Чем регулируют силу тока в электрической цепи
ЧАСТЬ I. Регулирование силы тока в цепи.
Цель первой части работы: Научиться регулировать силу тока в цепи.
Оборудование: Источник тока, реостат, лампочка, амперметр, вольтметр, ключ, соединительные провода.
Вводная часть: Как известно силу тока в участке цепи можно подсчитать так: I = U/R. Таким образом, меняя сопротивление цепи R (сопротивление реостата), можно будет регулировать силу тока I (т.е. увеличивать или уменьшать ее). Прибор, сопротивление которого можно менять, называется реостатом. Таким образом, силу тока в цепи регулируют реостатом.
Как устроен реостат? Известно, сопротивление
R зависит от длины той части проводника, по которой течет ток: R = ρl /S. На этой зависимости и основано устройство реостата. Возьмите в руки реостат и рассмотрите его устройство. Обратите внимание на проволоку, намотанную на керамический каркас (на рис. слева показана голубым цветом). Она и создает сопротивление реостата. Меняя положение движка (смещая вправо/влево) можно менять длину той части проволоки, по которой проходит электрический ток (меняя длину l, меняем сопротивление R, а значит и силу тока I). Проведите пальчиком по реостату от левого проводка к правому, чтобы показать себе, каким путем ток проходит по реостату, если вы поняли, как это работает. Переместите движок реостата так, чтобы его сопротивление было наименьшим ( l = 0). Переместите движок реостата так, чтобы его сопротивление было наибольшим, проверяя каждый раз движением пальчика по реостату, большая или маленькая часть проволоки реостата будет задействована в цепи.
Ход первой части работы:
Попробуйте самостоятельно собрать схему (слева) и порегулировать силу тока реостатом, запишите результаты ваших исследований. В крайнем случае, смотри
подсказку хода работы. 1. Соберите электрическую цепь по схеме (см. справа). Ключ перед началом работы должен быть разомкнут, а реостат выведен на максимальное сопротивление. Обратите внимание, потребитель тока (лампочка) всегда подключается последовательно к регулирующему силу тока элементу (реостату). 2. Включите цепь и снимите показания амперметра и вольтметра. 3. Начинайте передвигать движок реостата в сторону уменьшения сопротивления. Делайте это постепенно, до самого конца. Наблюдайте за показаниями амперметра. Одновременно наблюдайте за накалом лампочки при уменьшении сопротивления реостата. Как при этом меняются показания вольтметра? 4. Теперь начните перемещать движок реостата в обратную сторону. Как при этом меняются сила тока и накал лампочки? Как меняются показания вольтметра? 5. Сделайте вывод о том, как зависит сила тока и накал лампочки от сопротивления реостата. А также меняется ли заметным образом напряжение в цепи при изменении силы тока? Ответьте на контрольные вопросы.
Контрольные вопросы к первой части: 1. Как можно увеличить (уменьшить) силу тока в цепи. 2. Для чего, например, бывает нужно менять силу тока? 3. Как можно уменьшить накал лампочки? 4. В какую сторону надо переместить движок реостата (см. рис. выше слева), чтобы увеличить сопротивление реостата? 5. В какую сторону надо переместить движок реостата (см. рис. выше слева), чтобы увеличить силу тока? 6. В какую сторону надо переместить движок реостата (см. рис. выше слева), чтобы увеличить накал лампы?
ЧАСТЬ II. Регулирование напряжения в цепи.
Цель второй части работы: Научиться регулировать напряжение на участке цепи.
Оборудование: Источник тока, потенциометр, светодиод, амперметр, вольтметр, ключ, соединительные провода.
Вводная часть: Напряжение на участке цепи регулируют потенциометром. Как известно напряжение на участке цепи можно подсчитать так: U =IR. Таким образом, меняя сопротивление участка цепи R (одной из ветвей потенциометра, например 2-3 в нашей схеме), можно будет менять напряжение U на этом участке цепи (между точками 2-3). Потенциометр отличается от реостата тремя выводами для подключения в цепь, а не двумя, как у реостата.
Ход второй части работы:
Попробуйте самостоятельно собрать схему (слева) и порегулировать напряжение потенциометром, запишите результаты ваших исследований. В крайнем случае, смотри
подсказку хода работы. 1. Соберите электрическую цепь по схеме (см. справа). Ключ перед началом работы должен быть разомкнут, а потенциометр выведен на минимальное сопротивление (по схеме вправо). Обратите внимание, потребитель напряжения (светодиод) подключается всегда параллельно к регулятору напряжения. 2. Включите цепь и снимите показания приборов: амперметра и вольтметра. 3. Начните перемещать движок потенциометра по схеме влево. Следите за показаниями амперметра и вольтметра. Как они меняются? При каком напряжении загорелся светодиод? Запишите это значение в лист отчета. 4. Теперь начните перемещать движок потенциометра по схеме вправо. Следите за показаниями амперметра и вольтметра. Как они меняются? При каком напряжении погас светодиод? Запишите это значение в лист отчета. 5. Сделайте вывод о том, как зависит напряжение от сопротивления правой части потенциометра (участок 2-3). А также меняется ли заметным образом сила тока в цепи при изменении напряжения? Ответьте на контрольные вопросы.
Контрольные вопросы ко второй части: 1. Как можно увеличить (уменьшить) напряжение на участке цепи. 2. Для чего, например, бывает нужно менять напряжение? 3. Какими способами можно погасить светодиод? 4. В какую сторону надо переместить движок реостата (см. схему выше справа), чтобы увеличить напряжение? 5. В какую сторону надо переместить движок реостата (см. схему выше справа), чтобы зажечь светодиод? 6. В чем разница в подключении потребителей при регулировании силы тока и регулировании напряжения?
Реостат – это управляющий прибор, способный изменять силу тока и напряжение
Компоненты электрической цепи
Электрические сети зациклены на передаче электроэнергии от источника к потребителю, которые являются основными элементами цепочки. Но кроме них в электрическую цепь вставляются и другие составляющие, к примеру, управляющие элементы, к которым относится реостат или любой другой прибор с таким же принципом действия. Устройство реостата – это проводник определенного сечения и длины, через которые можно узнать сопротивление проводника. Конечно, обговаривается и его материал. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети. Итак, реостат – это прибор, регулирующий напряжение и ток.
Резисторное регулирование
Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:
Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.
Устройство и принцип работы
Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:
- это трубка из керамики;
- на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
- выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
- на штанге закреплен движущийся контакт, который электрики называют ползун.
Теперь, как все это работает. Обратите внимание на рисунок ниже.
Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.
Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии. Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.
Как включается реостат в цепь
Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.
Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.
И еще один момент. В электрических схемах обозначение этих приборов вот такое:
На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.
Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.
Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.
Что такое сила тока?
Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.
Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.
В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.
Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:
I=q/t, где I — сила тока, t — время, а q — заряд.
Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).
I=U/R.
Сила тока бывает двух видов — положительной и отрицательной.
Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.
Приведем проверенные рекомендации, которые позволят решить поставленные задачи.
Регулятор напряжения ограничением тока схема
- Усилители мощности
- Светодиоды
- Блоки питания
- Начинающим
- Радиопередатчики
- Разное
- Ремонт
- Шокеры
- Компьютер
- Микроконтроллеры
- Разработки
- Обзоры и тесты
- Обратная связь
- Форум Усилители мощности
- Шокеры
- Качеры, катушки Тэсла
- Блоки питания
- Светодиоды
- Начинающим
- Жучки
- Микроконтроллеры
- Устройства на ARDUINO
- Программирование
- Радиоприемники
- Датчики и ИМ
- Вопросы и ответы
- Усилители мощности
- Светодиоды
- Блоки питания
- Начинающим
- Радиопередатчики
- Разное
- Ремонт
- Шокеры
- Компьютер
- Микроконтроллеры
- Разработки
- Обзоры и тесты
- Обратная связь
- Усилители мощности
От чего зависит сила тока?
Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:
- Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
- Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
- Напряженности магнитного поля. Чем она больше, тем выше напряжение.
- Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
- Мощности усилия, которое передается на ротор.
- Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
- Конструкции источника питания.
- Диаметра проводов статора и якоря, числа ампер-витков.
- Параметров генератора — рабочего тока, напряжения, частоты и скорости.
Система генератор-двигатель
В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:
Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.
Как повысить силу тока в цепи?
Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.
Рассмотрим, как повысить силу тока с помощью простых приборов.
Для выполнения работы потребуется амперметр.
По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.
К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.
Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.
Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.
Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.
В быту источники постоянного U, объединенные в одну группу, называются батарейками.
Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.
В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.
Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.
Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.
Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.
Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).
Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.
Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.
Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.
В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.
Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:
I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:
- S — сечение провода;
- l — его длина;
- ρ — удельное электрическое сопротивление проводника.
Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.
Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.
Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.
Преобразователь с промежуточным звеном постоянного напряжения
Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:
Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.
Как повысить силу тока в блоке питания?
В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.
Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.
При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.
Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.
Кроме того, возможны следующие варианты:
- Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
- При наличии защиты по току снизить номинал резистора в цепочке управления.
Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.
Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.
При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.
Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.
Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.
Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.
После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.
Как повысить силу тока в зарядном устройстве?
В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.
Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.
Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.
С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).
Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.
С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.
Для использования возможностей приложения достаточно скачать его, установить и запустить.
После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.
Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.
Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.
Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).
Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.
Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.
Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.
Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.
Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.
При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.
С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.
Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.
Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.
Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.
Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.
Как повысить силу тока в трансформаторе?
Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.
Здесь можно выделить следующие варианты:
- Установить второй трансформатор;
- Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
- Поднять U;
- Увеличить сечение сердечника;
- Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
- Купить новый трансформатор с подходящим током;
- Заменить сердечник ферромагнитным вариантом изделия (если это возможно).
В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.
Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.
Тиристорный преобразователь – двигатель
Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:
Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.
Как повысить силу тока в генераторе?
Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.
Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.
Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).
Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.
Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.
Частота сети должна находиться на одном уровне (быть постоянной величиной).
Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.
Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.
Кроме того, сам диодный мост меняется на деталь большей производительности.
После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.
При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.
После припаивания место стыка изолируется термоусадкой.
Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.
Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).
После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.
Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).
Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.
Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.
Схема номер 1
Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.
КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.
Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»
Несколько советов начинающим оверклокерам
В быту и на производстве широко используются электрические и электронные приборы различного назначения. Необходимое условие их функционирования — подключение к электрической сети или иному источнику электрической энергии. Из соображений упрощения создания и последующей эксплуатации сети или источника целесообразно, чтобы выходное напряжение имело определенное значение. Например 220 В бытовой сети переменного тока и 12 В автомобильной сети постоянного тока.
На практике применяются сети как постоянного, так и переменного тока. Например, бытовая 220-вольтовая сеть функционирует на переменном токе, а бортовая автомобильная сеть использует постоянный ток. В зависимости от разновидности сети повышение напряжения до нужного значения решается в них по-разному.
При обращении к современной микроэлектронной элементной базе реализующие эти функции устройства при солидной выходной мощности обладают очень хорошими массогабаритными показателями. Для иллюстрации этого положения на рисунке 1 показан пример платы со снятым корпусом повышающего преобразователя постоянного тока.
Рис. 1. Повышающий преобразователь постоянного тока бестрансформаторного типа
В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и как это делать правильно.
Повышение переменного напряжения
Разновидности трансформаторов
Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.
Рис. 2. Схемы трансформатора и автотрансформатора
Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.
Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.
Особенности трансформаторов
Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент
- увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
- выполняет функцию несущей силовой основы для обмоток.
Неизбежные потери на вихревые тока уменьшают тем, что сердечник представляет собой наборный пакет из тонких профилированных изолированных пластин.
При прочих равных условиях целесообразно использовать трансформатор. Это связано с тем, что не пропускает постоянный ток, т.е. обеспечивает гальваническую развязку сети от приемника, позволяя добиться большей электробезопасности.
Особенность трансформатора — его обратимый характер, т.е. в зависимости от ситуации он может одинаково успешно выполнять функции повышающего и понижающего устройства. Единственное серьезное ограничение — необходимость соблюдения штатных режимов работы первичной и вторичной обмоток.
В отличие от компьютерных розеток, называемых RJ45, в различных странах при устройстве бытовых сетей электроснабжения устанавливают различные типа розеток. Известны, например, розетки, немецкого, французского, английского и иных стандартов или стилей. Поэтому на трансформатор малой мощности целесообразно возложить функции адаптера, который за счет разных типов вилок и гнезд обеспечивает механическое согласование сети и нагрузки. Пример такого устройства изображен на рисунке 3.
Рис. 3. Пример обратимого маломощного трансформатора с возможностью согласования типов розеток
Лабораторные автотрансформаторы ЛАТР
Сильная сторона автотрансформатора – простота регулирования выходного напряжения простым перемещением токосъемного контакта по обмотке. Устройства, допускающие выполнение этой опции, известны как лабораторные автотрансформаторы ЛАТР. Отличаются характерным внешним видом за счет наличия регулятора напряжения и вольтметра для его контроля, рисунок 4.
ЛАТР востребованы не только в лабораториях. Они массово применяются в гаражах, на садовых участках и других местах, где из-за перегрузки и износа линии напряжение в розетке оказывается ниже минимально допустимого.
При колебаниях сетевого напряжения вместо обычного ЛАТР целесообразно использовать стабилизатор, куда он входит в виде одного из блоков.
Рис. 4. Внешний вид одного из вариантов ЛАТР
Как увеличить силу тока
Изредка нужно увеличить силу происходящего в электрической цепи тока . В данной статье будут рассмотрены основные методы увеличения силы тока без применения трудных устройств.
Вам понадобится
- Амперметр
Инструкция
1. Согласно закону Ома для электрических цепей непрерывного тока:U=IR, где:U – величина подаваемого на электрическую цепь напряжения,R – полное сопротивление электрической цепи,I – величина происходящего по электрической цепи тока,для определения силы тока надобно поделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того дабы увеличить силу тока, дозволено увеличить подаваемое на вход электрической цепи напряжение либо уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет пропорционально возрастанию напряжения. Скажем, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то происходящий по ней ток составлял:1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В всеобщее напряжение станет 3 В, а происходящий по электрической цепи ток повысится до 0,3 А.Подключение осуществляется «ступенчато , то есть плюс одного элемента питания присоединяется к минусу иного. Таким образом, объединив ступенчато довольное число источников питания, дозволено получить нужное напряжение и обеспечить протекание тока требуемой силы. Объединенные в одну цепь несколько источников напряжения именуются батареей элементов. В быту такие конструкции обыкновенно называют «батарейками (даже если источник питания состоит каждого из одного элемента).Впрочем на практике возрастание силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, протекающим при увеличении проходящего по ним тока. При этом, как водится, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Помимо того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию либо даже возгоранию. Исключительно внимательным надобно быть при эксплуатации электробытовых приборов, которые могут трудиться лишь при фиксированном напряжении. 2. Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Скажем, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если после этого сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то происходящий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки фактически равно нулю. Безмерного тока при этом, безусловно, не появляется, потому что в цепи имеется внутреннее сопротивление источника питания. Больше существенного уменьшения сопротивления дозволено добиться, если крепко охладить проводник. На этом результате сверхпроводимости основано приобретение токов большой силы. 3. Для возрастания силы переменного тока применяются всевозможные электронные приборы, в основном – трансформаторы тока, применяемые, скажем, в сварочных агрегатах. Сила переменного тока возрастает также при понижении частоты (потому что в итоге поверхностного результата понижается энергичное сопротивление цепи).Если в цепи переменного тока присутствуют энергичные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.
По закону Ома, возрастание тока в цепи допустимо при выполнении правда бы одного из 2-х условий: увеличение напряжения в цепи либо уменьшение ее сопротивления. В первом случае поменяйте источник тока на иной, с большей электродвижущей силой; во втором – подберите проводники с меньшим сопротивлением.
Вам понадобится
- обычный тестер и таблицы для определения удельных сопротивлений веществ.
Инструкция
1. Согласно закону Ома, на участке цепи сила тока зависит от 2-х величин. Она прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению. Всеобщая связанность описывается уравнением, которое выводится непринужденно из закона Ома I=U*S/(?*l). 2. Соберите электрическую цепь, которая содержит источник тока , провода и покупатель электроэнергии. В качестве источника тока используйте выпрямитель с вероятностью регулировки ЭДС. Подключите цепь к такому источнику, заранее установив в нее тестер ступенчато покупателю, настроенный на измерение силы тока . Увеличивая ЭДС источника тока , снимайте показания с тестера, по которым дозволено сделать итог, что при увеличении напряжения на участке цепи сила тока в нем пропорционально увеличится. 3. 2-й метод увеличения силы тока – уменьшение сопротивления на участке цепи. Для этого по особой таблице определите удельное сопротивление данного участка. Дабы сделать это, заранее узнайте, из какого материала сделаны проводники. Для того дабы увеличить силу тока , установите проводники с меньшим удельным сопротивлением. Чем поменьше эта величина, тем огромнее сила тока на данном участке. 4. Если нет других проводников, измените размеры тех, которые имеются в наличии. Увеличьте площади их поперечного сечения, параллельно им установите такие же проводники. Если ток течет по одной жиле провода, параллельно установите несколько жил. Во сколько раз увеличится площадь сечения провода, во столько раз усилится ток. Если есть вероятность, укоротите используемые провода. Во сколько раз уменьшится длина проводников, во столько раз увеличиться сила тока . 5. Методы возрастания силы тока дозволено комбинировать. Скажем, если увеличить площадь поперечного сечения в 2 раза, уменьшить длину проводников в 1,5 раза, а ЭДС источника тока увеличить в 3 раза, получите возрастание силы тока вы 9 раз.
Слежения показывают, что если проводник с током разместить в магнитное поле, то он начнет двигаться. Это значит, что на него действует некая сила. Это и есть сила Ампера. От того что для ее появления нужно присутствие проводника, магнитного поля и электрического тока, метаморфоза параметров этих величин и дозволит увеличить силу Ампера.
Вам понадобится
- – проводник;
- – источник тока;
- – магнит (непрерывный либо электро).
Инструкция
1. На проводник с током в магнитном поле действует сила, равная произведению магнитной индукции магнитного поля B, силы тока, происходящего по проводнику I, его длины l и синуса угла ? между вектором магнитной индукции поля и направлением тока в проводнике F=B?I?l?sin(?). 2. Если угол между линиями магнитной индукции и направлением силы тока в проводнике острый либо тупой, сориентируйте проводник либо поле таким образом, дабы данный угол стал прямым, то есть между вектором магнитной индукции и током должен быть прямой угол, равный 90?. Тогда sin(?)=1, а это наивысшее значение для этой функции. 3. Увеличьте силу Ампера , действующую на проводник, увеличив значение магнитной индукции поля, в котором он размещен. Для этого возьмите больше сильный магнит. Используйте электромагнит, тот, что разрешает получить магнитное поле разной интенсивности. Увеличьте ток в его обмотке, и индуктивность магнитного поля начнет возрастать. Сила Ампера увеличится пропорционально магнитной индукции магнитного поля, скажем, увеличив ее 2 раза, получите увеличение силы тоже в 2 раза. 4. Сила Ампера зависит от силы тока в проводнике. Присоедините проводник к источнику тока с изменяемым ЭДС. Увеличьте силу тока в проводнике за счет увеличения напряжения на источнике тока, либо замените проводник на иной, с такими же геометрическими размерами, но с меньшим удельным сопротивлением. Скажем, замените алюминиевый проводник на медный. При этом у него должна быть такая же площадь поперечного сечения и длина. Увеличение силы Ампера будет прямо пропорционально увеличению силе тока в проводнике. 5. Для увеличения значения силы Ампера увеличьте длину проводника, тот, что находится в магнитном поле. При этом неукоснительно рассматривайте, что при этом пропорционально уменьшится сила тока, следственно примитивное удлинение результата не даст, единовременно доведите значение силы тока в проводнике до начального, увеличивая напряжение на источнике. Видео по теме Видео по теме
Повышение постоянного напряжения
Общий принцип увеличения постоянного напряжения в произвольное число раз
Трансформаторный способ увеличения напряжения не может применяться в сетях постоянного тока. Поэтому при необходимости решения этой задачи используют более сложные устройства, в основу функционирования которых положена следующая схема: постоянный входной ток используется для питания генератора, с выхода которого снимают переменный сигнал. Переменное напряжение увеличивают тем или иным образом, после чего выпрямляют и сглаживают для получения более высокого постоянного.
Структурная схема такого преобразователя показана на рисунке 5.
Рисунок 5. Обобщенная структурная схема повышающего преобразователя
Отдельные разновидности схем отличаются между собой:
- формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
- принципом увеличения генерируемого напряжения (трансформатор, умножитель);
- типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.
В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.
Умножители
Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.
Существует большое количество схем умножителей. Одна из них показана на рисунке 6.
Рис. 6. Принципиальная схема умножителя
Коэффициент умножения можно нарастить увеличением количества каскадов.
Рис. 7. Еще пример: умножитель в 6 и 8 раз
Рис. 8. Учетверитель напряжения
Общее для таких схем:
- мостовой принцип реализации для увеличения общего КПД устройства;
- использование конденсаторов для накапливания заряда;
- применение диодов как элемента выпрямления.
Как повысить силу тока в блоке питания?
В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.
Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.
При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.
Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.
Кроме того, возможны следующие варианты:
- Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
- При наличии защиты по току снизить номинал резистора в цепочке управления.
Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.
Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.
При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.
Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.
Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.
Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.
После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.
Техника безопасности
При сборке и использовании повышающих устройств вне зависимости от их разновидности необходимо соблюдать базовые положения правил техники безопасности. Главные из них:
Как повысить силу тока, не изменяя напряжения?
Из статьи вы узнаете как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.
Что такое сила тока?
Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.
Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.
В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.
Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:
I=q/t, где I — сила тока, t — время, а q — заряд.
Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).
I=U/R.
Сила тока бывает двух видов — положительной и отрицательной.
Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.
Приведем проверенные рекомендации, которые позволят решить поставленные задачи.
От чего зависит сила тока?
Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:
- Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
- Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
- Напряженности магнитного поля. Чем она больше, тем выше напряжение.
- Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
- Мощности усилия, которое передается на ротор.
- Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
- Конструкции источника питания.
- Диаметра проводов статора и якоря, числа ампер-витков.
- Параметров генератора — рабочего тока, напряжения, частоты и скорости.
Как повысить силу тока в цепи?
Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.
Рассмотрим, как повысить силу тока с помощью простых приборов.
Для выполнения работы потребуется амперметр.
По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.
К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.
Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.
Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.
Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.
В быту источники постоянного U, объединенные в одну группу, называются батарейками.
Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.
В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.
Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.
Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.
Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.
Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).
Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.
Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.
Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.
В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.
Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:
I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:
- S — сечение провода;
- l — его длина;
- ρ — удельное электрическое сопротивление проводника.
Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.
Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.
Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.
Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.
Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.
Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.
Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.
Как повысить силу тока в блоке питания?
В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.
Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.
При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.
Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.
Кроме того, возможны следующие варианты:
- Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
- При наличии защиты по току снизить номинал резистора в цепочке управления.
Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.
Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.
При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.
Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.
Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.
Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.
После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.
Как повысить силу тока в зарядном устройстве?
В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.
Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.
Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.
С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).
Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.
С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.
Для использования возможностей приложения достаточно скачать его, установить и запустить.
После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.
Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.
Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.
Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).
Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.
Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.
Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.
Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.
Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.
При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.
С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.
Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.
Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.
Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.
Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.
Как повысить силу тока в трансформаторе?
Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.
Здесь можно выделить следующие варианты:
- Установить второй трансформатор;
- Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
- Поднять U;
- Увеличить сечение сердечника;
- Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
- Купить новый трансформатор с подходящим током;
- Заменить сердечник ферромагнитным вариантом изделия (если это возможно).
В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.
Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.
С учетом сказанного выше можно сделать следующие выводы:
- Мощность трансформатора зависит от ширины постоянного магнита.
- Для увеличения тока в трансформаторе требуется снижение R нагрузки.
- Ток (А) зависит от диаметра обмотки и мощности устройства.
- В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.
Как повысить силу тока в генераторе?
Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.
Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.
Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).
Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.
Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.
Частота сети должна находиться на одном уровне (быть постоянной величиной).
Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.
Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.
Кроме того, сам диодный мост меняется на деталь большей производительности.
После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.
При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.
После припаивания место стыка изолируется термоусадкой.
Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.
Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).
После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.
Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).
Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.
Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.
Итоги
Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.
Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.
Тема: Как понизить силу тока сохраняя напряжение ?
Сообщение от RA4HRA
- Поделиться этим сообщением через
Сообщение от ALEXGM
Не смешите Вопрос был вполне конкретный.
Сообщение от RZ1OM
Сергей, не стоит удалять. Очень показательные ответы. За это нас и называют "паялами".
Коллеги, неужели нельзя просто на поставленный вопрос дать ответ? Без домыслов, снобизма и хамства?