Драйвер от светодиодной лампы куда можно применить
Перейти к содержимому

Драйвер от светодиодной лампы куда можно применить

Драйверы для светодиодов: виды, назначение, подключение

Владимир Пузрин

LED-источники должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать светодиодные источники освещения. Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

Драйверы для светодиодов

Что такое драйверы для светодиодов и зачем они нужны

Светодиоды – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает напряжение при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.

Устройство светодиода

По сути, драйвер – это блок питания. Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 светодиодных элементов, каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Внешний вид LED-драйвера

Внешний вид LED-драйвера

Где применяют

Спрос на преобразователи растет вместе с популярностью светодиодов. LED-источники освещения – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

  • для фонарей уличного освещения;
  • в быту;
  • для обустройства подсветки;
  • в автомобильных и велосипедных фарах;
  • в небольших фонарях;

При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.

Светодиодные уличные фонари – мощные и экономичные

Светодиодные уличные фонари – мощные и экономичные

Как работает устройство

Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Вся важная информация есть на корпусе устройства

Вся важная информация есть на корпусе устройства

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Линейный

Импульсный

Как подобрать драйвер для светодиодов и рассчитать его технические параметры

Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

Параметр От чего зависит Как рассчитать
Расчет мощности устройства Определяется мощностью всех подключаемых светодиодов Рассчитывается по формуле P = P LED-источника × n, где P – это мощность драйвера; P LED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
Расчет напряжения на выходе Определяется падением напряжения на каждом элементе Величина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
Расчет тока Зависит от мощности и яркости светодиодов Определяется параметрами, подключаемого устройства

Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.

 Бескорпусный драйвер

Способы подключения преобразователей тока

Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

Способы соединения светодиодов

Способы соединения светодиодов

Диммируемые преобразователи тока для светодиодов

Диммирование – это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для светодиодных светильников позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.

Диммирование светодиодов при помощи пульта ДУ

Диммирование светодиодов при помощи пульта ДУ

Китайские драйверы: стоит ли экономить

Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

Недостатки китайской продукции:

  • в качестве основы используются простые и дешевые микросхемы;
  • устройства не имеют защиты от колебаний в сети и перегрева;
  • создают радиопомехи;
  • создают на выходе высокоуровневую пульсацию;
  • служат недолго и не имеют гарантии.

Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или перестал работать, возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Виды и характеристики драйверов для светодиодных источников света

Драйвер для светодиодного светильника — важнейший элемент схемы, обеспечивающий хорошую яркость, эффективность и продолжительную эксплуатацию источников света. С его помощью происходит трансформация переменного тока промышленной сети напряжением 220 В в постоянный ток нужного значения (12/24/48 В). Разберемся во всех функциях электротехнического элемента и укажем важные критерии выбора устройств.

Понятие сетевого драйвера и его предназначение

Драйвер — электронный компонент, на который поступает напряжение переменного тока, происходит стабилизация и выходит напряжение постоянного тока. Здесь важно понимать, что речь идет о получении тока. Для преобразования напряжения используются обычные блоки питания (на корпусе указывается значение выходного напряжения). Блоки питания эксплуатируются в диодных лентах.

Блоки питания и драйвера для светодиодных осветительных приборов

Главная характеристика преобразователя для светодиодных осветительных приборов — выходной ток. Для нагрузки используют вспомогательные led-диоды или другие полупроводники. Практически всегда драйвер питается от промышленной сети 220 В, а диапазон напряжения на выходе начинается от 2 – 3 и заканчивается десятками Вольт. Чтобы подключить три светодиода на 3 Вт, необходим электронный драйвер с выходным напряжением 9 – 21 В и током 780 мА. При небольшой нагрузке универсальное устройство характеризуется низким коэффициентом полезного действия (КПД).

Для питания фар транспортных средств применяют источник с постоянным напряжением от 10 до 35 В. Если мощность невысокая, драйвер необязателен, но потребуется соответствующий резистор. Данный компонент — незаменимая часть бытового выключателя, но при коммутации led-диода к переменной сети 220 В нельзя рассчитывать на надежную и долговечную работу.

Принцип работы

Преобразователь выступает источником тока. Разберемся в отличиях изделия от блока питания — источника напряжения.

На выходе каждого преобразователя напряжения имеем определенное напряжение, которое не связано с нагрузкой. К примеру, если подключить к блоку питания 12 В сопротивление 40 Ом, через него будет идти ток 300 мА. Если установить два резистора параллельно, то в сумме получится ток 600 мА, хотя напряжение останется идентичным.

Что касается драйвера, он дает одинаковый ток, несмотря на изменяющееся в меньшую или большую сторону напряжение. Возьмите резистор 30 Ом и соедините его с драйвером на 225 мА. Напряжение упадет до 12 В. Если выполнить коммутацию двух параллельно соединенных резисторов по 30 Ом каждый, ток все равно останется равным 225 мА, но напряжение уменьшится вдвое — до 6 В.

Преобразование тока для светодиодов

Отсюда вывод: качественный драйвер гарантирует нагрузке заданный выходной ток независимо от изменяющегося напряжения. В результате led-диод при подаче напряжения 5 В будет светить одинаково ярко в сравнении с источником питания на 10 В при условии сохранения идентичного тока.

Технические характеристики

Необходимость покупки драйвера возникает, если был найден интересный светильник без преобразователя тока. Другой вариант — создание источника света с нуля путем приобретения каждого элемента отдельно.

Перед покупкой преобразователя тока изучите три главные характеристики:

  • выходной ампераж;
  • рабочая мощность;
  • выходной вольтаж.

Выходное напряжение рассчитывается исходя из схемы подключения к питанию и числа светодиодов. Значение тока оказывает воздействие на мощность и уровень свечения. Выходного тока драйвера для led-диодов должно быть достаточно для постоянного и яркого свечения.

Мощность изделия должна быть выше суммарного значения всех светодиодов. Для расчета используется формула P = P (led) × X, где

  • P (led) — мощность диода;
  • X — число диодов.

Для гарантии продолжительной эксплуатации драйвера нужно ориентироваться на запас мощности — покупайте преобразователи номинальной мощностью на 20 – 30 % выше требуемого значения. Не забывайте о цветовом факторе, непосредственно связанном с падением напряжения. Последняя величина изменяется в зависимости от разных цветов.

Срок годности

Срок эксплуатации драйвера несколько меньше по сравнению с оптической составляющей светодиодного светильника — порядка 30 000 часов. Это связано с рядом причин: скачками напряжения, изменениями температуры, влажности и нагрузкой на преобразователь.

Одно из уязвимых мест — сглаживающий конденсатор, в котором со временем испаряется электролит. В большинстве случаев это происходит при монтаже в помещениях с высокой влажностью или подключении к сети, в которой есть скачки напряжения. Подход приведет к повышению пульсаций на выходе устройства, что негативно воздействует на led-диоды.

Нередко срок службы драйвера уменьшается из-за частичной загруженности. Если используется устройство мощностью 200 Вт с уменьшенной в два раза нагрузкой (100 Вт), половина от номинального значения вернется в сеть, что вызовет перегрузку и более частые сбои питания.

Виды драйверов

Существуют две основные категории преобразователей тока для светодиодов — линейного и импульсного типов. На линейном оборудовании выход — генератор тока, гарантирующий стабилизацию при любых перепадах сетевого напряжения. Компонент выполняет плавную подстройку без образования электромагнитных волн высокой частоты. Простые и дешевые изделия с КПД ниже 80 %, что ограничивает область использования до светодиодов и лент малой мощности.

Принцип действия импульсных драйверов сложнее — на выходе образуется серия импульсов тока высокой частоты.

Частота появления импульсов тока всегда постоянна, но коэффициент заполнения может изменяться в диапазоне 10 – 80 %, что приводит к изменению значения выходного тока. Компактные габариты и высокий КПД (90 – 95 %) обусловили широкое распространение импульсных драйверов. Их главный недостаток — большее число электромагнитных помех (в сравнении с линейными).

На стоимости драйвера сказывается наличие или отсутствие гальванической развязки. В последнем случае устройства обычно дешевле, но надежность значительно ниже из-за вероятности поражения током.

Диммируемый драйвер

Диммер — устройство, позволяющее регулировать яркость источников света. Большинство драйверов поддерживают данную функцию. С их помощью понижается интенсивность освещения в светлое время суток, расставляются акценты на определенных предметах интерьера, выполняется зонирование комнаты. Все это предоставляет возможность снижения затрат на электроэнергию и увеличение ресурса отдельных компонентов.

Диммируемый драйвер для светодиодов

Китайские драйверы

Дешевые и низкокачественные китайские драйверы характеризуются отсутствием корпуса. Величина выходного тока обычно не превышает 700 мА. На фоне минимальной стоимости и (возможно) наличия гальванической развязки недостатки выглядят куда более серьезными:

  • короткий срок эксплуатации;
  • ненадежность — дешевые элементы для схем;
  • большие радиочастотные помехи;
  • многочисленные пульсации;
  • слабая защита от высокой температуры и повышения/снижения сетевого напряжения.

Как подобрать драйвер

Если хотите получить качественное устройство, которое прослужит несколько лет и будет выполнять требуемые функции, рекомендуем избегать приобретения дешевых китайских изделий. Далеко не всегда физические параметры таковых совпадают с заявленными значениями. Не покупайте приборы, у которых отсутствуют гарантийные талоны.

Самый простой, средний по качеству и цене вариант — преобразователь тока без корпуса, подключаемый к промышленной сети напряжением 220 В. Выбирая ту или иную модификацию устройства, можно использовать его для одного или нескольких светодиодов. Это отличные элементы, применяемые в лабораторных исследованиях и экспериментах. Для квартиры и дома желательно покупать драйверы с корпусом, поскольку при его отсутствии снижаются надежность и безопасность эксплуатации.

Готовые микросхемы преобразователей тока для светодиодных светильников

На рынке можно встретить готовые микросхемы для преобразования тока. Ниже рассмотрим наиболее популярные из всех:

  1. Supertex HV9910 — импульсный преобразователь с током до 10 мА, не поддерживающий развязку.
  2. ON Semiconductor UC3845 — устройство импульсного типа, выходной ток которого равен 1 А.
  3. Texas Instruments UCC28810 — драйвер импульсного типа с поддержкой развязки и выходным током не более 750 мА.
  4. LM3404HV — отличный вариант для питания светодиодов высокой мощности. Работа построена по принципу преобразователя резонансного типа. Для поддержания номинального тока используется резонансная цепь, состоящая из конденсатора и полупроводникового диода Шоттки. При выборе сопротивления RON есть возможность задать требуемую частоту коммутации.
  5. Maxim MAX16800 — линейный драйвер для малого напряжения (12 В). Выходной ток насчитывает не более 350 мА. Данная схема драйвера для светодиодной лампы — отличный вариант для мощного led-диода или фонарика. Поддерживается диммирование.

Самостоятельная сборка преобразователя для светодиодов 220 В

Рассмотренная схема напоминает блок питания импульсного типа. Для примера возьмем простой блок питания импульсного типа, не имеющий гальванической развязки. Главные преимущества подобной схемы — простота и надежность.

При выборе метода действуйте осторожно, поскольку отсутствуют какие-либо ограничения по выходному току. Светодиоды будут питаться от положенных им 1,5 – 2 А, но если по неосторожности коснуться руками оголенных проводов, значение тока вырастет до десятков ампер и произойдет сильный удар.

Простейшая схема преобразователя тока на 220 В содержит три каскада:

  • делитель напряжения с емкостным резистором;
  • несколько диодов (мост);
  • стабилизатор напряжения.

В первом каскаде емкостной резистор используется для самостоятельной подзарядки конденсатора, не имеет отношения к работе самой схемы. Номинал не имеет значения и обычно составляет от 100 кОм до 1 МОм при мощности не более 1 Вт. В этих целях нельзя выбирать электролитический конденсатор.

Ток через конденсатор проходит до тех пор, пока он полностью не зарядится. Чем ниже емкость конденсатора, тем быстрее завершится процесс. Конденсатор на 0,3 мкФ пропустит через себя меньшую часть от общего напряжения сети.

Схема подключения светодиодов с помошью гасящего конденсатора

Диодный мост используется для трансформации переменного напряжения в постоянное. После того как конденсатор «отсечет» практически весь вольтаж, диодный мост выдаст постоянный ток с напряжением 20 – 22 В.

На третьем каскаде устанавливают сглаживающий фильтр для стабилизации напряжения. Конденсатор и диодный мост уменьшают напряжение. Любые изменения напряжения в сети сказываются на выходной амплитуде диодного моста. Для уменьшения пульсации параллельно в схему подключают электролитический конденсатор.

Самостоятельная сборка преобразователя на 10 Ватт

Если хотите своими руками соорудить сетевой драйвер для питания мощного светодиода, воспользуйтесь электронными платами от испорченных экономок. Зачастую подобные светильники прекращают работу именно из-за перегоревших ламп, хотя электронная плата продолжает функционировать. Все компоненты могут применяться для создания блока питания, драйвера и прочих электротехнических приборов. В процессе потребуются конденсаторы, диоды, транзисторы и дроссели.

Разберите вышедшую из строя ртутную лампу мощностью 20 Вт (подходит для драйвера на 10 Вт). В таком случае гарантируется, что дроссель выдержит оказываемую нагрузку. С увеличением потребностей мощности для сетевого драйвера придется выбирать более мощную экономку или вместо дросселя воспользоваться аналогом с огромным сердечником.

Выполните 20 витков на обмотке и паяльником подключите ее к выпрямителю (диодному мосту). Подайте напряжение от промышленной сети 220 В и мультиметром измерьте полученное значение на выходе диодного моста. При использовании инструкции получится значение в районе 9 – 10 В. Светодиодный источник потребляет 0,8 А при номинале 900 мА. Поскольку вы будете подавать ток уменьшенного значения, сможете продлить срок эксплуатации led-диода.

Простой драйвер для 10-ваттного светодиода

Заключение

Несмотря на кажущуюся простоту и надежность, светодиоды более сложны и требовательны, нежели другие источники света. Взять те же источники питания. К примеру, если превысить мощность тока питания люминесцентной лампы на 15 – 25 %, характеристики не ухудшатся. В случае светодиодов срок их эксплуатации снизится в несколько раз. Наличие сетевого драйвера гарантирует подачу одинакового выходного тока независимо от скачков напряжения сети. По этой причине не стоит экономить на покупке данных устройств.

Драйвер для светодиодов. Зачем нужен и как правильно подобрать?

Как подобрать драйвер (блок питания) для светодиодов

Полезные ссылки:

  • Комплектующие для сборки самодельных фитоламп
  • Фото и видео примеры самодельных фитоламп для растений

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример: Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит — то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт — оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА — это ходовые. Других вариантов довольно много. По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать «вполсилы», и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА. Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока «жизни» светодиодных ламп работающих например на 500-600 мА токе. Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему — см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Принцип работы блока питанияКакие светодиоды внутри лампы миньонСхема электрическая принципиальная светодиодной лампы Lexman E14 5.5 Вт

Сетевая лампа на светодиодах своими руками

В настоящее время стоимость электроэнергии значительно выросла. Для того чтобы оптимизировать бюджет можно воспользоваться двумя вариантами: увеличить свои месячные доходы или начать экономить. Второй способ займет гораздо меньше времени и усилий. Поэтому в качестве одного из решений проблемы выступает замена обычных лам накаливания на более энергосберегающие. В качестве альтернативы обычно рассматривают ЛДС или LED-светодиоды. Однако последние имеют гораздо больший срок службы и мощность всего 8 Ватт.

Принципиальная схема лампы на светодиодах представлена на следующем рисунке:

Изготовить сетевую лампу на светодиодах своими руками не так сложно, как может показаться с первого взгляда. Для этого придется купить в магазине радиотоваров несколько деталей:

  1. Светодиод мощностью 1 Ватт – 8 шт.;
  2. Радиатор – 1 шт.;
  3. Мост диодный – 1 шт.;
  4. Кусок оргстекла или пластмассы – 1 шт.;
  5. Резистор на 56 Ом – 1 шт.;
  6. Резистор на 100 Ом – 1 шт.;
  7. Резистор на 1,2 кОм – 1 шт.;
  8. Резистор на 3,9 кОм – 1 шт.;
  9. Конденсатор неполярный 680 нФ с напряжением 400 В – 1 шт.;
  10. Конденсатор полярный 2мкФ с напряжением 400 В – 1 шт.;
  11. Транзистор 13001 – 2 шт.

Желательно приобрести готовую диодную сборку. Если такую не удалось найти, что основу для LED-лампы можно спаять самостоятельно. Когда все элементы будущей конструкции есть в наличии, то можно приступать к работе.

На кусочке оргстекла необходимо сделать разметку под светодиоды, она должна совпадать с формой радиатора. После этого в материале высверливают небольшие отверстия.

После этого заготовку нужно зашкурить наждачной бумагой или шлифовальной машинкой. Обрабатываю поверхность детали до тех пор, пока она не станет матовой. Затем на светодиодах выравнивают лапки, концы проводов не должны касаться радиатора.

Далее светодиоды нужно прикрепить к оргстеклу. После установки их спаивают между собой, соблюдая полярность.

Когда все элементы установлены на свои места, то нужно подпаять проводки. Для отвода тепла стоит воспользоваться термопастой. Оптимальным по свойствам является состав КПТ-8, его следует наносить непосредственно на светодиоды.

Затем светодиоды крепят на радиаторе и собирают электронную часть. Специалисты рекомендуют паять все по схеме навесом. В итоге должна получится следующая конструкция:

После этого можно переходить к проверке работоспособности устройства. В равнении с обычной лампой накаливания светодиоды более яркие. Они имеют больший срок эксплуатации и прочность.

Рекомендуем:

В чем их различие и что лучше выбрать: подведем итог

И так, если говорить в общем, то и блок питания, и электронный трансформатор, и драйвер относятся к категории электрических преобразователей. Но, каждый из них имеет свое назначение в прикладной электронике. Исходя из теоретических рассуждений, они взаимозаменяемы, но большинство оборудования, для которых они предназначены, не будет работать с аналогичными устройствами или будет работать некорректно.

Для чего же можно использовать каждое из них:

  • Драйвер – используется, чтобы подключить светодиод, для остальных приборов использовать драйвер нецелесообразно. Драйвер уже установлен в светодиодных лампочках, как обязательный компонент. Однако следует отметить, что конкретный драйвер, используется исключительно для подходящего под его параметры полупроводника или группы полупроводников. Если один из светодиодов перегорит, то драйвер перестанет соответствовать новому току.
  • Блок питания – подходит для включения низковольтного оборудования с постоянным напряжением питания на 12 В, 24 В и т.д. Часто применяется для подключения светодиодных лент, так как ленты уже имеют переменные резисторы и не нуждаются в ограничении тока. Но им нужно применять выпрямитель, который и предоставляет блок питания, так как светодиод чувствителен к любым колебаниям питающих величин.
  • Электронный трансформатор – часто используется для галогенных ламп, что обуславливается наличием минимальной нагрузки, без которой он попросту не запустится. Светодиодных приборов для электронного трансформатора может быть недостаточно, а вот галогенных более чем хватает. Но сами галогенки можно включать как от трансформатора, так и от блока питания, так как они работают от действующего напряжения.

Блок питания постоянного тока

Блок питания постоянного тока является прибором для понижения переменного напряжения из электросети до требуемого значения, и преобразование его в постоянное.

Такие БП используют для светодиодных лент и для светодиодных ламп на 12В. Будет ошибкой использовать трансформатор для их питания, так как это может снизить срок службы, а также приведет к мерцанию светового потока.

Как известно, для работы светодиодов нужен стабильный ток. Но такие блоки питания стабилизируют только напряжение. Для этого в LED-ленте, например, используют токоограничительные резисторы. Но эффективно такое решение только для маломощных диодов.

Е14 v.s. E27

Сравним с лампой с цоколем E27 такого же цвета (4200К), производителя (Lexman), мощности и формы [из предыдущего поста]:

Сравнение устройства двух светодиодных ламп типа свеча, миньён, с цоколями е14 и е27 от Lexman

Фото 7. Сравнение похожих светодиодных ламп Lexman с разными цоколями Е14 и Е27

Вообще всё разное (светодиоды, микросхем драйвера, корпуса). при том, что светят совершенно одинаково (по цвету, спектру, яркости). И мне не понравился этот цвет: зеленушно-желтушный какой-то, что хорошо заметно на контрасте с естественным дневным светом из окна, если включить их днём. Так же ещё и CRI у обеих ламп не очень-то высок по современным меркам — 85.

Модная кухня

световой поток

Многие особенно часто путают блоки питания и драйвера, подключая светоизлучающие диоды и ленты дюралайт не от тех источников что необходимо.

В конце концов через ограниченный временной интервал они ломаются, а вы и не подозреваете в чем была причина и начинаете неправильно грешить на «некачественного» изготовителя.

Рассмотрим детальнее в чем их отличия и когда необходимо использовать тот или другой источник питания. Однако для начала коротко попытаемся разобраться в типах трансформаторов.

На данный момент уже нечасто можно повстречать использование трансформаторного БП. Схема их сборки и работы неимоверно проста и понятна.

Самый основной компонент тут, разумеется преобразователь электрической энергии. Дома он видоизменяет напряжение 220В в напряжение 12 или 24В. Другими словами, идет прямое переустройство одного напряжения в иное.

блока питания

Частота сети при этом, обыкновенные нам всем 50 Герц.

Дальше за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдаёт «постоянку». Другими словами 12В, подаваемые к потребителю, это уже стабильное напряжение 12V, а не переменое.

блока питания

У подобной схемы 3 основных достоинства:

    ее простота
    примитивность конструкции
    относительная надежность

светодиодные ленты

Но имеются тут и минусы, которые заставили разработчиков подумать и выдумать что-нибудь более современное.

    во-первых это значительный вес и хорошие размеры
    как последствие первого минуса — перерасход металла на сборку всей конструкции
    ну и ухудшает все дело невысокий косинус фи и невысокий КПД

Собственно поэтому и были изобретены импульсные источники питания. Тут уже немного другой рабочий принцип.

Во-первых, выпрямление напряжения происходит тут же. Другими словами, подается на вход переменно 220В и здесь же при входе превращается в постоянное 220V.

драйвер

Дальше стоит генератор импульсов. Основная его функция — создать искусственно переменое напряжение с очень высокой частотой. В пару десятков либо даже сотен килогерц (от 30 до 150кГц). Сопоставьте это с привычными нам 50 Гц в домашних розетках.

светодиодные ленты

Кстати за счёт такой большой частоты, мы почти не слышим гул импульсных блоков питания. Это можно объяснить тем, что человеческое ухо способно отличать звук до 20кГц, не больше.

драйвер

3-ий компонент в схеме — импульсный преобразователь электрической энергии. Он по форме и конструкции напоминает обыкновенный. Впрочем основное его отличие — это небольшие размеры и габариты.

Это как раз таки и достигается за счёт высокой частоты.

питание

Из данных трех компонентов самым основным считается генератор импульсов. Без него, не было бы такого относительно небольшого трансформатора.

Преимущества импульсных блоков:

    небольшая цена, если разумеется сопоставлять по мощности его, и аналогичный блок собранный на самом обыкновенном трансформаторе
    КПД от 90 до 98%
    напряжение питания можно подать в огромном разбросе
    при качественном производителе трансформатора, у импульсных ИБП более большой косинус фи

драйвер

    усложненность сборочной схемы
    трудная конструкция
    если вам попался плохого качества импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут оказывать влияние на работу остального оборудования

Для светодиодных же осветительных приборов блоки такого типа не подходят. Благодаря этому для их питания применяются драйверы.

Чего же для светоизлучающих диодов нельзя использовать простой БП, и зачем нужен собственно драйвер?

питание

Драйвер — данное устройство аналогичное на блок питания.

Светоизлучающие диоды «питаются» электротоком. Также у них есть подобная характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это значит, что максимально возможный ток для него 10мА, не больше.

При протечке тока такой величины, на светодиоде затеряется 2,7 Вольт. Собственно затеряется, а не потребуется для работы. Добьетесь стабилизации тока и светоизлучающий диод будет работать долго и ярко.

Кроме того, светоизлучающий диод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Меняется сопротивление согласно графика — вольтамперной характеристике.

питание

Если на нее увидеть, то становится видно, если вы даже не гораздо увеличите или уменьшите напряжение, это резко, в несколько раз изменит величину электрического тока.

Причем зависимость не прямо пропорциональная.

драйвер

Кажется, 1 раз выставь точное напряжение и можно получить минимальный ток, который нужен для светоизлучающего диода. При этом, он не будет превосходить предельные величины. Как бы и обыкновенный блок с этим должен справиться.

Но у всех светоизлучающих диодов уникальные параметры и характеристики. При одном и том же напряжении они могут «есть» различный ток.

световой поток

А диапазон температур работы LED светильников довольно высок. К примеру, в зимний период на улице может быть -30 градусов, а в летний период уже все +40. И это в одном и том же месте.

Работать они разумеется будут, однако в каком режиме отдачи света и как долго неизвестно. Завершается подобная работа постоянно одинаково — выгоранием светоизлучающего диода.

светодиодные ленты

Кстати, при превышении температуры поток света у LED светильников всегда падает, даже у тех, которые подключены через драйвер. У плохого качества экземпляров поток света падает достаточно сильно, стоит им поработать где то час и нагреться.

У надежных изделий поток света с нагревом уменьшается слабо, но все таки уменьшается.

блока питания

Многие плохие производственники хитрят и измеряют такие параметры сразу же после включения, когда поток еще самый большой.

А уже эту последовательную цепочку подсоединяют к драйверу. Данные цепочки можно сочетать всевозможными вариантами. Создавать последовательно-параллельные или смешанные схемы.

световой поток

Разумеется и у драйверов имеются собственные бесспорные минусы:

    во-первых они рассчитаны исключительно на конкретный ток и мощность

А это означает, что для любого драйвера каждый раз придется выбирать некоторое количество светоизлучающих диодов. Если один из них нечаянно поломается во время работы, то драйвер весь ток запустит на оставшиеся.

Что приводит к их перегреву и дальнейшему выгоранию. Другими словами потеря одного светоизлучающего диода за собой влечет неполадку всей цепочки.

драйвер

Бывают и многофункциональные модели драйверов, для них не имеет значения кол-во светоизлучающих диодов, основное чтобы их общая мощность не была больше допустимую. Однако они очень дорого.

    узкоспециализированность на светоизлучающих диодах

Обычные блоки питания можно применять для разных нужд, везде где нужны 12В и более, к примеру для систем наблюдения при помощи видеокамер.

светодиодные ленты

Основное же назначение драйверов — это светоизлучающие диоды.

А есть бездрайверные фабричные осветительные приборы? Есть. Совсем недавно на рынке возникло немало подобных Светодиодных светильников и прожекторов.

питание

Впрочем энергетическая эффективность у них не достаточно высокая, на уровне обыкновенных ламп дневного света. И как он поведет себя при допустимых перепадах показателей в наших сетях, большой вопрос.

Отдельный вопрос это ленты дюралайт. Для них вовсе не требуются драйвера, и насколько известно они подключаются от обычных для нас трансформаторов 12-36 Вольт.

светодиодные ленты

Кажется в чем подвох? Там же тоже стоят светоизлучающие диоды.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

драйвер

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление ставится на три постепенно подключенных светоизлучающего диода.

светодиодные ленты

Такие участки ленты, которые рассчитаны на напряжение 12 Вольт называют кластерами. Эти некоторые кластеры на всем протяжении ленты подключены между собой в параллель.

светодиодные ленты

И собственно благодаря подобному параллельному соединению, на все светоизлучающие диоды подается одинаковое напряжение 12В. Благодаря кластеризации при установке низковольтной ленты, ее спокойно можно отрезать на очень маленькие кусочки, состоящие минимум из 3-х светоизлучающих диодов.

Кажется, решение найдено и где тут минус? А основной минус данного устройства — эти резисторы не проделывают никакой полезной работы.

световой поток

Они лишь дополнительно греют пространство вокруг и сам светоизлучающий диод возле него. Собственно поэтому ленты дюралайт не светят так ярко, как нам хочется. Благодаря чему, их применяют только как дополнительный свет интерьера.

Сопоставьте 60-70 люмен/ватт у светящихся лент, против 120-140 лм/вт у осветительных приборов и решений на основе драйверов.

Появляется вопрос, а можно ли отыскать ленту без сопротивлений и присоединить к ней драйвер отдельно? Да, данные устройства к примеру используют в LED-панелях.

световой поток

Их часто устанавливают в навесном потолке и не только. Используются они без сопротивлений. Их еще называют токовыми светодиодными линейками.

драйвер

Собственно токовыми. Тут все некоторые участки линеек подключаются постепенно на один драйвер. И все отлично работает.

Что такое трансформатор?

Классический трансформатор — это электромагнитная катушка как минимум с двумя обмотками с разным количеством витков в каждой.

Подавая переменное напряжение на одну из обмоток, с другой можно снимать переменное напряжение, как меньшего, так и большего значения, в зависимости от соотношения количеств витков в обмотках.

Все прочие электронные приборы, питающие какую-либо технику, технически не являются трансформаторами. Но, тем не менее, трансформатор — общепринятое название источника питания, под которым обычно понимается источник постоянного по значению напряжения, тип тока которого может быть как переменным, так и постоянным.

Именно в таком понимании мы используем термин трансформатор.

В нашем каталоге

Понижающие трансформаторы 220 — 12/24/36 вольтБлоки питания — драйверы для прожекторов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *