Полупроводниковые диоды, p-n-переход, виды пробоев, барьерная емкость, диффузионная емкость
Полупроводниковым диодом называется электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющий 2 вывода.
Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 1.2, а, б.
Буквами p и n обозначены слои полупроводника с проводимостями соответственно p-типа и n-типа.
Обычно концентрации основных носителей заряда (дырок в слое p и электронов в слое n ) сильно различаются. Слой полупроводника, имеющий большую концентрацию, называют эмиттером, а имеющий меньшую концентрацию — базой.
Далее рассмотрим основные элементы диода (p-n-переход и невыпрямляющий контакт металл-полупроводник), физические явления, лежащие в основе работы диода, а также важные понятия, использующиеся для описания диода.
Глубокое понимание физических явлений и владение указанными понятиями необходимо не только для того, чтобы правильно выбирать конкретные типы диодов и определять режимы работы соответствующих схем, выполняя традиционные расчеты по той или иной методике.
В связи с быстрым внедрением в практику инженерной работы современных систем схемотехнического моделирования эти явления и понятия приходится постоянно иметь в виду при выполнении математического моделирования.
Системы моделирования быстро совершенствуются, и математические модели элементов электронных схем все более оперативно учитывают самые «тонкие» физические явления. Это делает весьма желательным постоянное углубление знаний в описываемой области и необходимым понимание основных физических явлений, а также использование соответствующих основных понятий.
Приведенное ниже описание основных явлений и понятий, кроме прочего, должно подготовить читателя к систематическому изучению вопросов математического моделирования электронных схем.
Рассматриваемые ниже явления и понятия необходимо знать при изучении не только диода, но и других приборов.
Структура p-n-перехода.
Вначале рассмотрим изолированные друг от друга слои полупроводника (рис. 1.3).
Изобразим соответствующие зонные диаграммы (рис. 1.4).
В отечественной литературе по электронике уровни зонных диаграмм и разности этих уровней часто характеризуют потенциалами и разностями потенциалов, измеряя их в вольтах, например, указывают, что ширина запрещенной зоны ф5 для кремния равна 1,11 В.
В то же время зарубежные системы схемотехнического моделирования реализуют тот подход, что указанные уровни и разности уровней характеризуются той или иной энергией и измеряются в электрон-вольтах (эВ), например, в ответ на запрос такой системы о ширине запрещенной зоны в случае кремниевого диода вводится величина 1,11 эВ.
В данной работе используется подход, принятый в отечественной литературе.
Теперь рассмотрим контактирующие слои полупроводника (рис. 1.5).
В контактирующих слоях полупроводника имеет место диффузия дырок из слоя p в слой n, причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n (существует градиент концентрации дырок). Аналогичная причина обеспечивает диффузию электронов из слоя n в слой p.
Диффузия дырок из слоя p в слой n, во-первых, уменьшает их концентрацию в приграничной области слоя p и, во-вторых, уменьшает концентрацию свободных электронов в приграничной области слоя n вследствие рекомбинации. Подобные результаты имеет и диффузия электронов из слоя n в слой p. В итоге в приграничных областях слоя p и слоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление.
Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют нескомпенсированные объемные заряды, создающие электрическое поле с напряженностью E , указанной на рис. 1.5. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя n в слой p. Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n.
В установившемся режиме дрейфовый поток равен диффузионному, обусловленному градиентом концентрации. В несимметричном p-n-переходе более протяженным является заряд в слое с меньшей концентрацией примеси, т. е. в базе.
Изобразим зонную диаграмму для контактирующих слоев (рис. 1.6), учитывая, что уровень Ферми для них является единым.
Рассмотрение структуры p-n-перехода и изучение зонной диаграммы (рис. 1.6) показывают, что в области перехода возникает потенциальный барьер. Для кремния высота Аф потенциального барьера примерно равна 0,75 В.
Примем условие, что потенциал некоторой удаленной от перехода точки в слое p равен нулю. Построим график зависимости потенциала Ф от координаты x соответствующей точки (рис. 1.7). Как видно из рисунка, значение координаты x = 0 соответствует границе слоев полупроводника.
Важно отметить, что представленные выше зонные диаграммы и график для потенциала Ф (рис. 1.7) строго соответствуют подходу, используемому в литературе по физике полупроводников, согласно которому потенциал определяется для электрона, имеющего отрицательный заряд.
В электротехнике и электронике потенциал определяют как работу, совершаемую силами поля по переносу единичного положительного заряда.
Построим график зависимости потенциала Фэ, определяемого на основе электротехнического подхода, от координаты x (рис. 1.8).
Ниже индекс «э» в обозначении потенциала будем опускать и использовать только электротехнический подход (за исключением зонных диаграмм).
Прямое и обратное включение p-n-перехода. Идеализированное математическое описание характеристики перехода.
Подключим к p-n-переходу внешний источник напряжения так, как это показано на рис. 1.9. Это так называемое прямое включение p — n -перехода. В результате потенциальный барьер уменьшится на величину напряжения u (рис. 1.10), дрейфовый поток уменьшится, p — n -переход перейдет в неравновесное состояние, и через него будет протекать так называемый прямой ток.
Подключим к p-n-переходу источник напряжения так, как это показано на рис. 1.11. Это так называемое обратное включение p-n -перехода. Теперь потенциальный барьер увеличится на напряжение u (рис. 1.12). В рассматриваемом случае ток через p-n-переход будет очень мал. Это так называемый обратный ток, который обеспечивается термогенерацией электронов и дырок в областях, прилегающих к области p-n-перехода.
Обозначим через u напряжение на p-n-переходе, а через i — ток перехода (рис. 1.13).
Для идеального p-n-перехода имеет место следующая зависимость тока i от напряжения u:i = is · e u/φr — 1), причем φ т = kT/q где is — ток насыщения (тепловой ток), индекс s — от английского “saturation current”, для кремниевых диодов обычно is = 10 -15 … 10 -22 А;
к — постоянная Больцмана, к = 1,38 •10 -23 Дж/К = 8,62 • 10 -5 эВ/К;
Т — абсолютная температура, К;
q — элементарный заряд, q = l,6•10 -19 Кл;
φт— температурный потенциал, при температуре 20°С (эта температура называется комнатной в отечественной литературе) φт = 0,025 В, при температуре 27°С (эта температура называется комнатной в зарубежной литературе) φт = 0,026 В.
Изобразим график зависимости тока i от напряжения u , которую называют вольтамперной характеристикой p-n-перехода (рис. 1.14).
Полезно отметить, что, как следует из приведенного выше выражения, чем меньше ток is, тем больше напряжение u при заданном положительном (прямом) токе. Учитывая, что ток насыщения кремниевых ( Si ) переходов обычно меньше тока насыщения германиевых ( Ge) переходов, изобразим соответствующие вольтамперные характеристики (рис. 1.15).
Пробой p-n-перехода.
Пробоем называют резкое изменение режима работы перехода, находящегося под обратным напряжением. Характерной особенностью этого изменения является резкое уменьшение дифференциального сопротивления перехода rдиф , которое определяется выражением: r диф=du/di где u — напряжение на переходе; i— ток перехода (см. рис. 1.13).
После начала пробоя незначительное увеличение обратного напряжения сопровождается резким увеличением обратного тока.
В процессе пробоя ток может увеличиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление оказывается отрицательным).
Изобразим соответствующий участок вольтамперной характеристики p-n-перехода (рис. 1.16).
В основе пробоя p-n-перехода лежат три физических явления:·-туннельного пробоя p-n-перехода (эффект, явление Зенера);
— лавинного пробоя p — n-перехода;·
— теплового пробоя p — n -перехода.
Термин «пробой» используется для описания всей совокупности физических явлений и каждого отдельного явления.
И туннельный, и лавинный пробой принято называть электрическим пробоем.
Туннельный пробой.
Его называют также зенеровским пробоем по фамилии (Zener) ученого, впервые описавшего соответствующее явление в однородном материале. Ранее явлением Зенера ошибочно объясняли и те процессы при пробое перехода, в основе которых лежал лавинный пробой.
В иностранной литературе до сих пор называют диодами Зенера стабилитроны (диоды, работающие в режиме пробоя) независимо от того, используется туннельный или лавинный пробой.
Напряжение, при котором начинается пробой, называют напряжением Зенера. Для объяснения механизма туннельного пробоя схематически изобразим соответствующую зонную диаграмму p-n-перехода (рис. 1.17).
Если геометрическое расстояние между валентной зоной и зоной проводимости (ширина, толщина барьера) достаточно мало, то возникает туннельный эффект — явление прохождения электронов сквозь потенциальный барьер. Туннельный пробой имеет место в p — n-переходах с базой, обладающей низким значением удельного сопротивления.
Лавинный пробой.
Механизм лавинного пробоя подобен механизму ударной ионизации в газах, схематично явление лавинного пробоя изобразим на рис. 1.18.
Лавинный пробой возникает, если при движении до очередного соударения с атомом дырка (или электрон) приобретает энергию, достаточную для ионизации атома. Расстояние, которое проходит носитель заряда до соударения, называют длиной свободного пробега. Лавинный пробой имеет место в переходах с высокоомной базой (имеющей большое удельное сопротивление).
Тепловой пробой.
Увеличение тока при тепловом пробое объясняется разогревом полупроводника в области p -n-перехода и соответствующим увеличением удельной проводимости. Тепловой пробой характеризуется отрицательным дифференциальным сопротивлением. Если полупроводник — кремний, то при увеличении обратного напряжения тепловой пробой обычно возникает после электрического (во время электрического пробоя полупроводник разогревается, а затем начинается тепловой пробой).
После электрического пробоя p-n-переход не изменяет своих свойств. После теплового пробоя, если полупроводник успел нагреться достаточно сильно, свойства перехода необратимо изменяются (соответствующий полупроводниковый прибор выходит из строя).
Явление изменения нескомпенсированных объемных зарядов в области p-n-перехода.
Барьерная емкость.
Как уже отмечалось, вследствие диффузии электронов и дырок через p-n-переход в области перехода возникают нескомпенсированные объемные (пространственные) заряды ионизированных атомов примесей, которые закреплены в узлах кристаллической решетки полупроводника и поэтому не участвуют в процессе протекания электрического тока.
Однако объемные заряды создают электрическое поле, которое в свою очередь самым существенным образом влияет на движение свободных носителей электричества, т. е. на процесс протекания тока.
При увеличении обратного напряжения область пространственных зарядов (главным образом за счет базы) и величина заряда в каждом слое (p и n) полупроводника увеличиваются. Это увеличение происходит непропорционально: при большом по модулю обратном напряжении заряд увеличивается при увеличении модуля напряжения медленнее, чем при малом по модулю обратном напряжении.
Дадим поясняющую иллюстрацию (рис. 1.19), где используем обозначения:
Q — пространственный заряд в слое n полупроводника;
u — внешнее напряжение, приложенное к p — n -переходу.
Обозначим через f функцию, описывающую зависимость Q от u . В соответствии с изложенным
В практике математического моделирования (и при ручных расчетах) удобно и поэтому принято пользоваться не этим выражением, а другим, получаемым из этого в результате дифференцирования. На практике широко используют так называемую барьерную емкость С6арp-n-перехода, причем по определению С6ар = | dQ / du | Изобразим графики для Q (рис. 1.20) и C бар (рис. 1.21).
Явление возникновения и изменения объемного заряда неравновесных носителей электричества. Диффузионная емкость.
Если напряжение внешнего источника напряжения смещает p-n-переход в прямом направлении (u> 0), то начинается инжекция (эмиссия) — поступление неосновных носителей электричества в рассматриваемый слой полупроводника. В случае несимметричного p-n-перехода (что обычно бывает на практике) основную роль играет инжекция из эмиттера в базу.
Далее предполагаем, что переход несимметричный и что эмиттером является слой p , а базой — слой n . Тогда инжекция — это поступление дырок в слой n . Следствием инжекции является возникновение в базе объемного заряда дырок.
Известно, что в полупроводниках имеет место явление диэлектрической релаксации (релаксации Максвелла), которое состоит в том, что возникший объемный заряд практически мгновенно компенсируется зарядом подошедших свободных носителей другого знака. Это происходит за время порядка 10 -12 с или 10 -11 с.
В соответствии с этим поступивший в базу заряд дырок будет практически мгновенно нейтрализован таким же по модулю зарядом электронов.
Q — объемный заряд неравновесных носителей в базе;
u — внешнее напряжение, приложенное к p — n -переходу;
f — функция, описывающая зависимость Q от u.
Дадим поясняющую иллюстрацию (рис. 1.22).
В соответствии с изложенным Q = f( u ) На практике удобно и принято пользоваться не этим выражением, а другим, получаемым из этого в результате дифференцирования. При этом используют понятие диффузионной емкости C диф p-n-перехода, причем по определению C диф = dQ / du Емкость называют диффузионной, так как рассматриваемый заряд Q лежит в основе диффузии носителей в базе.
C диф удобно и принято описывать не как функцию напряжения u , а как функцию тока i p-n-перехода.
Сам заряд Q прямо пропорционален току i (рис. 1.23, а). В свою очередь ток i экспоненциально зависит от напряжения u (соответствующее выражение приведено выше), поэтому производная di / du также прямо пропорциональна току (для экспоненциальной функции ее производная тем больше, чем больше значение функции). Отсюда следует, что емкость Сдиф прямо пропорциональна току i (рис.1.23,6):
Cдиф=i·τ/φт где φт — температурный потенциал (определен выше);
τ — среднее время пролета (для тонкой базы), или время жизни (для толстой базы).
Среднее время пролета — это время, за которое инжектируемые носители электричества проходят базу, а время жизни — время от инжекции носителя электричества в базу до рекомбинации.
Общая емкость p-n-перехода.
Эта емкость Спер равна сумме рассмотренных емкостей, т. е. Спер = Сбар + Сдиф.
При обратном смещении перехода ( u < 0 ) диффузионная емкость практически равна нулю и поэтому учитывают барьерную емкость. При прямом смещении обычно Сбар < Сдиф .
Невыпрямляющий контакт металл-полупроводник.
Для подключения внешних выводов в диодах используют так называемые невыпрямляющие (омические) контакты металл-полупроводник. Это такие контакты, сопротивление которых практически не зависит ни от полярности, ни от величины внешнего напряжения.
Получение невыпрямляющих контактов — не менее важная задача, чем получение p-n-переходов. Для кремниевых приборов в качестве металла контактов часто используют алюминий. Свойства контакта металл-полупроводник определяются разностью работ выхода электрона. Работа выхода электрона из твердого тела — это приращение энергии, которое должен получить электрон, находящийся на уровне Ферми, для выхода из этого тела.
Обозначим работу выхода для металла через Aм, а для полупроводника — через Aп. Разделив работы выхода на заряд электрона q, получим соответствующие потенциалы:
Введем в рассмотрение так называемую контактную разность потенциалов φmn:φmn=φm-φn
Для определенности обратимся к контакту металл-полупроводник n-типа. Для получения невыпрямляющего контакта необходимо выполнение условия φmn< 0. Изобразим соответствующие зонные диаграммы для неконтактирующих металла и полупроводника (рис. 1.24).
Как следует из диаграммы, энергетические уровни в полупроводнике, соответствующие зоне проводимости, заполнены меньше, чем в металле. Поэтому после соединения металла и полупроводника часть электронов перейдет из металла в полупроводник. Это приведет к увеличению концентрации электронов в полупроводнике типа n.
Таким образом, проводимость полупроводника в области контакта окажется повышенной и слой, обедненный свободными носителями, будет отсутствовать. Указанное явление оказывается причиной того, что контакт будет невыпрямляющим. Для получения невыпрямляющего контакта металл-полупроводник p-типа необходимо выполнение условия φмп> 0
Прямое и обратное включения электронно-дырочного перехода
При прямом включении n — слой соединяют с отрицательным полюсом источника напряжения, а p — слой — с положительным полюсом (рис.7). В p — n — переходе создаются условия для прохождения тока, отличающиеся от условий при термодинамическом равновесии. Пространственный заряд на p — n — переходе уменьшится, а потенциальный барьер снизится на величину Э.Д.С. источника.
Рисунок 7 – Прямое включение электронно-дырочного перехода
При прямом включении сопротивление и ширина p — n – перехода уменьшаются, p — n – переход открывается и через него протекает прямой ток. Прямой ток является током основных носителей (диффузионным током).
При обратном включении n — слой соединяют с положительным полюсом источника напряжения, а p — слой — с отрицательным полюсом (рис.8). При этом потенциальный барьер p-n-перехода увеличивается. Сопротивление и ширина p — n – перехода также увеличиваются, p — n – переход закрывается. Это приводит к уменьшению диффузионного тока (тока основных носителей) и увеличению дрейфового (тока неосновных носителей). Результирующий ток совпадает с дрейфовым током. При обратном включении через p — n – переход протекает очень маленький, близкий к нулю обратный ток.
Рисунок 8 – Обратное включение электронно-дырочного перехода
Таким образом можно сделать вывод, что величина тока зависит от способа включения p — n – перехода и величины напряжения. Зависимость тока, от величины напряжения называется вольтамперной характеристикой (ВАХ). На рис.9 представлена ВАХ электронно-дырочного перехода.
Рисунок 9 – Вольтамперная характеристика электронно-дырочного перехода
Основное свойство электронно-дырочного перехода: p-n-переход обладает односторонней проводимостью (вентильным свойством)
Электрический пробой
При достижении обратным напряжением некоторого критического значения происходитпробой p — n – перехода.
Пробой сопровождается лавинообразным нарастанием тока неосновных носителей. Различают электрический пробой и тепловой.
Электрический пробой не опасен для p-n-перехода: при отключении источника обратного напряжения вентильные свойства электронно-дырочного перехода полностью восстанавливаются.
Тепловой пробой приводит к разрушению кристалла и является аварийным режимом.
Вопросы:
1) Какие материалы относятся к полупроводникам и как меняется их проводимость при увеличении температуры?
2) Примесь каких химических элементов называется донорской?
3) Примесь каких химических элементов называется акцепторной?
4) Что произойдет при соединении двух полупроводников с разной проводимостью?
5) Каким свойством обладает p-n-переход?
6) В каком состоянии находится p-n-переход при прямом и обратном включении?
Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.
Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.
Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.
По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.
Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.
Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.
На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:
Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.
Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.
На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:
1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.
Прямое включение диода. Прямой ток.
Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.
При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.
Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.
Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.
Обратное включение диода. Обратный ток.
Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.
В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.
Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.
Прямое и обратное напряжение диода.
Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).
При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.
Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.
Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.
Вольт-амперная характеристика полупроводникового диода.
Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.
На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).
Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.
Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).
При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.
Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).
Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.
У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.
При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:
Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.
При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.
Пробои p-n перехода.
Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.
Электрический пробой.
Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.
Туннельный пробой.
Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.
В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).
Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.
Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.
Лавинный пробой.
Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.
Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.
Тепловой пробой.
Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.
При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.
На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
Характеристики p-n-перехода
где Сбар(0) — барьерная емкость при нулевом напряжении; U — обратное напряжение; |/к — контактная разность потенциалов.
Барьерная емкость существует и при прямом напряжении, но она шунтируется низким дифференциальным сопротивлением. При прямом смещении емкость /ьл-перехода называют диффузионной
где / — прямой ток; фт — тепловой потенциал; тр — время жизни неосновных носителей.
Полная емкостьр-п-перехода С = Сдиф + Сбар.
Пробой
При увеличении обратного напряжения до некоторой критической величины ?/проб происходит резкое уменьшение сопротивления р-п-перехода. Это явление называется пробоем, а соответствующее ему напряжение — напряжением пробоя. Различают электрический и тепловой пробой. Электрический пробой является обратимым, т.е. при этом пробое в переходе не происходит необратимых изменений (разрушения структуры вещества). Могут существовать два вида электрического пробоя: лавинный и туннельный (рис. 2.6).
Лавинный пробой объясняется размножением носителей за счет ударной ионизации при вырывании электронов из атомов сильным электрическим полем. Этот пробой характерен для /ья-переходов большой толщины, получающихся при сравнительно малой концентрации примесей в полупроводниках. Напряжение лавинного пробоя составляет десятки или сотни вольт.
Туннельный пробой объясняется тем, что при поле напряженностью более 10 5 В/см, действующем в /ья-переходе малой толщины,
Рис. 2.6. Виды пробоя /ья-перехода
некоторые электроны проникают через переход без изменения своей энергии. Тонкие переходы, в которых возможен туннельный эффект, получаются при высокой концентрации примесей. Напряжение, соответствующее туннельному пробою, обычно не превышает единиц вольт.
Тепловой пробой необратим, так как он сопровождается разрушением структуры вещества в месте />-л-перехода. Причиной теплового пробоя является нарушение устойчивости теплового режима р-л-перехода. Это означает, что количество теплоты, выделяющейся в переходе, превышает количество теплоты, отводимой от перехода.
На электропроводность полупроводников значительное влияние оказывает температура. При ее повышении усиливается генерация пар носителей зарядов, т.е. их концентрация растет и проводимость увеличивается. При повышении температуры прямой и обратный токи растут, прямой — в гораздо меньшей степени, чем обратный.