данный пирометр совмещает в себе возможности как мобильного, так и стационарного устройства. Это обусловлено компактными размерами (17х17х22 см) и наличием посадочного гнезда крепления объектива М12. Производитель гарантирует абсолютную водо- и пыленепроницаемость. Так, представленную модель пирометра возможно использовать в сложных производственных и строительно-промышленных отраслях.
Прибор для измерения теплового излучения называется
Пироме́тр (от др.-греч. πῦρ «огонь, жар» + μετρέω «измеряю») — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта преимущественно в диапазонах инфракрасного излучения и видимого света.
Содержание
Назначение [ править | править код ]
Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.
История [ править | править код ]
Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже).
Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел.
Классификация пирометров [ править | править код ]
Пирометры можно разделить по нескольким основным признакам:
- Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путём сравнения его цвета с цветом эталонной накаливаемой электрическим током металлической нити в специальных измерительных лампах накаливания.
- Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой спектральной полосе излучения, то такой пирометр называют пирометром полного излучения.
- Цветовые (другие названия: мультиспектральные, спектрального отношения) — позволяют измерить температуру объекта, основываясь на результатах сравнения его теплового излучения в различных участках спектра.
Температурный диапазон [ править | править код ]
- Низкотемпературные. Обладают способностью измерять температуры объектов с низкими относительно комнатных температурами, например, температуры холодильных камер холодильников.
- Высокотемпературные. Оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют существенную ошибку в сторону верхнего предела измерения прибора.
Исполнение [ править | править код ]
- Переносные. Удобны в эксплуатации в условиях, когда необходима требуемая точность измерений, с мобильностью, например для измерения температуры участков трубопроводов в труднодоступных местах. Обычно такие переносные приборы снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.
- Стационарные. Предназначены для более точного измерения температуры объектов. Используются, в основном, на крупных промышленных предприятиях для непрерывного контроля технологического процесса при производстве расплавленных металлов и пластиков.
Визуализация величин [ править | править код ]
- Текстово-цифровой метод. Измеряемая температура выражается в градусах на цифровом дисплее. Попутно можно видеть дополнительную информацию.
- Графический метод. Позволяет видеть наблюдаемый объект в спектральном разложении областей низких, средних и высоких температур, выделенных различными цветами.
Вне зависимости от классификации, пирометры могут снабжаться дополнительными источниками питания, а также средствами передачи информации и связи с компьютером или специализированными устройствами (обычно через шину RS-232).
Основные источники погрешности пирометров [ править | править код ]
Самыми важными характеристиками пирометра, определяющими точность измерения температуры, являются оптическое разрешение и настройка степени черноты объекта [1] .
Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром, к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать пирометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.
Коэффициент эмиссии ε (коэффициент излучения, степень черноты) – способность материала отражать падающее излучение. Данный показатель важен при измерении температуры поверхности с помощью инфракрасного термометра (пирометра). Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно чёрного тела при той же температуре. Он может принимать значения от 0 до 1 [2] . Применение неверного коэффициента эмиссии — один из основных источников возникновения погрешности измерений для всех пирометрических методов измерения температуры. На коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075.
Применения [ править | править код ]
Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения.
Электроэнергетика — контроль и пожарная безопасность, эксплуатация объектов (железнодорожный транспорт — контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов).
Лабораторные исследования — при проведении исследований активных веществ в активных средах, а также в тех случаях, при которых контактный метод нарушает чистоту эксперимента (например, тело настолько мало что при измерении контактным методом потеряет существенную часть теплоты, или просто слишком хрупкое для такого типа измерения). Применяется в космонавтике (контроль, опыты)
Строительство — пирометры применяют для определения теплопотерь в зданиях жилого и промышленного назначения, на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки.
Бытовое применение — измерение температуры тела, пищи при приготовлении, и многое другое.
Отдельная большая область применения пиросенсоров – датчики движения в системах охраны зданий. Датчики реагируют на изменение инфракрасного излучения в помещении.
Госреестр СИ № 52648-13
Предназначен для измерения энергетической яркости источника по интенсивности теплового излучения (теплового потока) в инфракрасном диапазоне.
Цена: 49 000 рублей вкл. НДС
Назначение
- Прибор необходим для оснащения испытательных лабораторий средствами измерения в области санитарно-гигиенического контроля микроклиматических условий в жилых и общественных зданиях и помещениях, а также в производственных условиях.
- Не требует периодической компенсации фоновых уровней и выбора диапазона во время измерений
- Готов к работе сразу после включения
- Работает несмотря на возможное изменение температуры окружающей среды, при этом показания прибора автоматически корректируются
- Может использоваться с измерителем параметров микроклимата Метеоскоп-М, оснащенным шаровым термометром
- При проведении скоррелированных измерений тепловых потоков определяется не только суммарное тепловое облучение, но и источник излучения.
- Если источников несколько, можно оценить яркость каждого из них и относительный вклад в суммарное облучение.
Межповерочный интервал и гарантийный срок работы – два года. Техническая поддержка изготовителя на весь срок службы.
Методика измерения внесена в эксплуатационную документацию на средство измерения. Подтверждение соответствия этой методики измерения обязательным метрологическим требованиям к измерениям осуществлено в процессе утверждения типа данного средства измерения. Таким образом, все выпускаемые нами приборы предназначены для выполнения прямых измерений в полном соответствии со ст.5 (Требования к измерениям) Федерального закона 102-ФЗ «Об обеспечении единства измерений».
Технические характеристики
Диапазон измерений энергетической яркости | от 165 до 5000 Вт/(ср•м 2 ) |
Диапазон измерений интенсивности теплового излучения (теплового потока) | от 10 до 2500 Вт/м 2 |
Пределы допускаемой относительной погрешности измерений энергетической яркости и измерений интенсивности теплового излучения | ± 6% |
Время установления рабочего режима | 10с |
Время непрерывной работы измерителя без подзарядки аккумуляторной батареи | 8ч |
Напряжение питания (постоянный ток) (аккумуляторная батарея ААА) | 3,6 ÷ 5,0 |
Потребляемая мощность | 0,2Вт |
Габаритные размеры:
измерительно-индикаторного блока | 130×75×25 мм |
сенсометрического щупа | 200×30(D) |
Масса:
измерительно-индикаторного блока | 0,2 кг |
сенсометрического щупа | 0,15 кг |
Условия эксплуатации:
диапазон температуры окружающей среды | от минус 20 до 55 °С |
Относительная влажность воздуха при 25 °С | до 90% |
Средний срок службы | 7 лет |
Межповерочный интервал | 2 года |
Комплект поставки
Наименование, тип | Количество |
---|---|
Измерительно-индикаторный блок | 1 |
Сенсометрический щуп | 1 |
Паспорт | 1 |
Руководство по эксплуатации | 1 |
Блок питания | 1 |
Сумка укладочная | 1 |
Методика поверки | 1 |
Дополнительные материалы
Калькулятор "НТМ-Термо"
С помощью калькулятора можно определить степень вредности микроклиматических условий, действующих на организм человека и рассчитать допустимое пребывание в этих условиях. Подобрать параметры одежды, рассчитать величину дополнительного теплового облучения с целью создания допустимых и оптимальных условий труда. В качестве входной информации требуется ввести значения параметров микроклимата в соответствующие поля.
Ваши комментарии, отзывы и мнения о работе калькулятора можете оставлять на нашем форуме в разделе "Ваше мнение".
Калькулятор расчета экспозиционной дозы теплового облучения
Программа помогает рассчитывать экспозиционную дозу теплового облучения, указывает класс условий труда по параметру интенсивность теплового облучения, а также класс условий труда по параметру доза теплового облучения.
Необходимо указать интенсивность теплового излучения, длительность воздействия и отметить участки тела, которые подвергаются облучению.
Программа выдаст результаты и рекомендации по возможным способам обеспечения допустимых условий труда.
Интенсивность теплового излучения (Вт/м 2 ) определяется с помощью измерителя плотности теплового потока ИПП–2.
Измеритель ИПП-2 предназначен для измерений по ГОСТ 25380-82 интенсивности теплового потока, проходящего через обмуровку и теплоизоляцию энергообъектов. В комплект с прибором входит преобразователь плотности теплового потока с датчиком на пружине ПТП–Х–П (рис. 3а) и зонд для измерения температуры поверхности (рис. 3б).
Рис. 3.3а. Зонд для измерения плотности теплового потока
с пружиной (ПТП-Х-П)
Рис. 3.3б. Зонд для измерения температуры поверхности
Конструктивно прибор ИПП-2 (рисунок 4) выполнен в пластмассовом корпусе. На передней панели блока располагаются кнопки В и », а на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя плотности теплового потока или температуры.
Рис. 3.4. Внешний вид прибора ИПП-2:
1 – индикация режимов работы аккумулятора; 2 – индикация нарушения порогов; 3 – кнопка »; 4 – кнопка В; 5 – разъём подключения первичного преобразователя; 6 – светодиодный четырехразрядный семисегментный индикатор; 7 – разъем для подключения к компьютеру; 8 – разъем для подключения сетевого адаптера
Функционирование прибора осуществляется в одном из режимов: РАБОТА и НАСТРОЙКА.
Режим РАБОТА. Является основным эксплуатационным режимом. В данном режиме производится циклическое измерение выбранного параметра. Кратковременным нажатием кнопки » осуществляется переход между режимами измерения плотности теплового потока и температуры, а также индикации заряда аккумуляторов в процентах 0. 100%. Нажатием кнопки » в течение двух секунд осуществляется переход прибора в режим «SLEEP», в этом режиме прибор гасит светодиодную индикацию, но продолжает измерения температуры и запись статистики. Выход из режима «SLEEP» производится нажатием любой кнопки. Нажатием кнопки В в течение двух секунд осуществляется переход прибора в режим НАСТРОЙКА. Кратковременное нажатие кнопки В выключает/включает прибор. В выключенном состоянии прибор прекращает измерения и запись автоматической статистики, при этом все настройки работы прибора и часов реального времени сохраняются. В режиме РАБОТА прибор может производить периодическую автоматическую запись измеренных значений в энергонезависимую память с привязкой ко времени. Схема режима РАБОТА приведена на рисунке 5.
Рис. 3.5. Схема режима РАБОТА
Светодиодная индикация в режиме РАБОТА. Светодиод 1 (рис. 3.4) характеризует состояние аккумуляторной батареи. В режиме заряда при подключенном сетевом адаптере светодиод горит постоянно до состояния 100% зарядки, затем гаснет. В режиме работы с отключенным сетевым адаптером светодиод погашен, и в случае если батарея заряжена менее чем на 10%. Светодиод 2 (рис. 3.4) миганием информирует о нарушении порогов. В режиме «SLEEP» мигает точка в четвертом разряде семисегментного индикатора.
Режим НАСТРОЙКА. Предназначен для задания и записи в энергонезависимую память прибора требуемых при эксплуатации рабочих параметров измерения. Заданные значения параметров сохраняются в памяти прибора при отсутствии питания (исключение составляют дата/время). Общая схема режима НАСТРОЙКА приведена на рис. 3.6.
Рис. 3.6. Общая схема работы режима НАСТРОЙКИ
Данный режим позволяет настроить два порога, имеющиеся в приборе, по одному на каждый параметр. Пороги – это верхняя или нижняя границы допустимого изменения соответствующей величины. При превышении измеряемой температуры верхнего порогового значения или снижении ниже нижнего порогового значения прибор обнаруживает это событие и на индикаторе загорается светодиод 2 (рис. 3.4). Нарушение порогов также сопровождается звуковым сигналом.
Под настройкой порога подразумевается выбор вида порога: нижний или верхний, уровня сигнализации: предупреждение или тревога и собственно значение порога (параметр предупреждение/тревога выражается только в разной звуковой сигнализации нарушения порога). Меню SET0 и SET1 служат для настройки порога по плотности теплового потока и температуре соответственно. Оба порога являются независимыми и могут быть настроены в произвольной комбинации. Схема настройки порогов приведена на рис. 3.7.
В меню SET2 включается/выключается звуковая сигнализация нарушения порогов.
Тепловое излучение (инфракрасное излучение)
Измеритель теплового излучения с поверкой какой лучше купить?
Тепловое излучение — это электромагнитное излучение, которое возникает благодаря внутренней энергии тела. Обладает сплошным спектром, основной показатель которого зависит от температуры тела. Тепловое излучение излучает: лампы накаливания (спираль), электроплиты, атмосфера, нагретые металлы…
Причиной того, что вещество излучает электромагнитные волны, является устройство атомов и молекул из заряженных частиц, из-за чего вещество пронизано электромагнитными полями. В частности, при столкновениях атомов и молекул происходит их ударное возбуждение с последующим высвечиванием.
Если перед Вами встал вопрос приобретения измерителя теплового излучения, то данная статья Вам поможет сделать правильный выбор.
Для того, что бы Ваши замеры были легитимными, Вам необходимо средство измерение. Т.е. прибор, который внесен в Государственный реестр средств измерений РФ.
К Вашему “счастью” ☺ , область теплового излучения не может похвастаться большим числом приборов и средств измерений. Более того, в Реестре РФ всего 3 прибора, которые прошли испытания и позволяют измерять тепловое излучение (не путать с приборами, которые измеряют тепловое обучение!). И в данном разделе сайта, Вы сможете найти всю информацию по ним. Стоимость на измерители теплового излучения, их технические характеристики, а так же срок поставки. Основную сравнительную информацию можно получить – ознакомившись со следующей таблицей: