По какой формуле определяется входное напряжение вольтметра
Перейти к содержимому

По какой формуле определяется входное напряжение вольтметра

Измерение напряжения

Измерение напряженияВ радиолюбительской практике это наиболее распространенный вид измерений. Например, при ремонте телевизора измеряются напряжения в характерных точках устройства, а именно на выводах транзисторов и микросхем. Если есть под рукой принципиальная схема, и на ней указаны режимы транзисторов и микросхем, то найти неисправность опытному мастеру не составит труда.

При налаживании конструкций, собранных своими руками, без измерения напряжений обойтись нельзя. Исключения составляют лишь классические схемы, про которые пишут примерно так: «Если конструкция собрана из исправных деталей, то наладки не требуется, заработает сразу».

Как правило, это классические схемы электроники, например, мультивибратор. Такой же подход может получиться даже к усилителю звуковой частоты, если он собран на специализированной микросхеме. Как наглядный пример TDA 7294 и еще много микросхем этой серии. Но качество «интегральных» усилителей невелико, и истинные ценители строят свои усилители на дискретных транзисторах, а порою на электронных лампах. И вот тут-то без налаживания и связанных с этим измерений напряжений просто не обойтись.

Как и что предстоит измерять

Показано на рисунке 1.

Измерение напряжения

Возможно, кто-то скажет, мол, что тут можно измерять? И какой смысл собирать подобную цепь? Да, практического применения для такой схемы найти, наверно, трудно. А для познавательных целей она вполне подойдет.

Прежде всего, следует обратить внимание на то, как подключается вольтметр. Поскольку на рисунке показана цепь постоянного тока, то и вольтметр подключается с соблюдением полярности, указанной на приборе в виде знаков «плюс» и «минус». В основном это замечание справедливо для стрелочного прибора: при несоблюдении полярности стрелка отклонится в обратную сторону, по направлению к нулевому делению шкалы. Так что получится какой-то отрицательный ноль.

Цифровые приборы, мультиметры, в этом плане более демократичны. Даже если измерительные щупы подключены в обратной полярности, напряжение все равно будет измерено, только на шкале перед результатом появится знак «минус».

Еще на что следует обратить внимание при измерении напряжений это диапазон измерений прибора. Если предполагаемое напряжение находится в пределах, например, 10…200 милливольт, то такому диапазону соответствует шкала прибора 200 милливольт, а измерение упомянутого напряжения по шкале 1000 вольт вряд ли даст вразумительный результат.

Так же следует выбирать диапазон измерений и в других случаях. Для измеряемого напряжения 100 вольт вполне подойдет диапазон 200В и даже 1000В. Результат будет один и тот же. Это что касается современного мультиметра.

Если же измерения производятся старым добрым стрелочным прибором, то для измерения напряжения 100В следует выбрать диапазон измерений, когда показания находятся в середине шкалы, что позволяет осуществить более точный отсчет.

И еще одна классическая рекомендация по использованию вольтметра, а именно: если величина измеряемого напряжения неизвестна, то измерения следует начинать, установив вольтметр на самый большой диапазон. Ведь если измеряемое напряжение будет 1В, а диапазон будет 1000В, самая большая опасность в неверных показаниях прибора. Если же получится наоборот, — диапазон измерений 1В, а измеряемое напряжение 1000, покупки нового прибора просто не избежать.

Что покажет вольтметр

Но, пожалуй, вернемся к рисунку 1, и попробуем определить, что, же покажут оба вольтметра. Для того, чтобы это определить, придется воспользоваться законом Ома. Задачу можно решить за несколько шагов.

Во-первых, рассчитать ток в цепи. Для этого надо напряжение источника (на рисунке это гальваническая батарея с напряжением 1,5 В) разделить на сопротивление цепи. При последовательном соединении резисторов это будет просто сумма их сопротивлений. В виде формулы это выглядит примерно так: I = U / (R1 + R2) = 4,5 / (100 + 150) = 0,018 (А) = 180 (мА).

Маленькое замечание: если выражение 4,5 / (100 + 150) скопировать в буфер обмена, затем вставить в окно виндоус-калькулятора, то после нажатия клавиши «равно» будет получен результат вычислений. На практике вычисляются еще более сложные выражения, содержащие квадратные и фигурные скобки, степени и функции.

Во-вторых, получить результаты измерений, как падение напряжения на каждом резисторе:

U1 = I * R1 = 0,018 * 100 = 1,8 (В),

U2 = I * R2 = 0,018 * 150 = 2,7 (В),

Для проверки правильности вычислений достаточно сложить оба получившиеся значения падения напряжений. Сумма должна быть равна напряжению батареи.

Возможно, у кого-то может возникнуть вопрос: «А если делитель будет не из двух резисторов, а из трех или даже из десяти? Как определить падение напряжения на каждом из них?». Точно так же, как и в описанном случае. Сначала надо определить общее сопротивление цепи и рассчитать общий ток.

После чего этот уже известный ток просто умножить на сопротивление соответствующего резистора. Иногда такие вычисления делать приходится, но тут тоже есть одно но. Чтобы не сомневаться в полученных результатах ток в формулы следует подставлять в Амперах, а сопротивление в Омах. Тогда, вне всяких сомнений, результат получится в Вольтах.

Входное сопротивление вольтметра

Сейчас все привыкли пользоваться приборами китайского производства. Но это не говорит о том, что качество у них никудышное. Просто в отечестве никто не додумался до производства собственных мультиметров, а стрелочные тестеры делать, видимо, разучились. Просто обидно за державу.

Мультиметр DT838

Рис. 2. Мультиметр DT838

Когда-то в инструкциях к приборам указывались их технические характеристики. В частности для вольтметров и стрелочных тестеров это было входное сопротивление, и указывалось оно в Килоомах/Вольт. Были приборы с сопротивлением 10 К/В и 20 К/В. Последние считались более точными, поскольку меньше подсаживали измеряемое напряжение и показывали более точный результат. Сказанное можно подтвердить рисунком 3.

Входное сопротивление вольтметра

На рисунке показан делитель напряжения из двух резисторов. Сопротивление каждого резистора 1КОм, напряжение питания 3В. Нетрудно догадаться, даже считать ничего не надо, что на каждом резисторе будет ровно половина напряжения.

Теперь представим, что измерения проводятся прибором ТЛ4, который в режиме измерения напряжений имеет входное сопротивление 10КОм/В. При указанном на схеме напряжении вполне подходит предел измерений 3В, на котором полное сопротивление вольтметра составит 10*3 = 30(КОм).

Таким образом, получается, что параллельно резистору сопротивлением в 1КОм подключено еще 30КОм. Тогда общее сопротивление при параллельном включении составит 999,999Ом. Хотя и несколько меньше меньшего, но не намного. Поэтому погрешность результата измерения напряжения будет незначительна.

В случае, если оба резистора делителя имеют номинал 1 мегаом, то результаты расчета будут выглядеть примерно так:

Суммарное сопротивление параллельно соединенного вольтметра и резистора R1 будет меньше меньшего, а по расчету составит 29,126КОм. Кто не верит, может для практики пересчитать по формулам для параллельного соединения сопротивлений.

Общий ток в цепи делителя: I = U / (R1 + R2) = 3 / (1000 + 29,126) = 0,0029150949446423470012418304464176 (мА).

Значения сопротивлений подставлены в килоомах, поэтому ток получился в миллиамперах. Тогда получается, что вольтметр покажет

0,0029150949446423470012418304464176 * 29,126 ≈ 0,085 В.

А ожидалась половина, т.е. полтора вольта! Если ток в миллиамперах, сопротивление в килоомах, то результат получается в вольтах. Хотя и не по системе СИ, но иногда поступают и так.

Конечно, такой делитель несколько не реален: зачем на напряжение всего 3В ставить резисторы сопротивлением 1 мегаом? А может где-нибудь такой делитель и применяется, вот только напряжение на нем надо мерить совсем другим прибором.

Например, один из самых дешевых китайских мультиметров DT838, на всех диапазонах измерения напряжений обладает входным сопротивлением 1 мегаом, намного выше, чем прибор в предыдущем примере. Но это вовсе не говорит о том, что стрелочные авометры отжили свой век. В некоторых случаях они просто незаменимы.

Измерение переменных напряжений

Все методы и рекомендации, касающиеся измерения постоянных напряжений, справедливы и для переменных: вольтметр включается параллельно участку цепи, входное сопротивление вольтметра должно быть по возможности большим, диапазон измерений должен соответствовать измеряемому напряжению. Но при измерении переменных напряжений следует учитывать еще два фактора, которых постоянное напряжение не имеет. Это частота напряжения и его форма.

Измерения могут проводиться двумя типами приборов: либо современным цифровым мультиметром, либо «допотопным» стрелочным тестером. Естественно, что оба прибора при таком измерении включаются в режим измерения переменных напряжений. Оба прибора рассчитаны на измерение напряжений синусоидальной формы, и при этом будут показывать действующее значение напряжения.

Действующее напряжение U составляет 0,707 амплитудного напряжения Uм.

U = Uм/√2 = 0,707 * Uм, откуда можно сделать вывод, что Uм = U * √2 = 1,41 * U

Здесь уместно привести широко распространенный пример. При измерении переменного напряжения прибор показал 220В, значит, амплитудное значение по формуле получится

Uм = U * √2 = 1,41 * U = 220 * 1,41 = 310В.

Этот расчет подтверждается каждый раз, когда сетевое напряжение выпрямляется диодным мостом после которого стоит хотя бы один электролитический конденсатор: если померить постоянное напряжение на выходе моста, то прибор покажет как раз 310В. Эту цифру следует запомнить, она может пригодиться при разработке и ремонте импульсных блоков питания.

Указанная формула справедлива для всех напряжений, если они будут иметь синусоидальную форму. Например, после понижающего трансформатора имеется 12В переменки. Тогда после выпрямления и сглаживания на конденсаторе получится

12 * 1,41 = 16,92 почти 17В. Но это если не подключена нагрузка. При подключенной нагрузке постоянное напряжение подсядет почти до 12В. В случае, когда форма напряжения иная, чем синусоида эти формулы не работают, приборы показывают не то, что от них ожидалось. На этих напряжениях измерения производятся другими приборами, например, осциллографом.

Еще один фактор, влияющий на показания вольтметра это частота. Например, цифровой мультиметр DT838 согласно своих характеристик меряет переменные напряжения в диапазоне частот 45…450Гц. Несколько лучше в этом плане выглядит старенький стрелочный тестер ТЛ4.

В диапазоне напряжений до 30В его частотный диапазон составляет 40…15000Гц (почти весь звуковой диапазон, можно пользоваться при настройке усилителей), но с увеличением напряжения допустимая частота падает. В диапазоне 100В это 40…4000Гц, 300В 40…2000Гц, а в диапазоне 1000В всего 40…700Гц. Вот тут уже бесспорная победа над цифровым прибором. Эти цифры также справедливы лишь для напряжений синусоидальной формы.

Хотя иногда и не требуется никаких данных о форме, частоте и амплитуде переменных напряжений. Например, как определить работает гетеродин коротковолнового приемника или нет? Почему приемник ничего не «ловит»?

Оказывается, все очень просто, если воспользоваться стрелочным прибором. Надо включить его на любой предел измерения переменных напряжений и одним щупом (!) коснуться выводов транзистора гетеродина. Если есть высокочастотные колебания, то они продетектируются диодами внутри прибора, и стрелка отклонится на некоторую часть шкалы.

Что показывает вольтметр, или математика розетки

Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке!

Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений.

Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память.

В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем.
Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему».

Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.

Вступление

Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.

Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В). Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?

Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.

Как измерять переменное напряжение?

Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.

Цепи постоянного тока — вещь простая. Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I. Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы: .

Или, если учесть, что по закону Ома , то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле .

С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи.

Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке.

Рассмотрим, что означают все эти буковки на рисунке.

Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.

Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.

Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение поговорим чуть ниже.

Напряжение в розетке (или однофазной сети) описывается формулой

где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения.

Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку.

Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле

где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать:

Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период.
Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах.

Рассчитывается усредненная мощность в общем случае по формуле:

А для нашей синусоиды — по гораздо более простой формуле:

Можете сами подставить вместо функцию и взять интеграл, если не верите.

Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.

Что же показывает вольтметр?

Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.

С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!

На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети .

Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.

Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.

Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?

А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.

Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.

Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:

Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».

Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.

Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:

где — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.

Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:

Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.

Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В«:

В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !

Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.

Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.

Фазы, фазы, фазы…

Помимо обычной однофазной осветительной сети

220В все слышали и о трехфазной сети

380В. Что такое 380В? А это межфазное эффективное напряжение.

Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!

Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.

Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.

«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.

Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.

Математически можно записать уравнения всех трех фаз:

«Синяя» фаза:

«Красная» фаза:

«Зеленая» фаза:

Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).

А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).

То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.

Откуда взялось 380В? А вот откуда.

Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:

Uдф — действующее межфазное, оно же линейное напряжение.

Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.

Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.

Амплитуда межфазного напряжения составляет:

Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:

Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!

Надеюсь, теперь понятно что показывает вольтметр переменного тока?

Заключение

Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.

Что такое входное сопротивление и как его измерить

При работе со сложными схемами нужно уметь определять характеристики их отдельных блоков и элементов. В частности, входное и выходное сопротивление. Важно знать, что они из себя представляют, как определяются и какую роль играют в работе устройства.

Пример сложной цепи

Понятие входного сопротивления для постоянного тока

Радиоэлектронные устройства могут быть не только относительно, но и очень сложными, состоящими из многих блоков. Однако независимо от сложности устройства, количества используемых в нем деталей, схему можно рассматривать в качестве совокупности простых частей с определенной разностью потенциалов на входе. На выходе блока имеется ещё два контакта, на которых также присутствует напряжение. В первом случае его называют входным, в другом — выходным. Сказанное можно пояснить следующим рисунком.

Упрощённое изображение блока

Входное сопротивление цепи можно легко измерить с помощью вольтметра. Также нетрудно определить силу тока, протекающего между контактами. Для этого достаточно к схеме последовательно подключить амперметр. Получив эти два параметра, по закону Ома можно определить сопротивление схемы. Его называют входным. Иногда при этом рассматривают входное сопротивление длинной линии. Его определяющим свойством является то, что при подключении нагрузки к клеммам источника питания электрические характеристики не меняются.

Устройство блока может быть достаточно сложным, но в рассматриваемом случае не принимаются во внимание особенности его конструкции. Фактически можно представить, что внутри как бы находится резистор с определенным активным сопротивлением, соответствующим измеренному.

Мнимый резистор

Входное электрическое сопротивление рассматривается как общая характеристика конкретного блока. Напряжение на вход может поступать с выхода другого блока или, например, с клемм аккумулятора или батареи.

Что такое внутреннее сопротивление при переменном токе

В предыдущем разделе было рассмотрено чисто активное сопротивление. При наличии в цепи только активного сопротивления фазы напряжения и тока совпадают. В реальных схемах обязательно присутствует реактивное сопротивление, которое делится еще на ёмкостное и индуктивное. Для постоянного тока его значение принято считать пренебрежимо малым и не принимать во внимание при расчёте параметров.

Блок, через который проходит переменный ток

Если используется переменное напряжение на входе, тогда рассматривается полное сопротивление, состоящее из активного и реактивного. Их суммируют, используя правило прямоугольного треугольника. В этом случае один катет соответствует активному сопротивлению, второй — реактивному, а гипотенуза — полному или импедансу.

Важно учитывать, что в цепи с переменным током фаза напряжения сдвигается относительно фазы тока. Сдвиг фаз зависит от соотношения активного и реактивного сопротивлений конкретной цепи.

При отсутствии конденсаторов и катушек индуктивности в цепи емкостным и индуктивным сопротивлениями можно пренебречь и учитывать только активное. В этом случае ток будет следовать за напряжением, одновременно принимая нулевые и максимальные значения.

Если же в цепь включить катушку или конденсатор, создающих индуктивное или емкостное сопротивление настолько большого значения, что активное становится пренебрежимо малым, то сдвиг фаз будет равен π/2.

Сдвиг фаз между током и напряжением

Так как реактивное сопротивление зависит от частоты поступающего сигнала, то чтобы более точно определить импеданс, необходимо узнать нужные параметры при двух различных частотах.

Следует принимать во внимание, что входное полное сопротивление линии может быть различным в отличающихся температурных условиях. Характер и величина отличий зависит от конкретного устройства рассматриваемого блока. Также требуется учитывать обратное влияние самой процедуры измерения на электрические параметры схемы.

Входное сопротивление зависит еще и от того, каким способом вводится в цепь сигнал обратной связи (ОС). Если этот сигнал отсутствует, то входное сопротивление определяется напряжением и током, присутствующими на входе. В том случае, когда обратную связь вводят по последовательной схеме, сопротивление на входе увеличивается при отрицательной ОС и уменьшается при положительной ОС.

При использовании параллельной схемы введения ОС входное сопротивление уменьшается и при отрицательной, и при положительной ОС. При небольшом сопротивлении в цепи ОС оно может составлять десятые, и даже тысячные доли Ома.

Как измерить

При определении входных параметров блока его устройство не рассматривается, но при этом может возникнуть необходимость провести измерение входного сопротивления. Блок выглядит как чёрный ящик, имеющий две входных и две выходных клеммы. Наиболее простым решением является определение входного напряжения и силы тока. Для простоты можно предположить, что рассматривается постоянный ток. Определить входное электрическое сопротивление в этом случае можно способом, который описан далее.

Пример разделения схемы на отдельные блоки

Найти входное сопротивление можно, разделив напряжение на силу тока. Однако в рассматриваемом случае нужно понимать, что если напряжение подаётся с батареи, то на показания будет влиять внутреннее сопротивление источника тока.

Если в блоке используется конденсатор, то нужно учитывать, что через него ток проходить не будет. С другой стороны, для переменного тока он помехой не является. Для переменного тока в качестве входного сопротивления цепи рассматривается полное сопротивление (импеданс). Оно представляет собой векторную сумму активного (омического) и реактивного (индуктивного и ёмкостного) сопротивлений. Однако его значение будет отличаться при различных частотах. Поэтому процедура измерения является более сложной по сравнению с постоянным током. В этом случае может быть использована следующая схема.

Схема измерения

В данной схеме применён генератор переменного тока, который расположен слева. Его соединяют с исследуемым блоком, подавая на него переменный ток. На одном из соединительных проводов ставится резистор с известным сопротивлением R.

Напряжение измеряют дважды — перед резистором и после него. Пусть его значение будет равно U1 и U2 соответственно. Как известно, при переменном входном токе I(вх) падение напряжения на этой детали составит U2 – U1. С другой стороны оно будет равно I(вх) × R. В результате может быть получена следующая формула:

Из этой формулы можно определить величину входного тока:

I(вх) = ( U2 − U1 ) / R.

На вход исследуемого блока поступает напряжение U2:

Входное сопротивление R(вх) найдем, используя формулу:

( U2 − U1 ) / R = U2 / R(вх).

Определяем значение сопротивления:

R(вх) = R × U2 / ( U2 − U1 ).

Все величины в правой части равенства являются известными или были измерены. Подставив их формулу, можно определить величину входного сопротивления схемы.

Применение описанного здесь способа позволяет точно вычислять входное сопротивление даже в тех случаях, когда оно очень велико.

Выходное напряжение

При рассмотрении упрощённой схемы блока видно, что у него имеется выходное напряжение. Оно появляется на контактах, указанных на изображении справа.

Схема для выходного сопротивления

На рисунке показан идеальный источник тока, который, как предполагается, не имеет внутреннего сопротивления. Это означает, что может быть создан сколько угодно большой ток. Имеющийся на схеме резистор нарушает определенную идеальность, ограничивая величину тока при коротком замыкании.

Измерение выходного тока может быть выполнено следующим образом. Напряжение U является известной величиной. При коротком замыкании может быть измерен проходящий по контактам ток. Выходное сопротивление R(вых) определяется по закону Ома. Для его вычисления необходимо напряжение разделить на ток.

Однако этот способ неудобен, так как большой ток нарушает условия функционирования схемы и может привести к поломкам. Поэтому на практике между клеммами ставят дополнительный резистор с известной величиной сопротивления R и только после этого измеряют значение силы тока I и напряжения U2. Предварительно следует определить разность потенциалов U1 с помощью вольтметра. Исходя из закона Ома, получают следующую формулу:

R(вых) = ( U2 – U1 ) / ( U2 / R ).

Практическое применение

Понятие входного сопротивления играет важную роль при согласовании характеристик соединённых между собой блоков. Сказанное можно пояснить на следующем примере.

Предположим, что первым блоком является источник питания. Если к его клеммам присоединён следующий блок, то при практическом определении его входного сопротивления станет понятно, что оно немного меньше расчётной величины.

Это связано с наличием внутреннего сопротивления аккумулятора. Чем оно больше, тем искажение заметнее. Аналогичная ситуация наблюдается при соединении двух любых других блоков. Чтобы передача сопротивления проходила с минимальными потерями, необходимо, чтобы выходное сопротивление предыдущего блока было намного меньше входного у последующего.

С учетом этого обстоятельства необходимо уметь определять рассматриваемые величины, а при создании схемы обеспечивать их правильное соотношение. Если оно будет нарушено, то произойдёт значительное падение напряжения при передаче.

На практике обычно сталкиваются с очень большими значениями входных сопротивлений. В некоторых случаях они могут достигать 1 МОм. Это часто происходит при относительно небольшом входном напряжении. В результате сила рассматриваемого тока получается также небольшой.

В электронике входное и выходное сопротивление играют важную роль. Все качественные измерительные приборы стараются делать с очень высоким входным сопротивлением, чтобы оно минимально сказывалось на измеряемом сигнале и не гасило его амплитуду.

Что касается качественных источников питания, то их выпускают с очень небольшим выходным сопротивлением, чтобы при подключении низкоомной нагрузки напряжение на выходе «не проседало». Но даже если это случится, его можно подкорректировать вручную, используя регулировку выходного напряжения, присутствующую в каждом нормальном источнике питания.

Вывод формулы добавочного сопротивления

Подключение вольтметра к цепи схемавольтметр-7вольтметр 6

И так, вольтметр — это прибор, который измеряет разность потенциалов (в Вольтах) или напряжение. Принцип работы классического вольтметра довольно прост — ток, который индуцируется в катушке при подключении к источнику напряжения, создает вращающий момент, который перемешает стрелку электроизмерительного прибора. Отклонение стрелки всегда прямо пропорционально разности потенциалов между измеряемыми точками. Стоит помнить, что вольтметр ВСЕГДА подключается параллельно к цепи, в которой ведется измерение напряжения.

Почему вольтметр всегда подключен параллельно?

Сопротивление у идеального вольтметра равно бесконечности. Но это у идеального, у реального оно значительно меньше, но все еще очень высоко. Поэтому при подключении измерительного прибора в цепь последовательно его показания не будут иметь ничего общего с правдой, а его внутреннее сопротивление окажет существенное влияние на электрическую цепь (практически разрыв цепи из-за большого внутреннего сопротивления).

Подключение вольтметра к цепи схема

Вольтметр всегда подключается параллельно цепи, так что падение напряжения на измерительном приборе никак не влияет на работу электрической цепи. Также если измерительный прибор является многопредельным (например 3, 15, 75 и 150 В), при переключении предела последовательно катушке измерения вводится добавочное сопротивление (как правило оно уже установлено в корпусе прибора, но стоит уточнить это в техпаспорте), которое предохраняет измерительную катушку электрического прибора от токов выше номинального и обеспечивают точность измерения.

Что измеряют вольтметром

Вольтметр — прибор, предназначенный для измерения напряжения электрического тока в цепи. Его название происходит от единицы измерения напряжения — Вольта и традиционного для всех измерительных приборов окончания «метр». Для начала его использования нужно всего лишь включить его в сеть. Сразу после этого он начнет показывать параметр напряжения.

Погрешности возможны в любых даже современных инструментах. Без них никуда, но они незначительны. Чтобы погрешность стремилась к нулю нужно, чтобы внутреннее сопротивление прибора стремилось к бесконечности. Если этого не будет, то влияние на прибор цепи, к которой он подключен, неизбежно. Конечно, такого сопротивления быть не может, как и идеальных вольтметров.


Формулы напряжения в 1 Вольт

Стоит разобраться с понятием «напряжения» подробнее. Это необходимо для того, чтобы понять принцип работы приборы. Все знают еще со школы, что напряжение равно силе тока умноженной на сопротивление участка цепи.

Формула проста, но не дает точного понимания понятия. Ток остается невидимым, а напряжение — простыми цифрами. Для простоты понимания можно привести пример с простыми вещами, которые могут наблюдаться каждый день. Например, при движении воды по речке и водопаду, напряжение будет соответствовать высоте, то есть разности уровней воды. В сети все то же самое и напряжение определяет воображаемый напор воды. Если не будет напряжения, то не будет и тока. Аналогично и воде: если разность уровней будет нулевой, то вода не будет двигаться.


Современный стрелочный вольтметр

Важно! Шкала прибора отмечена латинской буквой «V». Это внешне отличает его от амперметра и других приборов. Других отличий между ними мало. Они вполне могут выглядеть практически одинаково.

Диапазон измерения прибора может быть разным. Устройства для слабой сети показывают максимум 5 Вольт, а промышленные аппараты — до 1000 Вольт. Все зависит от его предназначения.

Вам это будет интересно Классификация воздушных и подземных ЛЭП и их назначение


Прибор времен СССР

Почему вольтметр имеет большое сопротивление?

Вольтметр имеет очень высокое внутреннее сопротивление, потому что он измеряет разность потенциалов между двумя точками цепи. Вольтметр не влияет на ток измеряемой цепи.

Если измерительный прибор имеет низкое сопротивление, через него будет проходить ток (согласно первому закону Кирхгофа ток будет распределяться между двумя ветвями цепи — часть тока будет протекать через нагрузку, а часть через вольтметр, именно поэтому его сопротивление должно быть как можно больше — чтоб минимизировать ток), и на выходе мы получим неверный результат. Большое сопротивление вольтметра не позволяет току проходить через него (разрыв цепи), и, таким образом, получают показания напряжения.

ЭДС и напряжение: разница

Итак, ЭДС — характеризующая работу, производимую какими-либо силами неэлектрического характера по перемещению единичного положительного заряда вдоль рассматриваемого контура. В самом обычном случае она показывает способность источника энергии создавать ту или иную разность потенциалов в двух разнесенных точках цепи. Измеряется, как и напряжение, в вольтах. Отличается от него тем, что характеризует источник питания на холостом ходу, то есть без подключения к сети.

Когда в контуре имеется ток, то есть он замкнут, появляется еще одно, более привычное слуху понятие — напряжение. Причем оно может браться как для самого источника питания на его клеммах, так и в любом участке цепи. Измерение напряжения представляет собой выявление разности потенциалов между двумя разнесенными точками. Для источника питания оно обычно несколько меньше электродвижущей силы, когда тот включен в цепь потребления. По сути, и ЭДС, и напряжение — это одно и то же, с различием лишь в том, какой физический процесс порождает появление разности потенциалов между двумя точками, в которых проводится измерение.

Какие бывают типы вольтметров

Вольтметры, как и любые другие электроизмерительные приборы, классифицируются в зависимости от назначения и конструкции. Более подробно на рисунке ниже:

Типы вольтметров диаграмма

Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC)

Такой прибор работает по магнитоэлектрическому принципу. В двух словах это означает следующее — в постоянное магнитное поле помещается катушка измерительного прибора, которая подключается к электрической цепи, в которой проводится измерение. При протекании тока через катушку электромагнитная сила создаст вращающий момент, который повернет стрелку измерительного прибора на определенный угол.

Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC) используется только в сетях постоянного тока. Такой тип устройства имеет очень низкое энергопотребление и очень высокую точность. Единственным его недостатком является стоимость.

Электромагнитный вольтметр (MI вольтметр)

Электромагнитный вольтметр может использоваться для измерения как постоянного, так и переменного напряжения. В таком типе приборов отклонение стрелки зависит от напряжения катушки. Электромагнитные вольтметры разделяют на два типа:

  • электромагнитный измерительный прибор с плоской катушкой.
  • электромагнитный измерительный прибор с круглой катушкой.

Электродинамический вольтметр

Электродинамический вольтметр используется для измерения напряжения цепи переменного и постоянного тока. В приборах этого типа калибровка одинакова как для измерения переменного, так и постоянного тока.

Вольтметр с выпрямительной системой

Такой тип прибора используется в цепях переменного тока для измерения напряжения. Выпрямитель преобразует переменный ток в постоянный ток, после чего сигнал постоянного тока измеряется прибором с подвижной катушкой и с постоянными магнитами.

Аналоговый вольтметр

Аналоговый вольтметр используется для измерения переменного и постоянного напряжения. Он отображает показания через указатель, который зафиксирован на калиброванной шкале. Отклонение указателя зависит от крутящего момента, действующего на него. Величина развиваемого крутящего момента прямо пропорциональна измеряемому напряжению.

Цифровой вольтметр

Вольтметр, который отображает показания в числовой форме, известен как цифровой вольтметр. Цифровой вольтметр дает достаточно точный результат.

Прибор, который измеряет постоянное напряжение, известен как вольтметр постоянного напряжения, а вольтметр переменного напряжения используется в цепи переменного тока для измерения переменного напряжения.

Определение входного сопротивления вольтметра

Важной метрологической характеристикой вольтметра является его входное сопротивление. Измерить сопротивление между входными клеммами вольтметра можно с помощью любого измерителя сопротивления (например, мультиметром UT60A в режиме омметра). Однако чаще используется метод определения входного сопротивления по двум показаниям поверяемого вольтметра, во входную цепь которого включен магазин сопротивлений (см. рис. 5.1). Показание вольтметра, измеряющего напряжение на зажимах источника с пренебрежимо малым внутренним сопротивлением, равно

пр — предельное значение напряжения источника ЭДС;

м — сопротивление магазина;

в — входное сопротивление вольтметра.

Рис. 5.1. Измерение входного сопротивления вольтметра

Если произвести два измерения с различными значениями сопротивления магазина, то можно вычислить R

в. Пусть одно измерение проводится при
R
м
=
0, тогда вольтметр покажет значение
U
пр (внутренним сопротивлением источника мы пренебрегаем). Второе измерение проведем при введенном сопротивлении
R
м:

Погрешность измерения R

в зависит от точности изготовления
R
м и погрешностей измерений
U
пр и
U
х. Так как
U
пр и
U
х измеряются одним и тем же вольтметром, происходит компенсация систематических погрешностей измерения
U
пр и
U
х в знаменателе и, следовательно, систематическая погрешность измерения
R
в определяется погрешностью числителя. По формуле Тейлора

Учитывая, что сопротивление магазина изготовлено с высокой точностью, можно пренебречь третьим слагаемым. Считая, что (определяется классом точности измерительного прибора), имеем:

Если погрешности DU

х и D
U
пр независимы, то возможен вариант, когда они принимают максимальные по величине, но противоположные по знаку значения. В этом случае, считая , погрешности измерения сопротивлений равны

В частном случае, если выбором R

м можно добиться , т.е. чтобы показания вольтметра уменьшились ровно в 2 раза, формулы (5.1), (5.2) и (5.3) принимают вид:

ЛАБОРАТОРНОЕ ЗАДАНИЕ

1. Изучить инструкцию по эксплуатации цифрового мультиметра UT60A.

2. Изучить инструкцию по эксплуатации комбинированного прибора (тестера).

3. Экспериментально определить входное сопротивление тестера и цифрового вольтметра на выбранном пределе измерений с помощью магазина сопротивлений и мультиметра UT60A.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

Подготовка измерительных приборов к работе

Поворотный переключатель цифрового мультиметра UT60A установить в положение Hz V

Подготовка электромеханического вольтметра (тестера) состоит в установке соответствующих положений переключателей рода тока и предела измерений, а также стрелки на нуль с помощью корректора.

Установить на источнике постоянного напряжения ВСП-50 выходной сигнал равным нулю (повернуть рукоятки плавного и грубого изменения выходного напряжения против часовой стрелки до упора).

Собрать схему для проведения измерений. После проверки собранной схемы преподавателем, включить цифровой мультиметр нажатием кнопки POWER

и источник постоянного напряжения переключением тумблера
ВКЛ
.

Проведение эксперимента

Измерить входные сопротивления электромеханического и цифрового вольтметров по методике, изложенной в теоретической части данной лабораторной работы.

Измерение входного сопротивления тестера на пределах измерения 0,5 В, 2,5 В и 10,0 В проводить следующим образом:

1. Установить R

2. С помощью регуляторов источника ВСП-50 установить стрелку тестера на максимальную отметку шкалы.

3. Не изменяя напряжение с ВСП-50, увеличить сопротивление R

м так, чтобы стрелка измерительного механизма остановилась посередине шкалы. Это означает, что ток через измерительный механизм уменьшился в 2 раза, т.е. в цепь источника сигнала введено сопротивление
R
м, равное имевшемуся ранее в цепи сопротивлению
R
в.

Если с помощью магазина сопротивлений не удается установить стрелку измерительного механизма посередине шкалы, необходимо занести в отчет значения напряжений при R

м =0 (
U
пр) и при
R
м =
R
max (
U
х) и вычислить значение входного сопротивления
R
в по формуле (5.1).

4. Вычислить предельные значения погрешностей измерения R

в по формулам (5.2)-(5.7).

5. Измерить входное сопротивление тестера цифровым мультиметром UT60A.

6. Занести результаты измерений и вычислений в табл. 5.1.

7. Сравнить результаты измерений R

в, полученные двумя способами.

8. Вычислить погрешности измерений R

в с помощью магазина сопротивлений. В качестве действительного значения сопротивления взять показание цифрового вольтметра. Занести экспериментально определенные значения D
R
в в табл. 5.1.

9. Сравнить предельные и экспериментальные значения DR

Таблица 5.1

Пределы измерения Umaxi
, В
Измерение входного сопротивления магнитоэлектрического вольтметра
R
в, кОм
DR
в, кОм
По методике, изложенной в п. 2.1 UT60A По формуле (5.2) По формуле (5.4) Экспер. UT60A
0,5
2,5
10,0

Учитывая большое входное сопротивление цифрового вольтметра (порядка 5–15 МОм), необходимо брать сопротивление R

м такого же порядка. В лабораторной работе вместо
R
м используется добавочное сопротивление, значение которого с высокой точностью измеряется цифровым вольтметром. Методика измерения входного сопротивления цифрового вольтметра состоит в следующем:

1. Измерить цифровым вольтметром добавочное сопротивление номиналом 5–10 МОм, занести его значение в табл. 5.2.

2. Подключить цифровой вольтметр к источнику постоянного напряжения. Установить на выходе ВСП-50 напряжение, соответствующее пределу измерения цифрового вольтметра, и снять показание с вольтметра.

3. Последовательно с вольтметром подключить добавочное сопротивление и снять показание вольтметра.

4. Вычислить входное сопротивление цифрового вольтметра по формуле (5.1).

5. Вычислить погрешность измерения сопротивления R

впо формулам (5.2) – (5.5).

6. Измерить входное сопротивление цифрового вольтметра на пределах измерения 4 В, 40 В, 400 В. Сделать вывод об изменении входного сопротивления электронных вольтметров в зависимости от предела измерений.

7. Заполнить табл. 5.2.

Таблица 5.2

Пределы измерения Umaxi
, В
R
д2=…, МОм
Предельные погрешности измерений, R
в
U
, В
U
х, В
Rв, МОм абсолютные, МОм относительные, %
ΔR’ ΔR’’ δR’ δR’’
Umax 1=4 По формуле (5.1) По формуле (5.2) По формуле (5.4) По формуле (5.3) По формуле (5.5)
Umax 2=40
Umax 3=400

8. Сделать вывод о проделанной работе, в котором указать, можно ли использовать методику, изложенную в теоретической части данной лабораторной работы для измерения сопротивления вольтметра с целью расширения его пределов измерения в соответствии с рис. 5.2.

Рис. 5.2. Методическая погрешность измерения напряжения

СОДЕРЖАНИЕ ОТЧЕТА

Перед проведением лабораторной работы отчет должен содержать:

— цель лабораторной работы и применяемое оборудование;

— схемы приборов и экспериментальных установок (рис. 5.1-5.2);

— расчетные формулы для определения погрешности измерения сопротивления вольтметра по методике, изложенной в теоретической части данной лабораторной работы.

После проведения лабораторной работы отчет также должен содержать:

— результаты экспериментов в виде таблиц 5.1 и 5.2.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Почему входное сопротивление цифрового вольтметра не зависит от предела измерения?

2. Какие характеристики называют метрологическими?

3. От чего зависит сопротивление вольтметра?

4. Что такое нормированное сопротивление и для чего оно нужно?

5. Для чего устанавливалось значение R

ЛАБОРАТОРНАЯ РАБОТА №6.

СХЕМЫ И СРЕДСТВА ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ. ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ОММЕТРА

ЦЕЛИ РАБОТЫ

1. Получение практических навыков работы с тестером и электронным вольтметром.

2. Изучение способов оценки погрешностей измерений тестером и электронным вольтметром сопротивления.

3. Освоение методики поверки омметров.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем…

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот…

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор…

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право…

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Разновидности

Помимо технических параметров, которые определяют назначение прибора и его характеристики, вольтметры обладают и физическими, а именно — разновидностями. Видов современных вольтметров большое количество. Так по принципу действия они разделяются на электромеханические и электронные. По назначению на вольтметров для постоянного, переменного, импульсного тока, универсальные и фазовые.

Наиболее часто людей интересует классификация по виду исполнения, который может быть мобильным и стационарным.


Карманный ЖК цифровой мультиметр

Стационарные

Стационарные вольтметры представляют собой устройства, которые питаются от сетей переменного напряжения. Возможно это благодаря встроенному в их корпус блоку питания. Как правило, с виду они похожи на коробку или ящик, а используются для узкоспециализированных работ, требующих повышенной точности измерений. Чаще всего это профессиональная сфера деятельности и контролирование напряжения на важных и нестабильных участках сети. Само слово «стационарный» говорит о том, что они применяются там, где нужна постоянная слежка и изменение данных.


Стационарный стрелочный вольтметр

Мобильные

Их еще называют переносными, хотя стационарный прибор иногда перенести также не составляет труда. Мобильный же вольтметр компактный и способен поместиться практически везде. Их относят к классу полупрофессиональных и любительских, потому что работают они от батареек или аккумуляторов и обладают сравнительно меньшими точностями и большими погрешностями. Выглядят они как плоские коробочки, «обитые» пластиком или резиной и имеющие эргономические формы. Чтобы они были еще удобнее, их оснащают съемными щупами для определения амплитудных колебаний сигналов.

Вам это будет интересно Предназначение реле контроля напряжения 220В для дома

Важно! Как правило, мобильные вольтметры включаются в состав тестеров и мультиметров. Мобильные цифровые вольтметры способны очень точно определить показания, в то время как портативные аналоговые приборы — показать хорошую чувствительность, способную определить даже самые маленькие отклонения напряжения, которые не могут определить цифровые приборы.


Цифровой мобильный вольтметр

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *