Калькулятор электрического сопротивления ёмкости
При подключении конденсатора в цепь переменного тока возникает совокупность процессов заряда и разряда ёмкости, т.е. накопление и отдача энергии электрическим полем между обкладками. По мере заряда ёмкости, ток через нее уменьшается. Конденсатор будет заряжаться до максимального значения, пока ток не сменит направление на противоположное. В моменты максимального значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода. Ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току Xc.
X C — сопротивление, Ом; f — частота, Гц; C — ёмкость, Ф.
Сопротивление конденсатора переменному току это отношение действующих значений напряжения к току. Оно обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора. Фазы кривых тока и напряжения на конденсаторе смещены на 90 градусов, при этом ток опережает напряжение.
Расчет электрического сопротивления ёмкости
Для расчета введите значение ёмкости конденсатора и частоту переменного тока
Сопротивление конденсатора
Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.
Сопротивление конденсатора переменному напряжению
При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.
И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:
где – частота переменного тока;
– угловая частота тока; C – емкость конденсатора.
Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет
) энергия в поле конденсатора запасается; на следующем отрезке времени (
) конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).
Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.
Примеры решения задач
где .
Закон Ома для нашего участка цепи можно записать как:
Выразим искомую амплитуду силы тока из (1.2), подставим вместо Z правую часть формулы (1.1), имеем:
Что такое емкостное сопротивление
При проектировании электрический цепей, оборудования и электроприборов учитываются многие свойства проводников. Одним из важных свойств считается емкостное сопротивление.
В данной статье будет подробно описано — что такое емкостное сопротивление конденсатора. Так же будет приведена формула расчета такого параметра, описана работа конденсатора в цепи переменного тока и сферы применения ёмкостного сопротивления.
Определение
Сопротивлением называют физический эффект противодействия протеканию тока по любой электрической цепи. Этим свойством обладают все проводники электрического тока. Данная величина измеряется в Ом.
Емкостное электрическое сопротивление является величиной, благодаря которой можно понять, что в цепи присутствует конденсатор. Емкостные сопротивления конденсатора рассчитываются только для цепей переменного тока, без учета наличия в них резисторов.
Конденсатор обозначается на схеме буквой «С», а его ёмкостное сопротивление «Xc».
Принцип работы
Конденсатор с определенной ёмкостью работает по принципу периода, который состоит из заряда и разряда элемента. Период делится на 4 части:
- Первая часть предполагает рост напряжения. В этот момент сопротивление конденсатора минимально, а зарядный ток очень высокий.
- Во второй четверти происходит наполнение его ёмкости за счет зарядного тока.
- В третьей четверти конденсатор полностью заряжается, при этом происходит снижение тока вплоть до 0. ЭДС возрастает с эффектом смены своей направленности.
- В последней четверти происходит разряд элемента. На этом этапе ЭДС будет в пределах 0, а ток постепенно нарастать.
Все описанные процессы за один период определяют дальнейший фазный сдвиг на 90 градусов.
Природа возникновения емкостного сопротивления полностью зависит от нескольких факторов:
- Обязательно наличие конденсатора в цепи.
- По цепи должен течь только переменный ток.
- Сопротивление проводника должно быть меньше емкости конденсатора.
Все эти факторы помогают рассчитать наиболее правильное значение ёмкостных характеристик для наиболее эффективной работы электроцепи.
Расчет
Расчет электрического емкостного сопротивления цепи делается по формуле. Она состоит из следующих значений:
- «Xc» — является емкостным сопротивлением в Омах.
- «1» — период полного заряда и разряда элемента.
- «w» — круговая частота переменного тока с емкостью, рад/сек.
- «C» — емкость конденсатора, единицы измерения Фарад.
Сама формула при этом выглядит следующим образом:
При помощи этой формулы легко рассчитывается Xc. Для этого требуется просто умножить циклическую частоту переменного тока на известную величину емкости конденсатора. Далее необходимо будет один период разделить на полученное значение. Таким образом можно всегда найти сопротивление конденсатора в Ом.
Рассчитываться емкостное сопротивление может так же с помощью и другой формулы, которая приведена на рисунке ниже.
При расчетах по данной формуле прослеживаются следующие зависимости:
- Емкость конденсатора и частота тока всегда выше сопротивления.
- От величин емкости и частоты зависит скорость одного периода заряда/разряда конденсатора.
Также стоит учесть, что после подключения конденсатора в цепь постоянного тока, его сопротивление сильно увеличивается. Объясняется причина такого явления довольно просто — отсутствует частота протекания электричества.
Характеристики элемента
Для того чтобы понять, что такое емкостное сопротивление, необходимо разобраться с его основной характеристикой, которая называется емкостью. Емкостью называется накопительная способность элемента. Она заключается в накоплении определенной доли электрического тока за определённый промежуток времени. Единицей измерения этой величины является Фарад (Ф или F).
Элемент заряжается электричеством до определенного момента, после которого он начинает разряжаться и отдавать ток дальше по электроцепи. Время полного разряда напрямую зависит от величины сопротивления цепи. Чем выше это значение, тем меньше времени тратится на разрядку элемента. Для расчета ёмкостной характеристики используется следующее выражение:
Так же конденсаторы обладают рядом дополнительных характеристик. К ним относят:
- Общую удельную емкость. Является отношением массы диэлектрических пластин и емкостных параметров.
- Напряжение. Параметр определяется как рабочее напряжение, которое способен выдержать элемент.
- Температурная стойкость или стабильность. Это температурный параметр, который не влияет на изменение емкости.
- Изоляционное сопротивление. Является величиной точки утечки и саморазряда.
- Эквивалентная нагрузка. Значение, определяющее потери на выводе или контактах устройства.
- Абсорбция. Разность потенциалов в момент разряда до 0.
- Полярность. Параметр свойственен элементам, которые работают строго при подаче на обкладку потенциала определенного значения (плюс или минус).
- Индуктивность. Свойство конденсатора образовывать на контактах индуктивное сопротивление. Такое свойство может наделить элемента параметрами колебательного контура.
Все эти значения строго учитываются при проектировании цепей или схем электрического оборудования.
Импеданс
Кроме емкостного, конденсатор еще имеет общее сопротивление или импеданс. Данное значение определяется с учетом значений трех параметров: индуктивного, резистивного и емкостного сопротивления.
Для вычисления импеданса применяется следующая формула:
В данном выражении используются следующие сопротивления:
- xL — индуктивное;
- xC — емкостное;
- R — активное.
Активное сопротивление цепи появляется вследствие возникновения в ней ЭДС. Так как переменный ток по своей природе импульсный, то электромагнитный поток может довольно незначительно изменяться, а это приводит к сдвигу постоянного значения ЭДС.
Емкостные и индуктивные величины взаимосвязаны. По разнице между ними легко находят реактивную составляющую цепи.
Отсюда легко проследить, от чего зависит само реактивное сопротивление:
- Если реактивная величина больше 0, то устройство больше нагружено индуктивным значением.
- Если реактивное значение равно 0, то емкость не нагружается активным сопротивлением.
- Если реактивность меньше 0, то элемент имеет высокое емкостное сопротивление.
Активное сопротивление считается невосполнимой величиной. Она тратится на преобразование тока в иной вид энергии. Реактивная величина неизменна для актуальной цепи переменного тока.
Расчет
Узнав, по какой формуле делаются необходимые вычисления и поняв смысл емкостного сопротивления, можно заняться расчетом данной величины.
Например, сделаем расчет на основе следующих данных:
- Емкость конденсатора C=1мкФ;
- В цепи также имеется активное сопротивление R, которое равно 5 кОм;
- Индуктивное сопротивление цепи xL составляет 4.5 кОм;
- Частота переменного тока равна 50 Гц;
- Напряжение 50 вольт.
На основе этих данных необходимо будет найти сопротивление конденсатора.
Емкостное сопротивление определим следующим образом:
xC=1/(2πfC)=1/(2×3.14×50×1×10 -6 )=3184 Ом или округленно 3.2 кОм.
Для определения величины тока в этой цепи воспользуемся законом Ома:
I=U/xC=50/3184=0.0157 ампер или 15.7мА.
После этого определяются параметры общего сопротивления:
Z=(R²+(xL-xC)²)½=(5000²+(4500–3184)²)½=5170 Ом или 5.1 кОм.
По данным расчётам можно определить влияние емкостного элемента на электроцепь. Главное понимать, какие физические величины используются в данных формулах для выполнения правильных вычислений.
Применение
В электронных цепях очень часто конденсатор используется в качестве фильтрующего элемента. При этом инженеры учитывают способ подключения данного элемента:
- При параллельном соединении конденсатора с цепью, устройство способно задерживать ток высокой частоты. Такой фильтр работает по принципу зависимости сопротивления от частоты тока. Чем выше частота, тем ниже будет сопротивление.
- При последовательном включении фильтр уже отсеивает низкочастотные импульсы. Вторым свойством такого фильтра является возможность не пропускать постоянный ток.
Также большая доля использования таких устройств приходится на звуковые усилители. Конденсатор способен отделить переменный и постоянный ток, а значит работать в качестве усилителя низкой частоты. При этом подбираются элементы с наименьшей емкостью.
Так же устройства используются для блоков питания постоянного тока или стабилизаторов. Тут применяется свойство разделения постоянной и переменной составляющей. Например, разделение ее между потребителями с помощью отдельных выходов для постоянного и переменного тока. В таких устройствах конденсатор разряжается, если нагрузка на цепь увеличивается за счет подключения нового устройства. Тем самым общая пульсация в цепи сглаживается. При необходимости можно передать ток обоих значений по одному проводнику. Делается это следующим образом — контакты с постоянным напряжением подключают к выводу емкости для прямого контакта с переменным напряжением. Таким образом происходит фильтрация частоты, сглаживание импульсов и передача постоянного тока потребителю. Такая схема используется в антенных усилителях, которые подключаются к телевизорам.
Измерение и проверка
Измерить целостность конденсатора и его сопротивление можно при помощи мультиметра. Перед этим элемент обязательно необходимо отсоединить от цепи.
Проверка
Диагностика целостности конденсатора начинается с визуально осмотра его состояния. Любые трещины, вздутия или деформации корпуса можно считать неисправностью элемента. Если визуальный осмотр не дал никаких результатов, то элемент проверяется на пробой при помощи тестера.
Делается такая проверка следующим образом:
- Элемент необходимо выпаять из схемы, а его контактные выводы замкнуть металлическим предметом для разрядки.
- Мультиметр перемести в режим замера сопротивления.
- Измерительные щупы соединить с контактами устройства.
- Сопротивление исправного элемента будет измеряться бесконечным значением, которое будет превышать значение сопротивления утечки. Величина этой утечки при этом составляет 2 кОм.
Если показания меньше этого значения, значит элемент неисправен и пробит.
Замер
Замерить сопротивление можно так же с помощью мультиметра. Его надо будет перевести в режим измерения сопротивлений более 100 кОм. Далее необходимо соединить щупы прибора с контактами устройства. Некоторое время потребуется на полную зарядку элемента. После этого он покажет конечный результат, который не должен быть выше 100 кОм. Если этот порог преодолен, то можно сделать однозначный вывод о неисправности элемента.
Измерение емкости
Для замера емкости потребуется тестер с режимом СX. Если такого режима нет, проверить элемент будет невозможно. Далее требуется:
- Полностью разрядить конденсатор.
- На мультиметре выбирается режим СX.
- Измерительные щупы соединить с контактными выводами устройства, строго соблюдая полярность.
- Прибор должен показать величину больше 1, но при этом ее значение должно быть в пределах тех значений, которые указаны на корпусе детали. Если значение равняется 0 или находится за пределами указанных значений, то конденсатор можно признать неисправным.
Полученные мультиметром данные также можно считать ёмкостным значением, так как в момент проверки элемент проходит зарядку током.
Заключение
Емкостным сопротивлением обладают все цепи, в которых задействованы конденсаторы. Зная, какой по параметрам элемент включен в данную цепь, можно легко рассчитать его емкостное влияние на цепь, используя представленные в статье формулы для расчётов.
Конденсатор в цепи переменного тока – что нужно накапливать и для чего
Продолжаем изучать электронику, и на очереди у нас разбор того, как ведет себя конденсатор в цепи переменного тока, постоянного тока, для чего он нужен, а также несколько примеров практического применения.
Назначение конденсаторов
Конденсатор является пассивным элементом электронной схемы, состоящей их двух токопроводящих обкладок, которые разделены каким-нибудь диэлектриком.
Свойства и выполняемые функции
Основной задачей конденсатора является накопление определенного объема электростатического заряда на обкладках, после включения его в цепь под напряжением. Когда питание отключается, конденсатор сохраняет полученный заряд.
- Если конденсатор подключен к замкнутой цепи, но уже без питания, или напряжение в ней будет ниже, чем то, что накоплено в конденсаторе, то произойдет полная либо частичная разрядка элемента с высвобождение накопленной энергии.
- Тут же введем понятие о емкости конденсатора. Простыми словами – это количество электрической энергии, которую способен накопить элемент, включенный в сеть. Обозначается этот параметр латинской буквой «С», а измеряется он в Фарадах (F).
Интересно знать! Конденсаторы переменного тока большой емкости способны создавать при быстром разряде очень мощные импульсы. Использовать их можно, к примеру, в мощных фотовспышках.
- Рассчитывается емкость по следующей формуле: C=q/U, где q – это заряд на одной обкладке в Кулонах (количество энергии, прошедшей через проводник за 1 сек при силе тока в 1 Ампер); а U – Напряжение в Вольтах между оболочками.
- На корпусе любого конденсатора содержатся данные о его основных параметрах, среди которых есть и емкость. На фото выше выделено красным, такое обозначение. Там же можно узнать рабочие напряжение и температуру.
- Все просто, однако стоит учитывать, что указанная емкость является номинальной, тогда как реальная ее величина может довольно сильно отличаться, на что оказывает влияние множество факторов.
- Емкость конденсатором может разниться от единиц пикофарад до десятков фарад, что зависит от площади электрода (чаще алюминиевой фольги).
Интересно знать! Чтобы увеличить полезную емкость фольгу сворачивают в рулоны – так получаются цилиндрические конденсаторы.
Если в схеме требуется большая емкость конденсаторов, то их подключают параллельно. В таком случае сохраняется рабочее напряжение, но емкость будет увеличиваться прямопропорционально, то есть составит сумму емкостей подключенных конденсаторов.
Если конденсаторы соединить последовательно, то емкость изменяться не будет, точнее она будет немного меньше, чем минимальная емкость, включенная в цепь. Для чего же нужно такое подключение? При нем вероятность пробоя одного из конденсаторов сводится минимуму, то есть они как бы распределяют нагрузку.
- Для конденсаторов характерен и такой параметр, как удельная емкость. Это прямое отношение емкости электро детали к массе или объему диэлектрика. Максимальные значения этого параметра могут быть достигнуты при наименьшей толщине диэлектрической прокладки, однако для пробоя такого конденсатора требуется меньшее напряжение, про которое мы сейчас и поговорим.
- Маркировка детали также указывает номинальное напряжение. Тут все предельно просто – это значение показывает максимальный уровень напряжения в цепи, при которой радиодеталь сможет отработать весь свой срок службы, не меняя при этом сильно своих заданных параметров.
- Отсюда простой вывод – напряжение на конденсаторе не должно превышать номинального, иначе его может пробить.
- На уровень номинального напряжения влияют материалы, из которых конденсатор собран.
Понятие полярности для конденсаторов и их выход из строя
Интересно знать! У многих типов конденсаторов допустимое напряжение будет уменьшаться по мере его нагрева, поэтому на корпусах изделий также указывается и максимальная рабочая температура.
Выход из строя конденсаторов очень распространенная поломка в электротехнике. «Умирать» они могут по-тихому, просто вздувшись, или под канонаду нехилого взрыва, заливая все ближайшие детали электролитом, под «сценический дым» и прочие эффекты.
Именно поэтому диагностировать выход из строя этого элемента можно чисто визуально, без применения тестовой аппаратуры, но не всегда.
Многие электролитические конденсаторы (с оксидным диэлектриком), из-за особенностей взаимодействия диэлектрика и электролита, способны работать только при соблюдении определенной полярности, о чем обязательно гласит соответствующая маркировка на корпусе детали.
- При попытке включить их в цепь в обратной полярности, конденсаторы обычно моментально выходят из строя – разрушается диэлектрик, закипает электролит, в результате чего произойдет тот самый взрыв.
- Взрываются конденсаторы довольно часто, особенно в импульсных устройствах. Происходит это из-за перегрева, по причине утечки или увеличения эквивалентного последовательного сопротивления по мере старения детали.
- Не секрет, что поврежденная деталь в любой схеме может быть заменена на новую, и устройство будет функционировать как и раньше, однако последствия взрыва могут быть достаточно серьезны — повредятся соседние элементы, что сильно осложнит ремонт, плюс возрастет его цена.
Для уменьшения последствий на корпусах конденсаторов большой емкости устанавливают клапан или же делают насечку с торца в виде букв «Х, К, и Т». Такие конденсаторы взрываются очень редко, из-за того, что либо клапан, либо разрушившийся по насечке корпус выпускают электролит в виде едких испарений, то есть давление внутри корпуса снижается.
Прочие параметры
Помимо тех параметров, что мы уже разобрали, конденсаторы обладают индуктивностью и собственным сопротивлением, поэтому схему реального конденсатора можно представить следующим образом.
Данные параметры можно назвать паразитическими, так как они препятствуют идеальной работе детали.
К таковым относятся (обозначаем как в схеме выше):
- Сопротивление изоляции конденсатора (r) – значение определяемое соотношением фактического напряжения приложенного к конденсатору к току утечки.
- Эквивалентное последовательное сопротивление (R) – это электрическое сопротивление материала, из которого изготовлены обкладки, выводов конденсатора и контактов с платой. Сюда же стоит включать потери в диэлектрике. ЭПС начинает увеличиваться с возрастанием частоты тока.
- Поглощение диэлектрика. При быстрой разрядке конденсатора в момент подключения нагрузки с низким сопротивлением, если снять нагрузку, то, спустя какое то время, можно увидеть, что напряжение на выводах конденсатора начнет медленно увеличиваться. Это явление называется еще абсорбцией электрического заряда. Насколько интенсивно будет проявляться этот эффект зависит от свойств применяемого в конденсаторе диэлектрика.
Также к паразитным параметрам относятся тангенс угла потерь и температурный коэффициент емкости, однако лезть так глубоко в дебри в ознакомительной статье мы не будем.
Типы конденсаторов
Классифицируются конденсаторы, прежде всего, по типу используемого в них диэлектрика, который и определяет все электрические параметры элемента.
- Вакуумные конденсаторы – строение их таково, что несколько коаксиальных цилиндров, которые встроены один в один, располагаются во внешнем стеклянном цилиндре. Для этих устройств характерна наибольшая мощность в единице объема.
- Воздушные или газовые конденсаторы – бывают постоянной и переменной емкости. Применяются они в основном в электроизмерительном оборудовании, радиоприемниках и передатчиках, так как позволяют настраивать колебательные контуры.
- Конденсаторы с жидким диэлектриком;
- Конденсаторы с твердыми неорганическими диэлектриками – к ним относятся модели на стеклоэмалях, стеклокерамике, стеклопленках, слюде, керамике и прочем. Для таких конденсаторов характерна очень большая емкость, несмотря на их скромные габариты.
- Конденсаторы с твердыми органическими диэлектриками – здесь разнообразие тоже велико: бумажные и металлобумажные, пленочные и комбинированные.
- Отдельно можно выделить конденсаторы электролитические и оксидно-полупроводниковые, так как их отличает большая удельная емкость. В качестве диэлектрика в них используется слой оксида вокруг металлического анода. Вторая обкладка в нем – это либо электролит, в первом случае, либо полупроводник – во втором. Анод, в зависимости от конденсатора, может быть изготовлен из танталовой, ниобиевой или алюминиевой фольги, а также из спеченного порошка.
Такая классификация не единственная и различают конденсаторы и по возможности изменения их емкости:
- Постоянные – это конденсаторы, емкость которых является постоянной в течение срока службы, не считая изменений связанных со старением детали.
- Переменные – этот вид способен менять свою емкость во время работы оборудования. Управление такими конденсаторами реализуется через механику, электрическое напряжение, а также температуру.
- Подстроечные – емкость этих конденсаторов также может меняться, но происходит это не во время работы аппаратуры, а разово, при установке или настройке. Применяются они в основном при выравнивании начальных емкостей у сопрягаемых контуров, а также для регулировки параметров цепей схем.
Применение конденсаторов
Заканчивая первую часть статьи, не можем не обратить внимание на сферы применения этих элементов электрических цепей. А применяются они повсеместно.
- Их комбинируют с катушками индуктивности и резисторами, чтобы получать цепи, в которых свойства тока будут зависеть от его частоты, например, фильтр частот или цепь обратной связи колебательного контура.
- В системах, где требуется создание мощного импульса, про которые мы уже сегодня упоминали – вспышки фотоаппаратов, импульсные лазеры, генераторы Маркса и прочее.
- Применяются конденсаторы и в качестве элемента памяти, так как способны сохранять заряд достаточно длительное время. Это же свойство применяется в устройствах, предназначенных для хранения энергии.
- Если говорить об электротехнике промышленного уровня, то конденсаторы применяются для компенсации реактивной мощности и в качестве фильтров высших гармоник.
И это далеко не все сферы, но мы думаем, что этого пока достаточно. Давайте лучше перейдем к опытам и посмотрим, что же происходит с током, когда он проходит через конденсатор.
Конденсатор в цепях электрического тока
Итак, мы приблизительно поняли, что такое конденсатор, но как работает сей элемент, еще толком не разобрали.
Цепь постоянного тока
Если говорить простыми словами, то конденсатор, или «кондер», как его называют в народе – это небольшой элемент, который словно аккумулятор способен накапливать в себе некий заряд, который он готов разрядить за считанные доли секунды
Интересно знать! В отличие от аккумулятора в конденсаторе отсутствует источник ЭДС.
Чтобы кондеру разрядиться, ему нужно замкнуть контакты напрямую, либо через цепь. Вроде бы все ясно, но как происходит течение тока в конденсаторе при подключении его в сеть.
- Начнем с постоянного тока, и проведем один небольшой опыт. Для этого нам понадобятся сам конденсатор, источник постоянного тока на 12 Вольт и лампочка с проводами, тоже на 12 Вольт.
- Подключаем все это вместе, как показано на фото выше, и видим, что ничего не происходит – лампочка не горит.
- Меняем положение «крокодила» так, чтобы пустить ток в обход конденсатора. И, о чудо! Лампочка загорелась! Почему же так происходит?
- Все просто, достаточно помнить, что ток через конденсатор протекает, только когда он заряжается и разряжается, причем напряжение всегда будет отставать от тока.
- Разряженный конденсатор сродни короткому замыканию в цепи – при его подключении к источнику напряжения, в первый момент времени напряжения в нем нет, но зато имеется ток, который в этот момент времени является максимальным (вот вам и отставание).
- Ток течет через конденсатор, и тот начинает накапливать заряд, увеличивая свое внутреннее напряжение до тех пор, пока оно не сравняется с напряжением источника питания и кондер не заполнит всю свою емкость.
- В этот момент времени ток перестает течь, а так как конденсатор не может разрядиться, то, соответственно, и лампочка гореть не будет.
- Сравнить этот процесс можно с водяной системой в виде сообщающегося сосуда, разделенного заслонкой, при том, что одна часть пустая, а вторая полная. Уберите препятствие, и вода потечет во второй сосуд, пока давления не выровняются, то есть напор не спадет до нуля.
- А что было бы, если бы конденсатор отсоединился от цепи и закоротился? Да все то же самое! В первый момент времени ток будет максимальным при неизменном напряжении. Ток побежит вперед, а напряжение вслед за ним, пока весь заряд не уйдет.
- Снова в качестве примера берем водяную систему, состоящую из полного бачка, который будет играть роль конденсатора, и краника на нем, через который можно осуществить слив воды. Открывает кран и видим, что вода тут же потекла, при этом давление (напряжение) будет падать плавно, по мере опустошения емкости.
Эти же закономерности характерны и для синусоидального тока, о чем мы сейчас и поговорим.
Цепь переменного тока
Давайте для начала проведем некоторый опыт, а потом так же его объясним простым языком.
Нам понадобятся: конденсатор емкостью 1 микрофарад, обычный резистор на 100 Ом и генератор частот. Соединяем это все, как показано на следующем фото.
Далее по схеме подключаем цифровой осциллограф, который будет работать в двухканальном режиме, чтобы видеть сигналы на входе и на выходе: первый канал (красный) – это то, что выдает генератор, а второй (желтый) – снимаемый с нагрузки, то есть с резистора.
- Итак, то, что конденсатор постоянный ток (ток с нулевой частотой) не пропускает, мы уже убедились. А что будет, если подать частоту в 100 Гц?
- С генератора подается сигнал с амплитудой в 2 Вольта и частотой в 100Гц. На втором канале мы видим ту же частоту, но значительно меньшую амплитуду в 136 миливольта. Сигнал при этом искажают помехи, которые ловятся из окружающего пространства.
- Желтый график сместился влево, опережая красный. Перед вами тот самый сдвиг фаз.
Совет! Тут стоит понимать, что опережает только фаза, а не сигнал. В противном случае перед нами бы была простейшая машина времени, а так все в пределах понимания.
- То есть, имеется в виду разница между начальными фазами напряжений, имеющих одинаковую частоту.
- Теперь увеличим частоту до 500 Гц. Видим, что амплитуда сигнала возросла до 560 миливольт, а сдвиг фаз стал меньшим.
- Наращиваем частоту до 2 кГц – тенденция сохраняется.
- Теперь выставляем частоту в 10 кГц, и видим, что амплитуда практически сравнялась, а сдвиг фаз практически незаметен.
- Даем на генераторе максимальную частоту и видим, что показатели каналов практически выровнялись.
Что же это все означает? Сопротивление конденсатора в цепи переменного тока тем меньше, чем выше его частота. При этом уходит и сдвиг фаз.
Интересно знать! При подключении постоянного тока, частота которого равна нулю, величина фазового сдвига составляет π/2 или 90 градусов.
Но только ли частота влияет на сопротивление конденсаторов в цепи переменного тока? Давайте повторим наш опыт, но уже с конденсатором меньшей емкости, скажем – 0,1 микрофарад.
- Начинаем, как и в прошлый раз, с частоты в 100 Гц. Сразу заметно, что амплитуда уменьшилась до 101 миливольта, тогда как ранее она составляла 136.
- Амплитуда по-прежнему меньше.
- На максимальных частотах сопротивление уже малое, но и сдвиг фаз и меньшая амплитуда остаются.
Делаем нехитрые выводы, и понимаем, что сопротивление конденсатора еще зависит и от его емкости – чем она больше, тем ниже сопротивление.
В попытке ответить на вопрос, как рассчитать сопротивление конденсатора переменному току, математики и физики вывели следующую формулу:
Поставьте в эту формулу частоту равную нулю, и вы получите ноль, или бесконечное сопротивление. На практике мы имеем фактический фильтр высоких частот – впаяйте конденсатор перед динамиком, и вы услышите, что он воспроизводит только высокие частоты. Поставить такой фильтр легко своими руками – инструкция нужна лишь при расчете параметров сопротивления.
Ну, а что же происходит внутри самого конденсатора в этот момент?
Вспоминаем, что есть синусоидальный ток. Состоит такой ток из повторяющегося периода, первую половину которого он течет в одном направлении, а вторую – в обратном. Периоды делятся на полупериоды, каждый из которых имеет фазы возрастания, пика и убывания напряжения.
- Итак, первый четвертьпериод мы фактически разобрали на примере постоянного тока – конденсатор заряжается, пока его напряжение не достигнет пикового значения.
- В начале второго четвертьпериода, напряжение на генераторе начинает, ускоряясь, убывать. Образующаяся разница напряжений заставляет конденсатор разряжаться, отдавая ток в направлении генератора, то есть в обратном, чем он тек при заряде — оказывает сопротивление.
- В момент, когда заканчивается первый полупериод, напряжение в цепи и конденсаторе становится нулевым, тогда как ток, наоборот – максимальным (эту зависимости мы разобрали выше).
- Начинается третья четверть, и конденсатор снова заряжается, только уже в обратной полярности. При этом ток, продолжая течь в ту же сторону, начиная убывать, с ростом напряжения внутри конденсатора.
- Четвертая четверть аналогична второй – конденсатор разряжается, и ток течет в обратном направлении. То есть два полупериода являются буквально зеркальными копиями друг друга.
По итогу мы имеем, что за один период конденсатор дважды успевает зарядиться и разрядиться, что говорит о постоянном прохождении в цепи зарядный и разрядных токов, то есть что ток здесь переменный.
Если бы мы в нашем опыте вместо резистора использовали лампочку, то увидели бы ее свечение. Однако ток ее питающий был бы током заряда и разряда, а не проходящим сквозь диэлектрик конденсатора.
Чем больше емкость конденсатора, тем больший заряд передается в цепи во время циклов заряда и разряда этого элемента, а, следовательно, сопротивление становится меньше. Увеличение частоты дает такой же эффект, но уже за счет количества передачи заряда за то же время, отчего ток тоже растет. Это как два коммерсанта – один получает доход, сделав большую накрутку продав разово вещь, а второй имеет то же самое, но за счет большего оборота с меньшей наценкой.
Из-за этой простой зависимости, сопротивление, которое оказывает конденсатор току в цепи, называется емкостным.
На этом, пожалуй, закончим. Мы популярно объяснили, что представляет собой электрическая цепь переменного тока с реальным конденсатором. Да, материал не прост в освоении, но если разобраться – все не так страшно. В дополнение обязательно посмотрите подобранное нами видео, чтобы снять все возможные вопросы окончательно.