Основные сведения о фотоэффекте как физическом явлении
Фотоэффект — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передается электронам вещества. Простыми словами, при фотоэффекте падающий свет выбивает электроны из вещества.
В твердых и жидких веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы тела) и внутренний (электроны, оставаясь в теле, изменяют в нем свое энергетическое состояние) фотоэффекты. Существует так же и ядерный фотоэффект. А фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения.
История открытия
Об истории открытия внешнего фотоэффекта
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Генрих Герц был основоположником и первооткрывателем внешнего фотоэффекта. В 1887 году он проводил исследования с открытым резонатором и заметил, что при освещении ультрафиолетом цинкового разрядника (электрический аппарат, предназначенный для ограничения перенапряжений в электрических сетях и установках), прохождение искры заметно облегчается.
В России физические основы фотоэффекта изучал физик Александр Столетов, в 1888 – 1890 годах он опубликовал шесть работ в этой тематике. Столетов был первым физиком, который вывел закон внешнего фотоэффекта. В своих исследованиях он вплотную подошел к выводу о существовании красной границы фотоэффекта.
Позже, в 1891 году немецкие физики-экспериментаторы Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным.
В 1898 году английский физик Томсон с помощью экспериментов выяснил, что поток электрического заряда, выходящий из металла при внешнем фотоэффекте, представляет собой поток открытых им ранее частиц (позже названных электронами). Поэтому увеличение фототока с ростом освещенности понимают как увеличение количества выбитых электронов с ростом освещенности.
Немецкий физик Филипп Ленард в 1900 — 1902 годах продолжал исследования предшественников. Ему стало понятно что, энергия вылетающего электрона всегда связана с частотой падающего излучения и практически не зависит от интенсивности облучения.
Используя свои исследования и результаты исследований других физиков-экспериментаторов (в особенности гипотезу о квантовой природе света Макса Планка), Альберт Эйнштейн дал окончательное объяснение и определение явлению фотоэффекта в 1905 году. За что в 1921 году он получил Нобелевскую премию.
В работе Эйнштейна содержалась новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций.
В 1906 — 1915 годах фотоэффект заинтересовал Роберта Милликена. Он установил точную зависимость запирающего напряжения от частоты и на его основании смог вычислить постоянную Планка. В 1923 году Милликен был удостоен Нобелевской премии в области физики за исследования элементарного электрического заряда и фотоэлектрического эффекта.
«Я потратил десять лет моей жизни на проверку этого эйнштейновского уравнения 1905 г., — писал Милликен, — и вопреки всем моим ожиданиям я вынужден был в 1915 г. безоговорочно признать, что оно экспериментально подтверждено, несмотря на его несуразность, так как казалось, что оно противоречит всему, что мы знаем об интерференции света»
Внешний фотоэффект используется в вакуумных фотоэлементах, фотоумножителях, в видиконах (трубки телекамер и видеокамер).
Об истории открытия внутреннего фотоэффекта
В 1839 году Александр Беккерель зарегистрировал фотовольтаический эффект в электролите. А в 1873 году Уиллоуби Смиту удалось выяснить, что селен является фотопроводящим.
Внутренний фотоэффект — явление возрастания электропроводности и уменьшения сопротивления, вызванное облучением. В условиях внутреннего фотоэффекта под действием света происходит перераспределение электронов по энергетическим уровням в диэлектриках и полупроводниках (исключением являются металлы). Такое явление называется фотопроводимостью.
Ядерный фотоэффект
Ядро при поглощении гамма-кванта получает избыток энергии и становится составным ядром. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведет к ядерным реакциям, которые и называются фотоядерными, а явление испускания нуклонов (нейтронов и протонов) в этих реакциях — ядерным фотоэффектом.
Основные законы фотоэффекта
Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
hv = Aвых + EК,
где h ― постоянная Планка (6,6 ∙ 10-34 Дж∙с);
v ― частота света, Гц;
Aвых ― работа выхода, Дж;
EК ― кинетическая энергия фотона, Дж.
Процесс фотоэффекта происходит со скоростью света. Работа выхода напрямую зависит от состава материала и его поверхности, но не зависит от частоты и интенсивности света.
Первый закон фотоэффекта (закон Столетова): сила фототока насыщения прямо пропорциональна интенсивности светового излучения. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте). Следовательно, чем больше энергии несет излучение, тем ощутимее наблюдаемый результат.
Второй закон фотоэффекта: максимальная кинетическая энергия выбиваемых светом электронов возрастает с частотой света и не зависит от его интенсивности.
Краткая формулировка третьего закона фотоэффекта: абсолютно для каждого вещества при определенном состоянии его поверхности существует граничная частота света, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая ей длина волны называется красной границей фотоэффекта.
Применение фотоэффекта
Фотоэффект нашел широкое практическое применение в медицине, технике и других сферах. Превращение света в электрический ток используется для передачи изображения на огромные расстояния. Это используется в телевидении.
Фотоэлементы применяют при считывании информации с оптических дисков. Их же применяют, например, в солнечных батареях для получения электроэнергии. Недавно фотоэффект начали применять в уличном освещении, специальные фотоэлементы сами распознают, когда нужно включить или выключить освещение. Полупроводниковые фотоэлементы используются в солнечных батареях на космических кораблях.
Использование фотоэффекта в медицине при рентгеновских исследованиях (в электронно-оптическом преобразователе) для усиления яркости изображения помогает уменьшить дозу облучения человека.
Внутреннему фотоэффекту нашлось применение в категориях устройств, преобразующих световую энергию в электрическую или изменяющих свои свойства под действием падающего света: фотосопротивления, фотодиоды, фототранзисторы, фоторезисторы, фотомикросхемы.
Светодиодный мир нашего века
О светодиодах применяемых в нашей жизни, автомобилях и технике, устройство, характеристика, подключение светодиода, история будущее.
Рекламодателям и Исполнителям заданий
воскресенье, 24 февраля 2013 г.
Фотоэлементы с внешним и внутренним фотоэффектом
Фотоэлемент с внешним фотоэффектом (изо) имеет стеклянную колбу 2 , в которой создан вакуум (в вакуумном фотоэлементе) или после откачки воздуха колба заполнена разреженным газом (аргоном при низком давлении — в ионных фотоэлементах).
Внутренняя поверхность колбы, за исключением небольшого «окна» для прохождения светового потока 1 , покрыта фотокатодом 3 , который представляет собой слой серебра (подложка), на который нанесен полупроводниковый слой окиси цезия.
Анод 4 фотоэлемента изготовляют в виде кольца, чтобы он не преграждал путь световому потоку к катоду. Колба помещается в пластмассовом цоколе 5 , в нижней части которого находятся контактные штырьки 6 с выводами от анода и катода.
Под действием приложенного напряжения U источника питания между анодом и катодом фотоэлемента создается электрическое поле, и электроны, вылетающие с освещенной поверхности катода, направляются к положительно заряженному аноду.
У электронного фотоэлемента фототок сначала быстро растет при увеличении напряжения, а затем рост его замедляется и, наконец, почти совсем прекращается, т. е., наступает режим насыщения (изо, а ).
Для ионных фотоэлементов анодная вольт амперная характеристика после горизонтального участка (электронный ток) поднимается вверх вследствие ионизации газа (изо, б ).
В процессе работы фотоэлементов их параметры со временем изменяются, т. е. проявляется свойство их «утомляемости».
Обычно фотоэлементы используют совместно с ламповыми или транзисторными усилителями вследствие малого значения фототока, который может быть получен от фотоэлемента.
Фотоэффект в физике: что это такое, формулы, виды, применение
Фотоэлектрический эффект (фотоэффект) – это физический процесс, в котором электроны взаимодействуют со светом или любым другим электромагнитным излучением. В этой статье вы узнаете о физических основах фотоэлектрического эффекта. Мы также объясним три вида этого явления и два экспериментальных метода его обнаружения.
Фотоэлектрическое явление – один из тех эффектов, открытие которого стало результатом упорного труда и многочасовых лабораторных исследований многих ученых. До того как Альберт Эйнштейн объяснил этот эффект, введя понятие квантов, то есть порций энергии, многие исследователи, среди которых были Генрих Герц и Александр Столетов, тщательно изучали различные аспекты этого явления. По всей вероятности, никто из них не предполагал, какое практическое значение будет иметь их работа.
Простое объяснение фотоэффекта
Атомы или молекулы содержат связанные электроны. Когда свет попадает на молекулы или отдельные атомы, при определенных условиях возможно взаимодействие электронов со светом. Чтобы понять фотоэлектрический эффект, мы представляем свет как частицу (называемую фотоном). Фотон обладает энергией E, которую можно вычислить по частоте f света: E = h * f .
Здесь h – постоянная Планка. Эта энергия поглощается электроном. Вы можете представить этот перенос энергии как поглощение фотона электроном. Минимальная энергия, которую электроны должны поглотить, является их энергией связи, или, более точно, работой выхода WA. Только после этого электрон может освободиться от атома или металла. Высвобожденные электроны могут быть измерены в виде электрического тока.
Виды фотоэффекта
Существует три различных разновидности фотоэлектрического эффекта, с которыми мы познакомим вас далее.
Внешний фотоэффект
Внешний фотоэлектрический эффект – это явление эмиссии электронов из металла под воздействием падающего электромагнитного излучения. Механизм явления заключается в том, что фотоны излучения передают свою энергию электронам, что приводит к их эмиссии за пределы металла. Максимальная кинетическая энергия электрона равна энергии фотона минус работа выхода. Работа выхода – это энергия связи электрона в металле, обычно порядка нескольких электрон-вольт.
Более подробное объяснение.
Когда фотоны попадают в металл или полупроводник, они передают свою энергию электронам. Часть энергии необходима для того, чтобы освободить электроны от атомной связи и позволить им уйти с поверхности металла (работа выхода WA). Это взаимодействие называется внешним фотоэлектрическим эффектом. Остаточная энергия служит для ускорения электронов. Энергетическое соотношение следующее: h * f = Ekin + WA , где
где Ekin – это кинетическая энергия высвобожденных электронов. Поэтому кинетическая энергия фотоэлектрона описывается формулой: Ekin = h * f – WA
Мы видим, что должна существовать граничная частота fгр, выше которой электроны вообще не могут быть освобождены. Это следует из уравнения: h * fгр = WA и зависит от материала. Работа выхода для металлов обычно составляет несколько эВ.
Альберт Эйнштейн изучил внешний фотоэлектрический эффект с помощью квантования света. Таким образом, внешний фотоэлектрический эффект представляет собой важную веху в развитии квантовой механики.
Внутренний фотоэффект
Внутренний фотоэлектрический эффект также основан на передаче энергии фотонов электронам. Однако они не покидают материал, в котором находятся, а изменяют электронную оболочку в атоме. Это может привести к изменению проводимости материала и, следовательно, протеканию электрического тока.
Более подробное объяснение.
Внутренний фотоэффект возникает в полупроводниках – материалах, электропроводность которых меньше, чем у проводников, и больше, чем у изоляторов. Чтобы лучше понять его механизм, давайте вспомним зонную теорию проводимости. Электронные энергетические уровни в полупроводниках относятся к двум группам – валентной зоне и зоне проводимости. Эти зоны энергетически разделены возбужденной областью. Электроны с энергией в валентной зоне связаны в атомах и не участвуют в протекании электрического тока. Электроны с энергией, принадлежащей зоне проводимости, свободны и могут двигаться под действием приложенного напряжения, т.е. проводить электрический ток.
Изменение энергии электрона от энергии валентной зоны до энергии зоны проводимости при поглощении энергии фотона электромагнитного излучения называется внутренним фотоэлектрическим эффектом.
В результате полоса проводимости обогащается свободным носителем отрицательного заряда – электроном, а валентная зона обогащается электронной дыркой, т.е. вакансией, оставленной электроном, которая также участвует в протекании электрического тока. Это увеличивает проводимость материала.
Для того чтобы электроны поднялись в полосу проводимости, энергия облученного света должна быть больше, чем ширина запрещённой зоны Egap : h * f > Egap . Ширина запрещённой зоны относится к разности энергий между валентной зоной и зоной проводимости.
Полупроводник, состоящий из одного чистого материала, называется собственным полупроводником. В таких материалах число отрицательных носителей заряда в зоне проводимости – электронов – равно числу положительных зарядов в валентной зоне – дырок. На практике, однако, часто используются легированные полупроводники, т.е. обогащенные небольшим количеством другого материала. В зависимости от типа легирующего элемента различают два типа полупроводников: n-типа и p-типа. В полупроводнике p-типа преобладают дырки. Важно помнить, что речь идет только о носителях заряда, участвующих в проведении электричества, весь кристалл электрически нейтрален.
Внутренний фотоэффект также имеет место в солнечных батареях. Когда свет попадает на пограничный слой солнечного элемента (очень тонкая область на поверхности с электрическим полем), электроны высвобождаются из кристаллической связи и движутся в электрическом поле. Этот электрический ток может быть воспринят потребителем и вызывает фотонапряжение.
Молекулярный фотоэффект / атомный фотоэффект
Если облученные фотоны высвобождают электрон из отдельных атомов или молекул, они электрически заряжаются или ионизируются недостающим электроном. Это называется фотоионизацией и наблюдается, например, с помощью рентгеновских лучей. Для молекулярного фотоэлектрического эффекта требуется гораздо более высокочастотный свет, поскольку электроны прочно связаны в атомах.
Формула фотоэлектрического эффекта
Мы используем следующее соотношение для расчета физических величин: h * f = Ekin + WA
Если свет обладает энергией, достаточной для выброса электронов, мы можем вычислить граничную частоту по следующей формуле: fгр = WA / h .
Используя формулу для кинетической энергии, мы определяем скорость освобожденных электронов по формуле:
Методы обнаружения фотоэффекта
Далее мы покажем вам два метода обнаружения фотоэлектрического эффекта и, следовательно, выхода электронов.
Метод встречного поля
В методе встречного поля металлический катод облучается монохроматическим светом с частотой f. Без приложенного напряжения можно обнаружить фототок. Если приложить противодействующее напряжение UG так, чтобы катод был заряжен положительно, а анод – отрицательно, то электроны, высвобождаемые внешним фотоэлектрическим эффектом, замедляются. Необходимая для этого работа: W = e * UG .
Рис. 1. Фотоэффект: метод встречного поля
Если напряжение настолько велико, что электроны не достигают анода, то применяется следующее соотношение: Ekin = e * UG .
Встречное поле полностью компенсирует кинетическую энергию электронов. Из этой зависимости мы можем определить скорость электронов. Метод встречного поля также дает нам возможность определить постоянную Планка h. При известной работе выхода, h можно найти из уравнения: h * f = e * UG + WA
Стержень с фотоэффектом
Мы можем воспроизвести фотоэлектрический эффект в эксперименте со стержнем из ПВХ и металлической пластиной, подключенной к электрометру. Если стержень отрицательно заряжен в результате трения, то он имеет избыток электронов. Металлическая пластина нейтральна, электрометр не отклоняется.
Рис. 2. Стержневой метод – начальное состояние
Если привести стержень в контакт с пластиной, то избыточный заряд в стержне уравновесится. В результате на пластине появляется избыток электронов, и электрометр показывает отрицательное значение.
Рис. 3. Компенсация избыточного заряда в стержне
Если облучать металлическую пластину лампой с парами ртути, электрометр становится положительным. Электроны высвобождаются из пластины под действием внешнего фотоэлектрического эффекта. В металлической пластине не хватает электронов.
Рис. 4. Облучение металлической пластины
Применение фотоэффекта
Сегодня внешний и внутренний фотоэлектрический эффект лежат в основе таких распространенных устройств, как фотоэлементы, солнечные батареи или ПЗС-матрицы.
Фотоэлемент.
Рис. 5. Фотография фотоэлемента в 1940-х годах. Источник фото: Antonio Pedreira [Public domain], via Wikimedia Commons]
Наиболее распространенным устройством, использующим внешнее фотоэлектрическое явление, является фотоэлемент. Первые фотоэлементы были разработаны еще в 1890-х годах и начали широко использоваться в первой половине 20-го века. Простейший фотоэлемент состоит из двух электродов, катода и анода, помещенных в вакуумную колбу.
Между электродами прикладывается напряжение так, чтобы катод был соединен с положительным полюсом питающего напряжения. Если электромагнитное излучение не попадает на катод, электрический ток в цепи не течет. Когда катод освещается излучением с энергией фотонов, превышающей работу выхода материала катода, электроны выбиваются из катода и мигрируют к аноду, вызывая протекание электрического тока. Освещенный фотоэлемент проводит электрический ток.
Схемы, содержащие фотоэлемент, могут использоваться, например, для освещения уличных фонарей. Лампы загораются в сумерках. Механизм, заставляющий их светиться, реагирует на отсутствие света, то есть на прекращение протекания электрического тока в цепи, содержащей фотоэлемент. Пример такой схемы представлен на рис. 6.
Рис. 6. Схема уличного фонаря, который автоматически загорается после наступления темноты
Освещенный фотоэлемент проводит электрический ток. В цепи находится электромагнит. Если через электромагнит проходит электрический ток, создаваемое магнитное поле притягивает рычаг выключателя, размыкая цепь лампы, и лампа выключается. Когда свет прерывается, электрический ток в цепи фотоэлемента прекращается, электромагнит выключается, цепь лампы замыкается, и лампа окончательно зажигается.
Фотоэлектронный умножитель.
Рис. 7. Фотоумножитель. Источник фото
Фотоумножители – это устройства, используемые для измерения света. Чаще всего они подключаются к сцинтиллятору, который представляет собой материал, поглощающий ионизирующее излучение (например, гамма- или бета-излучение) и испускающий видимый или ультрафиолетовый свет. Излучаемый свет поглощается фотоумножителем и преобразуется в электрический сигнал.
Сцинтиллятор в сочетании с фотоумножителем представляет собой детектор ионизирующего излучения, т.е. устройство, которое поглощает ионизирующее излучение и генерирует электрический сигнал в зависимости от поглощенного излучения.
Устройство фотоумножителя очень похоже на устройство вакуумного фотоэлемента. Его важнейшими элементами являются фотокатод, где происходит внешний фотоэлектрический эффект, и анод, где накапливается заряд. Кроме того, в области между катодом и анодом находится ряд электродов, задача которых – усилить заряд, то есть увеличить количество электронов, попадающих на анод. Эти электроды называются динодами. Все три типа электродов помещаются в сильное электрическое поле. Механизм работы фотоумножителя показан на рис. 8.
Рис. 8. Схема построения фотоумножителя.
Фотоны света, испускаемые сцинтиллятором, достигают фотокатода, вызывая эмиссию электрона под действием внешнего фотоэлектрического явления. Электрон ускоряется в электрическом поле, что приводит к увеличению его кинетической энергии.
При столкновении с динодом электрон вызывает испускание нескольких вторичных электронов, которые также ускоряются и также умножаются при столкновении с другим динодом. Количество электронов увеличивается экспоненциально, так что конечный электрический сигнал, достигающий анода, может быть измерен.
Фотоумножители характеризуются высокой чувствительностью. Это означает, что их можно использовать для измерения света очень низкой интенсивности. В этом отношении они явно превосходят ПЗС-матрицы.
Фотоэлектрический (солнечный элемент).
Фотоэлектрический элемент – это устройство, в котором энергия фотона света преобразуется в электрическую энергию.
В солнечных батареях используются p-n-переходы. Фотоны, падающие на границу раздела полупроводников, вызывают выбивание электронов из валентного слоя в слой проводимости, т.е. образуется электронно-дырочная пара. Из-за пространственного распределения зарядов на p-n-переходе электроны диффундируют к полупроводнику n-типа, а дырки диффундируют к полупроводнику p-типа и остаются там. Накопление заряда создает разность потенциалов на границе раздела, т.е. электрическое напряжение. В этом процессе энергия солнечного света напрямую преобразуется в электрическую энергию. Поэтому он является отличным источником электрической энергии. Однако стоит помнить, что для хранения электрической энергии требуются батареи.
ПЗС-матрица.
ПЗС-матрица – это светочувствительный элемент, который вытеснил традиционную фотопленку, открыв путь к созданию и распространению цифровой фотографии. Матрица состоит из множества полупроводниковых пикселей размером около десятка квадратных миллиметров. Свет, падающий на полупроводниковый пиксель, приводит к выбиванию электрона из валентной зоны. На каждый пиксель наносится электрод для сбора и хранения заряда.
Размер заряда зависит от интенсивности света, освещающего пиксель. Сама ПЗС-матрица не различает цвета. Эта функция реализуется с помощью цветовых фильтров с тремя основными цветами – красным, зеленым и синим. Важным параметром для ПЗС является их квантовая эффективность, которая определяет, какой процент падающего света улавливается. Современные матрицы имеют квантовую эффективность 70%, что более чем в 10 раз выше, чем у традиционной фотопленки.
Пример задачи по фотоэффекту
Мы облучаем вольфрамовую пластину (работа выхода WA = 4,6 эВ) монохроматическим светом с частотой f = 6,75 * 10 15 Гц. Мы хотим узнать, достаточно ли энергии света для высвобождения электронов из пластины?
Для этого мы вычисляем граничную частоту:
fгр = WA / h = 4,6 эВ / 6,626 * 10⁻³⁴ Дж*с = 7,37 * 10 -19 Дж / 6,626 * 10⁻³⁴ Дж*с = 1,11 * 10 15 Гц
Частота облучаемого света превышает это значение. Поэтому электроны высвобождаются в результате фотоэлектрического эффекта. Скорость этих электронов составляет:
Фотоэлемент, принцип работы и виды фотоэлементов
Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Уже достигнуты фотоэлементы с КПД порядка 44-45 %.
Фотоэлемент ( фотоэлектрический элемент). Вакуумный фотоэлемент. Полупроводниковый фотоэлемент. Вентильный фотоэлемент:
Фотоэлемент (фотоэлектрический элемент) — электронный прибор, который преобразует энергию фотонов в электрическую энергию.
Фотоэлемент является центральным элементом солнечной батареи .
Фотоэлементы подразделяются на электровакуумные и полупроводниковые фотоэлементы. Их действие основано соответственно либо на фотоэлектронной эмиссии (внешнем фотоэффекте), либо внутреннем фотоэффекте или вентильном (барьерном) фотоэффекте.
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений, например, фотонов. Иными словами, при внешнем фотоэффекте поглощение фотонов сопровождается вылетом электронов за пределы тела. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Внешний фотоэффект наблюдается в твёрдых телах (металлах, полупроводниках и диэлектриках), а также газах (фотоионизация).
Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.
На основе внешнего фотоэффекта работают электровакуумные фотоэлементы. Электровакуумный фотоэлемент (вакуумный фотоэлемент) представляет собой кварцевую или стеклянную колбу. Часть внутренней поверхности колбы покрывается тончайшим слоем светочувствительного металла, который выступает в качестве катода . Он контактирует с проводом, который соединен с отрицательным источником тока. В середине колбы располагается электрод в форме диска или проволочной петли, называемый анодом . Анод соединен с положительным источником тока. Другая часть колбы прозрачна и пропускает вовнутрь свет. Под действием света (фотонов) из катода вырываются электроны, которые во внешнем электрическом поле устремляются к аноду, создавая в цепи электрический ток.
На основе вакуумных фотоэлементов создаются оптические реле – элементы автоматических устройств, из которых образовываются различные автоматы с электронным зрением. Они широко используются во многих технологических процессах в промышленности.
Внутренним фотоэффектом называется возрастание электропроводности вещества (наблюдается, как правило, у полупроводников и диэлектриков) и уменьшение его сопротивления под действием электромагнитных излучений, например, в результате облучения вещества видимым, инфракрасным или ультрафиолетовым излучением. Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные, без вылета наружу.
В отличие от внешнего фотоэффекта во внутреннем фотоэффекте электроны, остаются в теле вещества (полупроводника или диэлектрика), но изменяют в нём своё энергетическое состояние и увеличивают концентрацию носителей зарядов в веществе. Так, при поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Концентрация носителей заряда приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика) или возникновению электродвижущей силы.
На основе внутреннего фотоэффекта работают полупроводниковые фотоэлементы, изготавливаемые из полупроводников. Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы имеют устойчивую структуру и прочно связаны ковалентной связью. Так, например, один электрон в кристалле кремния связан двумя атомами. Чтобы электрону освободиться из атома, ему необходимо сообщить необходимый уровень внутренней энергии. Эта энергия появляется в нем при воздействии на полупроводник, например, видимым, инфракрасным или ультрафиолетовым излучением. Если её (энергии) достаточно, то отдельные электроны отрываются от ядра и становятся свободными. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Место разрыва (свободное место в электронной оболочке атома) именуется дыркой – положительным зарядом, который равен заряду высвободившегося электрона. Если в это время к полупроводнику приложить разность потенциалов (т.е. внешний электрический ток), то в самом полупроводнике появится электрический ток. Представленный электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Полупроводниковые фотоэлементы также используются для создания оптических реле, применяемых во многих автоматических устройствах в промышленности.
Разновидностью внутреннего фотоэффекта является вентильный (барьерный) фотоэффект. Вентильный (барьерный) фотоэффект или фотоэффект в запирающем слое – это явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит). Вентильный (барьерный) фотоэффект – это возникновение электродвижущей силы под действием света в области p–n перехода. Вентильный (барьерный) фотоэффект возникает в неоднородных (по химическому составу или неоднородно легированных примесями) полупроводниках, а также у контакта полупроводник-металл (при отсутствии внешнего электрического поля).
При поглощении полупроводником фотона освобождается дополнительная пара носителей – электрон и дырка, которые движутся в разных направлениях: дырка в сторону полупроводника p-типа, а электрон в сторону полупроводника n-типа. В результате в полупроводнике n-типа образуется избыток электронов, а в полупроводнике p-типа – избыток дырок. Возникает разность потенциалов – фото-ЭДС и электрический ток. По мере увеличения разности потенциалов фототок постепенно возрастает, т.к. все большее число электронов достигает анода.
Вентильные фотоэлементы в отличие от других фотоэлементов не требуют при работе источника тока, т.к. сами являются источником тока. Вентильный фотоэффект открывает пути для прямого преобразования световой энергии в электрическую. На использовании вентильного фотоэффекта – возникновении электродвижущей силы в p–n переходе под действием света основан принцип действия солнечных батарей.
Вентильные фотоэлементы являются центральным элементом солнечных батарей . Первую солнечную батарею на основе кремния для получения электрического тока создали Кельвин Соулзер Фуллер, Дэрил Чапин и Геральд Пирсон, все трое – специалисты компании Bell Laboratories. О создании первой солнечной батареи было заявлено 25 марта 1948 года.
Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (фотоэлементы), имеющие неоднородные полупроводниковые структуры. Неоднородность структуры фотоэлемента может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов), или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
КПД фотоэлементов:
КПД производимых в промышленных масштабах полупроводниковых фотоэлементов в среднем составляет 16-19 %, у лучших образцов – до 25 %. В лабораторных условиях уже достигнуты фотоэлементы с КПД порядка 44-45 %.
Ниже в таблице приводится КПД некоторых фотоэлектрических элементов , произведенных на основе различных материалов.
Максимальные значения эффективности фотоэлементов и модулей, достигнутые в лабораторных условиях
Тип | Коэффициент фотоэлектрического преобразования, % |
Кремниевые | 24,7 |
Si (кристаллический) | |
Si (поликристаллический) | |
Si (тонкопленочная передача) | |
Si (тонкопленочный субмодуль) | 10,4 |
Si (аморфный) | 9,5 |
Si (нанокристаллический) | 10,1 |
На основе арсенида галлия и т.п. | |
GaAs (кристаллический) | 25,1 |
GaAs (тонкопленочный) | 24,5 |
GaAs (поликристаллический) | 18,2 |
InP (кристаллический) | 21,9 |
Тонкие плёнки халькогенидов | |
CIGS (фотоэлемент) | 19,9 |
CIGS (субмодуль) | 16,6 |
CdTe (фотоэлемент) | 16,5 |
Фотохимические | |
На базе органических красителей | 10,4 |
На базе органических красителей (субмодуль) | 7,9 |
Органические | |
Органический полимер | 5,15 |
Многослойные | |
GaInP/GaAs/Ge | 32,0 |
GaInP/GaAs | 30,3 |
GaAs/CIS (тонкопленочный) | 25,8 |
a-Si/mc-Si (тонкий субмодуль) | 11,7 |
Такие огромные потери полупроводниковых фотоэлементов (невысокий КПД преобразования солнечного света в электрическую энергию) вызваны отражением солнечного излучения от поверхности фотоэлектрического преобразователя; прохождением части солнечного излучения через фотоэлемент без поглощения в нём; рассеянием избыточной энергии фотонов на тепловые колебания кристаллической решётки; рекомбинацией образовавшихся пар носителей зарядов; внутренним сопротивлением самого фотоэлемента и другими физическими процессами.
Наиболее вероятными материалами для фотоэлементов, используемых в солнечных электростанциях и солнечных батареях, считаются кремний , селенид меди-индия-галлия (Cu(In,Ga)Se2) и арсенид галлия (GaAs).
Повышение КПД фотоэлементов возможно за счет:
– использования полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны (например, полупроводников из иных материалов нежели кремний: материалов на основе комплексных галогенидов сурьмы и висмута и пр.);
– направленного улучшения свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;
– перехода от гомогенных к гетерогенным и варизонным полупроводниковым структурам;
– оптимизации конструктивных параметров фотоэлектрического преобразователя (глубины залегания p-n перехода, толщины базового слоя, частоты контактной сетки и др.);
– применения многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту фотоэлемента от космической радиации;
– разработки фотоэлементов, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
– создания каскадных фотоэлементов из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;
– создания фотоэлектрических преобразователей с двухсторонней чувствительностью (добавляют дополнительные 80 % к уже имеющемуся КПД одной стороны);
– применения люминесцентно-переизлучающих структур;
– предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным фотоэлементами;
– использования различных нанослоев и нанопокрытий фотоэлементов и т.д.